
Method of quick hash functions quality determination⋆

Andrii Sahun1,*,†, Yevheniy Nikitenko1,†, Pavlo Gikalo2,†, Olena Panasko3,†

and Valerii Dudykevych4,†

1 National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony str., 03041 Kyiv, Ukraine
2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Beresteiskyi ave., 03056 Kyiv, Ukraine
3 Cherkasy State Technological University, 460 Shevchenka ave., 18000 Cherkasy, Ukraine
4 Lviv Polytechnic National University, 12 Stepana Bandery str., 79013 Lviv, Ukraine

Abstract
To evaluate the effectiveness of the developed method, a set of hash functions was implemented based on  
the MD5 function (inclusive). It is confirmed that the traditional approach for assessing the quality of  
hash outputs—based on detecting collisions using brute-force methods—has a significant drawback: high 
computational complexity. The proposed method is based on a hypothesis confirmed during the study: a 
higher-quality hash function is one whose statistical variance characteristics meet certain criteria. The 
method  makes  it  possible  to  clearly  determine  whether  a  given  hash  function  can  be  considered 
cryptographic or should be classified as non-cryptographic.
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1. Introduction

The current state of information technology development is leading to the emergence of new hash 
functions, each with its own unique characteristics and areas of application (cryptographic, non-
cryptographic, and checksum-related). It is well known that the main parameter used to evaluate a 
hash  function  is  the  number  of  collisions,  the  presence  or  absence  of  collisions,  and  overall 
resistance to collision occurrence [1–3]. Investigating the quality of any crypto-algorithm is an 
important issue in itself and is covered in many sources [1–4]. As a rule, a separately developed ad-
hoc method is used for such studies [5].

In addition to detecting collisions when assessing the quality and robustness of hash functions, 
mathematical methods can generally be used to evaluate hash functions. A similar approach is  
described in [3], where the study demonstrates the use of statistical metrics (such as the Strict  
Avalanche Criterion (SAC)), which are essentially closely related to variance analysis. Research in 
the context of network equipment, where variance indicators are used to assess the uniformity of  
hash distribution, is presented in [6].

Identifying and analyzing the collision problem for various hash functions is a non-trivial task. 
In many cases, different ad hoc algorithms and technologies are used for this purpose. It has been  
proven  that  a  cryptographic  hash  function  must  be  resistant  to  both  preimage  attacks  and 
collisions. Meanwhile, for non-cryptographic functions and those used for computing checksums, 
the priority is typically on resisting the occurrence of collisions [5].

Various methods exist for detecting collisions, while the most accurate approach remains the 
brute-force  method  of  exhaustively  testing  all  possible  values.  However,  such  methods  are 
computationally intensive. A faster alternative is the heuristic estimation of collision probability 
using the birthday paradox, which is based on the number of possible output values N (the hash 
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size) [5, 7]. This approach is considered optimal in terms of time efficiency and acceptable accuracy 
when  assessing  the  quality  of  a  hash  function.  Recent  advances  in  cryptographic  research 
emphasize the importance of developing robust hash functions resistant to collision and preimage 
attacks,  which  remains  a  challenging  task  due  to  the  evolving  complexity  of  cryptographic 
algorithms [6]. Additionally, the prospects of post-quantum cryptographic algorithms pose new 
challenges and opportunities for designing hash functions with improved security properties and 
efficient evaluation methods [7–12]. These studies underscore the necessity for practical,  time-
efficient approaches to assess hash function quality without compromising accuracy. Nonetheless, 
in practical scenarios, applying these methods to evaluate hash function quality remains extremely 
difficult due to their high computational cost.

2. The aim of this research

The aim of this research is to develop and improve methods for detecting hash function quality,  
which would allow for evaluating their cryptographic properties—such as the avalanche effect, 
distribution uniformity, and collision resistance.

3. Main part

To verify the above hypothesis regarding a method for evaluating the quality of  a given hash 
function   H(x),  the  authors  developed three  “simplified”  hash functions—H1(x),  H2(x)  to  Hn(x)— 
which return output values of fixed length similar to that of the original function. These functions  
are structurally similar and represent lightweight variants of the MD5 hash function.

The results obtained through the computational experiment for the statistical deviations of the 
hash  functions  H1(x),  H2(x)  … Hn(x)  та  Hmd5(x)  are  compared  based  on  the  criterion  of  which 
function exhibits the smallest deviation from certain variance centers of the output hash values  
across several input samples. The MD5 function is included in this comparison and is treated as a 
benchmark of a “robust” cryptographic hash function.

When formulating the final conclusions, the time required to compute hash values for all testing 
functions is also considered. For the standard MD5 function, a program implementation from a 
referenced source [13].

All used md5-like hash functions used in the research generate 128-bit output values. Just like  
the  original  md5  function,  simplified  variants  can  be  used  to  split  databases  and  calculate 
checksums to verify file integrity.

During hypothesis testing, all three simplified hash functions H1(x), H2(x), H3(x) and the original 
function Hmd5(x) produce 128-bit values. They also demonstrate an avalanche effect.  Below is a 
general  description of  the created demo functions H1(x),  H2(x),  H3(x)  and the original  function 
Hmd5(x):

1. Function Hmd5(x) (#1)—MD5Example (original MD5) is a standardized cryptographic hash 
function with 128-bit output. This function consists of 4 rounds of 16 operations, which 
include bitwise logical functions, addition modulo 232 and cyclic shifts. Its properties include 
a good avalanche effect and its initial creation for cryptographic applications. However, it is 
now considered to be cryptographically compromised. This function is deterministic and 
fully implements compression of any size to a 128-bit digest.

2. Function H1(x) (#2)—differs from the original MD5 in that it does not have rounds or a 
Merkle–Damgård structure. It uses simple bitwise operations (XOR, rotateLeft, rotateRight) 
without complex logic. Instead of tables of constants or complex functions, simply uses  
position-based character shifts. The initialization vector used in this hash function (IV) is 
hardwired and fixed. It supports the avalanche effect, but: (1) does not provide collision 
resistance;  (2)  is  not cryptographically secure;  (3)  can be used for simple hashing tasks 
where security is not critical (for example, checksum, in hash tables).
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3. The function H1(x) (#2) differs from MD5 in that: (1) has a more complex structure than 
SimpleHash128,  but  is  still  much  simpler  than  MD5;  (2)  uses  non-linear  bitwise 
combinations, multiplication by prime numbers (for example, 131, 0x5a5a5a5a)—to enhance 
the avalanche effect; (3) does not have a clear block structure or rounds like MD5; (4) does 
not use padding, which is a critical part of secure hashes; (5) provides a tangible avalanche 
effect, even with a small change of symbols; (6) is not suitable for cryptography due to the  
fact that it is easily subject to the selection of input data to create collisions and does not 
have differential stability.

The main differences between these hash functions are listed in Table 1.

Table 1
Characteristics of the researched hash functions 

Hash-function properties Md5(№1) SimpleHash128(№2) AvalancheHash(№3)

Crypto-strenght compromised insufficient insufficient

-Avalanche effect sufficient notable sufficient

Round’s-structure standard custom custom

Hash length (bits) 128 128 128

Constants and complex 
operations

standard custom custom

Padding standard custom custom

Applying for cryptography was applied was not applied was not applied

Speed of operations high higher then №1, №3 high

The hash functions listed in Table 1 can be characterized as follows:

 MD5 is an authentic standardized hash algorithm with complex logic;
 SimpleHash128 is a simplified version of the md5 algorithm, which shows a certain level of 

avalanche effect, but is not crypto-resistant;
 AvalancheHash is a bit more complex, with non-linear operations for a better avalanche 

effect.

These simplified analogs are useful  for this study and for non-cryptographic tasks (such as  
hashing in games or databases).

The conclusion regarding the quality of the hash function H i(x) is made based on the nature of 
the change in the input data, depending on the change in the input values: the hash function is 
considered high-quality if the change of at least one bit in the input data leads to changes in a 
significant number of bits of the output value (avalanche effect). Otherwise, the hash function H(x) 
is considered to be of poor quality.

To  illustrate  the  operation  of  this  method,  a  graph  is  constructed  showing  the  number  of 
changed bits in the hash for each change in the input message.

We  will  calculate  the  quality  parameters  of  the  obtained  hash  function  according  to  the 
following parameters: dispersion, mathematical expectation, number of collisions on a wide sample 
of initial values of the “hash-128” type, and we will build corresponding illustrative graphs of the  
quality parameters of the hash function.
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4. Testing the statistical characteristics and quality of hash functions

For all three hash functions presented above, a computational experiment was conducted in which 
each function was supplied with 100 different input values of fixed bit lengths: 4, 6, 8, 10, 12, 14, 16,  
32, 64, and 128 bits.

As a result of this computational experiment, a comparison of the three hash functions (MD5, 
SimpleHash128,  and  AvalancheHash)  was  performed.  The  obtained  values  of  variance,  mean 
(mathematical expectation), and number of collisions for all input lengths are presented in Tables 2 
and 3.

Table 2
The comparative table of the results of the analysis of the characteristics of three hash functions (at 
4, 6, 8, 10, 12 input values)

Length of input 
hash value, bits

Name of hash-
function

Value of 
mathematica
l expectation

Value of variance Number of 
collisions

4 MD5
SimpleHash128
AvalancheHash

0.5234
0.5138
0.4052

0.2299
0.0596
0.0470

84
84
84

6 MD5
SimpleHash128
AvalancheHash

0.5002
0.4501
0.4618

0.2441
0.0874
0.0564

47
47
47

8 MD5
SimpleHash128
AvalancheHash

0.4945
0.5006
0.5051

0.2462
0.1081
0.0689

17
17
17

10 MD5
SimpleHash128
AvalancheHash

0.4981
0.5028
0.4852

0.2472
0.1194
0.0743

7
7
7

12 MD5
SimpleHash128
AvalancheHash

0.4903
0.4807
0.4905

0.0876
0.2472
0.1342

1
1
1

Table 3 is practically a continuation of Table 2, but differs from it in that starting with 14-bit 
input values, all three studied hash functions begin to demonstrate the actual absence of collision 
of the output values.

5. Analysis of the computational experiment results

Analyzing the obtained statistical indicators for the hash functions created for the experiment, the 
following observations can be made:

1. The  mean value being close to  0.5 in all  cases indicates that the bit  values in the hash 
outputs  are  approximately  uniformly  distributed—close  to  the  ideal  distribution  of  50% 
zeros  and  50%  ones in  the  bit  representation.  The  standardized  hash  function  MD5 
consistently  demonstrates  a  stable  mean  around  ~0.5.  The  function  labeled 
“AvalancheHash” tends  to  shift  slightly  toward  the  range  of  0.52–0.53,  while  the 
“SimpleHash128” function exhibits slightly greater variability but also approaches 0.5.

294



Table 3
The comparative table of the results of the analysis of the characteristics of three hash functions (at 
4, 6, 8, 10, 12 input values)

Length of input 
hash value, bits

Name of hash-
function

Value of 
mathematical 
expectation

Value of variance Number of 
collisions

14 MD5
SimpleHash128
AvalancheHash

0.4944
0.5055
0.4966

0.2472
0.1342
0.0921

0
0
0

16 MD5
SimpleHash128
AvalancheHash

0.4935
0.4708
0.4572

0.2475
0.1431
0.0996

0
0
0

32 MD5
SimpleHash128
AvalancheHash

0.5059
0.4727
0.5182

0.2474
0.1958
0.1431

0
0
0

64 MD5
SimpleHash128
AvalancheHash

0.5000
0.4897
0.5205

0.2476
0.1953
0.1425

0
0
0

128 MD5
SimpleHash128
AvalancheHash

0.5028
0.4808
0.5256

0.2481
0.1956
0.1453

0
0
0

2. The  variance for  the  MD5 function  is  estimated  at  approximately  0.247.  This  value  is 
expected for a uniformly distributed binary sequence. Meanwhile, the SimpleHash128 and 
AvalancheHash functions show lower variance, indicating a less chaotic (but still relatively 
strong) distribution of bits in these functions.

3. The  number  of  detected  collisions for  short  input  messages  (in  the  4–10  bit  range)  is 
predictably high (ranging from 84% to 47%). However, starting from input lengths of 12 bits, 
all evaluated functions show practically zero collisions. All functions exhibit the same trend 
of decreasing collision rates as the input length increases.

Let’s make a graph of variance change dependencies, mathematical expectation and collisions 
for functions No. 1, No. 2, No to illustrate the operation of this method graphs (Figure 1).

Figure  1: graphs of variance change dependencies, mathematical expectation and collisions for 
functions No. 1, No. 2, No. 3 Commons
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From Figure 1 (left chart), it is evident that the value for MD5 consistently remains around 0.5, 
which  corresponds  to  a  uniform  distribution  of  bits  “0”  and  “1”.  At  the  same  time,  for  the  
SimpleHash128 and AvalancheHash functions, these values initially fluctuate, but stabilize as the 
input length increases.

In the center chart of Figure 1, we observe that the variance values for the MD5 function remain 
approximately constant at ≈ 0.247, which is typical for a uniform binary distribution. The functions 
labeled “SimpleHash128” and “AvalancheHash” exhibit lower variance, indicating a less chaotic bit  
distribution (although still considered acceptable).

The right chart in Figure 1 shows the number of detected collisions for all three functions under 
study. For short input lengths (4–10 bits), all the examined functions exhibit approximately the 
same number of collisions (the graphs coincide almost in one line).  However, starting from an 
input length of 12 bits, no collisions are observed for any of the functions (which is fully expected  
for 100 unique input combinations).

To further test the hypothesis regarding the evaluation of hash function quality using statistical 
indicators,  we  will  calculate  the  corresponding  values  for  the  SHA-1  (Figure  2a)  and  SHA-2 
(Figure 2b) functions.

Figure  2: Bit  Value  Variance  vs  Input  Bit  length:  a—for  MD5,  SHA-1,  SimpleHash-128  and 
AvalancheHash  functions;  b—for  MD5,  SHA-1,  SHA-2,  SimpleHash-128  and  AvalancheHash 
functions

As seen in Figure 2, the MD5 and SHA-1 functions exhibit stable variance around 0.25—this is  
expected  for  a  high-quality  cryptographic  hash  function  with  a  uniform bit  distribution.  The 
SimpleHash128 function shows a lower but gradually increasing variance (≈0.15–0.20), indicating a 
less entropic yet predictable distribution. The output of AvalancheHash varies more significantly— 
it starts lower but increases to around ≈0.15–0.18, which indicates the presence of an avalanche  
effect, albeit with lower entropy.

The SHA-2 (SHA-256) function, as expected, demonstrates high and stable variance (~0.25)— 
nearly an ideal uniform bit distribution. The SHA-1 and MD5 functions also remain close to this 
ideal value, with minor fluctuations. In contrast, SimpleHash128 and AvalancheHash show lower 
variance, indicating a less random (but still avalanche-like) bit distribution.

This  confirms  the  higher  entropy  and  uniformity  of  cryptographic  hash  functions  (SHA-2, 
SHA-1,  MD5)  compared  to  the  simplified  hash  implementations  (SimpleHash128  and 
AvalancheHash).

The  computational  complexity  of  calculating  variance  and  detecting  collisions  for  a  hash 
function differs significantly in nature.

A specific comparison of the computational complexity of finding a collision (through brute 
force and through the birthday paradox) and calculating the variance for the 128-bit hash functions 
“SimpleHash128” and “AvalancheHash” and MD5 is given in Table 4.
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Table 4
The  comparative  analysis  of  hash  function  quality  evaluation  methods  for  functions 
“SimpleHash128”, “AvalancheHash” and MD5

Methods for evaluating 
hash function quality 

Complexity
Valuation of 

results
Suitability for 

use/speed

Full brute-force θ(2128) ≈3.4*1038 Impossible (for 
now)

 Birthday Paradox θ(264) ≈1.8*1019 Almost 
impossible

Dispersion (100 input) θ(n*m) ≈1.3*104 Very good 
(fastest)

Dispersion (200 input) θ(n*m) ≈12800 Very good (fast)

Dispersion (500 input) θ(n*m) ≈25600 Very good (fast)

Dispersion (1000 input) θ(n*m) ≈64000
Very good (up to 

1 second)

Dispersion (10000 input) θ(n*m) ≈1280000
Depends of 
hardware

So, traditionally, to find a collision, you need to go through all possible output values. Since the 
output for the functions “SimpleHash128” and “AvalancheHash” and MD5 is 128 bits, the number 
of possible unique hashes is: 2128≈3,4×1038. This means that in the worst case, 3,4×1038 unique input 
values need to be checked to be guaranteed to find a collision. When using the “birthday” attack 
[14, 15], it is possible to reduce the search to 264≈1,8×1019 iterations. This is significantly faster, but 
still very computationally intensive.

If is used a modern video card, for example NVIDIA RTX 4090, to sort through all the possible 
values of the argument of the developed function. Then, for the well-known and comparable MD5 
algorithm developed for its complexity (it has a 128-bit output), the computing power allows you to 
calculate 200-300 billion hashes per second (i.e. 2×1011 до 3×1011 hashes/sec) it takes from 1.13×1027 

seconds to go through all possible values ≈ 3,6×1019 years.
If  a  more  optimal  “birthday”  attack  is  implemented,  the  computational  complexity  will  be: 

264≈1.8×1019 iterations, and the calculation time will be: 6×107seconds =1.9 years.
Thus, under real conditions, determining the number of collisions using existing methods is a  

significantly  more  computationally  intensive  task.  Analyzing  the  results  of  the  computational 
experiments shows that in order to obtain a statistically significant estimate of collision frequency, 
it is desirable to test a much larger sample for the developed function—for example,  1020 or even 
more hash values. At the same time, Figure 1 demonstrates that the quality of a hash function is 
closely correlated with the variance of its output values (like in [16, 17]). 

The  entropy  of  md5  function  values  is  quite  high  compared  to  SimpleHash128  and 
AvalancheHash functions. At the same time, these functions also show an avalanche effect, but 
with lower entropy compared to the md5 function.

As seen in Figure 4, the time gain when evaluating and classifying a hash function in terms of 
its cryptographic nature using variance—compared to traditional collision detection. This one can 
reach up to 1.65*1034 times. 
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Conclusions

The calculation of variance for sample values is a far simpler computational task. Therefore, the 
variance  metric  of  a  hash  function  allows for  a  clear  conclusion  as  to  whether  a  given  hash 
function is cryptographic or non-cryptographic.

Variance  calculation  is  an  extremely  efficient  task  with  linear  computational  complexity, 
typically  performed  in  milliseconds  even  for  hundreds  of  input  samples.  In  contrast,  finding 
collisions,  even  when  using  the  birthday  paradox,  remains  a  task  of  exponential  complexity, 
making it orders of magnitude more demanding. Thus, for practical use, especially in evaluating 
the  quality  of  non-cryptographic  hash  functions,  the  use  of  variance-based  indicators  is  a  
promising approach.

As we can see from the above researches, the function can be cryptographic hash function if it 
has a uniform bit distribution functions exhibit stable variance around 0.25.

To  enable  practical  application  of  the  proposed  evaluation  method,  further  research  is  re-
quired—including the creation of hash function quality classes ranked by acceptable deviations 
from an ideal hash function. It may also be necessary to develop classification criteria based on 
deviation from a reference variance value, in order to reliably categorize a given cryptographic 
hash function as strong, moderate, or weak in terms of quality.
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