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Abstract
This  paper  presents  CrypticWave,  a  secure  ephemeral  messaging  system that  implements  client-side 
authenticated encryption (AES-GCM), one-time message access, and volatile in-memory message storage.  
The encryption model ensures a high level of protection against tampering, as GCM provides built-in 
integrity verification. The system is deployed in a cloud environment using Docker containers, with a 
PostgreSQL database mounted on a RAM-based file system ensuring that all data is re-initialized after 
each restart, thereby enhancing user data protection and eliminating persistent traces. CrypticWave was  
tested under a threat model involving active adversaries with server access. Results show that proposed 
architecture  significantly  reduces  metadata  leakage  and prevents  message  recovery  after  first  access. 
System performance  and usability  were  also  evaluated  through  benchmarking  and user  testing.  The 
findings  support  CrypticWave  as  a  lightweight,  privacy-preserving  messaging  solution  suitable  for 
sensitive information exchange in high-risk or surveillance-prone environments. The service is available 
at: https://www.crypticwave.tech/.
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1. Introduction

Information technologies have significantly facilitated remote communication and data exchange, 
enhancing convenience and operational efficiency across numerous domains. However, the rapid 
increase  in  the  transmission  of  confidential  data  through  electronic  channels  poses  substantial 
security challenges.  This concern becomes particularly pronounced when dealing with sensitive 
data such as passwords, API keys, access tokens, banking details (account numbers, card numbers, 
IBAN,  SWIFT),  and  confidential  documents  within  finance,  critical  infrastructure,  IoT,  law, 
journalism,  education,  research,  and  personal  communications  [1].  Traditional digital 
communication  tools,  including  email,  messaging  applications,  and  cloud  storage,  often  fail  to 
consistently meet the required security standards [2–4]. These methods usually store messages and 
data on centralised servers, increasing the likelihood of data breaches in the event of unauthorised 
access or cyberattacks [5]. Recent forensic research underscores this vulnerability, highlighting that 
even encrypted messaging platforms like WhatsApp, Signal, Telegram, Wickr, and Threema leave 
behind recoverable artefacts in memory. Such data remnants, including usernames, metadata, and 
occasionally message content, can be recovered through memory forensic techniques, particularly 
on desktop or web-based versions of these applications [6]. One way to address these vulnerabilities 
involves the use of one-time messaging services that automatically delete messages after viewing. 
Tools  such  as  Privnote  [7],  OneTimeSecret  [8],  and  One  Time  Chat  [9]  provide  temporary, 
encrypted  links  or  messages  that  self-destruct  after  initial  access,  thereby  reducing the  risk  of 
unauthorised  retrieval.  Another  notable  tool,  OnionShare,  leverages  onion  routing  technology 
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through the Tor network to ensure anonymous and secure file and message transfers [10]. These 
solutions have demonstrated effectiveness in protecting data within financial [11] and healthcare 
[12] sectors, as well as other sensitive areas. However, despite the existing advantages, most current 
solutions  still  have  significant  vulnerabilities.  Most  current  one-time  messaging  solutions  still 
temporarily  store  sensitive  plaintext  or  encryption  keys  within  server  memory,  which  can  be 
recovered using memory forensic methods. Even after viewing a message, traces of information or 
its metadata can remain in RAM, creating potential attack vectors, in particular through memory 
dumps, as confirmed by numerous studies [6]. Thus, an important question remains unresolved: 
how  to  create  a  service  that  not  only  instantly  destroys  messages  after  viewing,  but  also 
fundamentally  prevents  any  traces  of  sensitive  data  from  being  left  in  the  server  memory, 
eliminating  the  risks  of  digital  forensics  and memory leaks?  To address  this  query,  this  paper 
presents a basic architecture of the CrypticWave service for secure one-time encrypted messaging. 
CrypticWave implements the security by design principle, characterised by minimal data retention, 
absence of logging, and volatile storage using tmpfs. Crucially, our server architecture never stores 
encryption keys, but only encrypted data with the PostgreSQL database fully operating in RAM, 
thereby substantially mitigating forensic risks. Research in the field of optimizing cryptographic 
primitives,  particularly  in  finding  efficient  bitsliced  descriptions  of  S-boxes,  demonstrates  the 
potential to enhance performance and reduce resource consumption in client-side encryption [13].
Furthermore, the application of entropy-based methods for evaluating the strength of encryption 
algorithms enables a quantitative assessment of protection levels, which is especially critical for 
one-time messaging services [14].  Specifically,  this paper makes the following contributions:  (1) 
Design of a stateless, zero-persistence messaging system that ensures confidentiality using AES-
GCM encryption performed entirely on the client  side;  (2)  Implementation of  volatile  message 
storage utilising tmpfs and containerization to minimise potential memory leaks; (3) Evaluation of 
system performance and user trust through benchmarking and usability studies.

2. Methodology

As  discussed  above,  current  ephemeral  messaging  services  often  retain  vulnerabilities  due  to 
temporary storage of encryption keys, server logs, or persistent databases structures. To address 
these challenges,  CrypticWave implements  a  zero-persistence architecture  characterized by:  (1) 
Client-side AES-GCM encryption with enforced single-use message access; (2) Volatile message 
storage utilizing tmpfs combined with Docker containerization to ensure RAM-only data handling; 
(3) Immediate and automatic data deletion after first access, with no key information retained on 
the  server;  and  (4)  Absence  of  user  registration  or  identity  tracking,  thereby  eliminating  any 
possibility of linking user activities.

2.1. Encryption model

Data  encryption  ensures  that  transmitted  messages  are  rendered  unreadable  without  a 
corresponding decryption key, thereby safeguarding information from malicious interception [15, 
16]. The CrypticWave employs the Advanced Encryption Standard in Galois/Counter Mode (AES-
GCM), an authenticated encryption mechanism recognized for its robust security guarantees and 
high efficiency (Table 1). AES-GCM provides simultaneous encryption and integrity verification 
through two main  cryptographic  operations,  AES  in  Counter  Mode  (CTR)  for  encryption  and 
GHASH Polynomial Authentication for verifying data integrity [17].

317



Table 1
Key components of AES-GCM algorithm

Component Purpose

K (Key) Encryption key (128, 192 or 256 bits)

IV (Nonce) Unique initialization vector (96-bits)

AAD Additional Authenticated Data (e.g., headers)

Plaintext Unencrypted original message 

Ciphertext Encrypted message content

Authentication Tag (Tag) 128-bit hash ensuring data integrity and authenticity

AES-GCM operation begins by generating a 256-bit  encryption key (K) and a 96-bit  unique 
initialization vector  (IV).  Using  these  parameters,  AES  encryption  in  CTR  mode  encrypts  the 
plaintext. Simultaneously, the GHASH function computes a polynomial-based authentication tag to 
check whether the data has been modified during  transmission. This is done using the special 
GHASH hash function, which performs mathematical operations on the Galois field GF(2¹²⁸):

GHASH (H , AAD ,Ciphertext )=X m+n+1 , (1)

where  H = Ek(0128) denotes the hash key derived from encrypting 128 zero-bits using key;  m, 
n represent the count of 128-bit blocks in AAD and Ciphertext, respectively, and Xi  is computed as:

X i=∑
j =1

i

S j ∙ H i− j +1={ 0 , for i=0 ,
( X i−1 S i ) ∙ H , for i=1 ,… ,m+n+1 , (2)

Each plaintext  block  Xi undergoes  XOR operations  with  CTR-generated  encryption  output, 
followed by multiplication by the hash key H. The result of the last iteration is used as the hash 
value GHASH.  

Authenticated  data  (AAD)  and  ciphertext  are  individually  padded  to  128-bit  multiples  and 
combined into a single message Si:

X i={ AAD i , for i=1 ,… ,m−1 ,

AADm
* || 0128−v , for i=m ,

Ciphertext i−m , for i=m+1 ,… ,m+n−1 ,

Ciphertext n
* || 0128−u , for i=m+n ,

len ( AAD ) || len (Ciphertext ) , for i=m+n+1 ,

(3)

where len(AAD), len(Ciphertext) are 64-bit lengths of AAD and Ciphertext, respectively, v and u 
represent lengths of the final blocks of AAD and Ciphertext, respectively, || denotes the union of bit 
strings.  Upon  reception,  the  recipient,  possessing  the  key  K,  decrypts the  ciphertext  and 
independently recalculates the authentication tag. If any data tampering occurs, even a single-bit 
change, the authentication verification fails, thus preventing unauthorized data modifications. This 
AES-GCM encryption model adopted by CrypticWave robustly secures data against interception, 
server-side  vulnerabilities,  and  unauthorized  alterations,  providing  strong  cryptographic 
assurances of confidentiality and integrity.

2.2. System architecture

The CrypticWave architecture offers improvements over existing ephemeral messaging tools due 
to (1) fully client-side encryption, ensuring plaintext never reaches the server, (2) non-transmission 
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and non-storage of encryption keys on the server, (3) exclusive server-side storage of encrypted 
content without the ability to decrypt, (4) immediate and irreversible message deletion following a 
single  access,  (5)  scalability  and  ease  of  deployment  through Docker  containerization,  and  (6) 
automated  provisioning  and  management  of  SSL,  databases,  and  web  infrastructure.  Figure  1 
illustrates  the  system  architecture,  depicting  the  communication  and  data  flow  between 
components.

Figure 1: Base architecture of CrypticWave service 

2.2.1. Operational workflow 

The  User1  (Sender)  interacts  with  CrypticWave  via  a  cross-platform  front-end,  inputting  the 
message content. For each message, a unique message ID and AES encryption key are generated on 
the client-side. The message undergoes client-side AES-GCM encryption, producing encrypted data 
and an authentication tag. The encrypted message and tag are transmitted securely via the Web 
Crypto API to the server, generating a unique one-time-access link. User2 (Recipient) decrypts the 
message using the key embedded in the unique link. The client-side decryption restores plaintext 
and verifies the integrity via authentication tag. Immediately after successful access, the message is 
deleted from volatile RAM storage, ensuring zero recoverability.

2.2.2. Encryption and client-side logic

All encryption and decryption of messages happen directly on the user’s device. This means that 
the server never sees the original message or the encryption key. When User1 creates a message, it  
is encrypted using a secure algorithm (AES-GCM) in the browser. After the message is encrypted, 
the system generates  a  unique link (ID)  that  includes the necessary information to access  the  
message. This link is sent to User2, who can then open it and decrypt the message on their own  
device.

2.2.3. Network layer

CrypticWave  integrates  Cloudflare  as  a  secure  intermediary  between  users  and  the  backend 
infrastructure, serving as both a reverse proxy and a comprehensive security layer. When users 
access the CrypticWave domain, their requests are first routed through Cloudflare’s global edge 
network.  This  setup  allows  Cloudflare  to  handle  DNS  resolution  and  forward  traffic  to  the 
appropriate backend services while hiding the true IP address of the host server. Cloudflare also  
manages  SSL/TLS  encryption  by  terminating  HTTPS  connections  at  the  edge,  reducing 
cryptographic load on the original server.  To further protect the system, Cloudflare applies to a  
web  application  firewall  (WAF),  which  detects  and  blocks  malicious  traffic.  In  the  case  of 
CrypticWave, the WAF is configured to filter out requests that contain SQL injection, cross-site  
scripting (XSS), or other common attack payloads. It also defends against brute-force attempts to 
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guess valid message links by rate-limiting access to sensitive endpoints. Dynamic API endpoints 
used to transmit and receive encrypted messages are excluded from caching to maintain message 
integrity  and  the  one-time  access  guarantee.  Access  to  the  backend  server  is  restricted  to 
Cloudflare’s  infrastructure,  preventing direct connections from the open internet.  This security 
design reduces the attack surface and ensures that only filtered and validated traffic reaches the 
CrypticWave host environment. 

2.2.4. Host server

The main backend of the system runs on a physical or virtual server. The different parts of the 
application are packaged in Docker containers, which are used to isolate individual components of 
the CrypticWave system ensuring consistent execution environments across different deployment 
platforms.  Containerization  also  enhances  fault  isolation,  enables  microservice  scaling,  and 
simplifies orchestration through Docker Compose. The host server runs Nginx frontend only sends 
static files (like the webpage) to the user’s browser; Nginx backend handles incoming and outgoing 
requests, acting as a bridge between the frontend and the database; PostgreSQL (in tmpfs) is a 
database, but it is stored only in the server’s RAM (temporary memory). Nothing is saved on the 
hard disk, so once the server restarts or data is accessed and deleted, there’s no way to recover it.

2.2.5. Technology stack and design considerations

Table 2 shows technology stack used to implement the CrypticWave development. 

Table 2 
Development technology stack

Function Technology 

Front-end React + Vite

Front-end build Vite

Styling CSS Modules

Server Node.js + Express

Database PostgreSQL (in RAM via tmpfs)

HTTP-proxy Nginx

Process management PM2

SSL-certificates Let’s Encrypt + Certbot

Deployment Docker + Docker Compose

Hosting Proxmox container 

The PostgreSQL database is deployed entirely in-memory using an RAM-based filesystem (tmpfs). 
This ensures that all encrypted messages reside only in volatile memory and are irretrievably lost  
upon access, server reboot, or container restart. This approach eliminates the risk of residual data 
being recovered through forensic analysis. While it limits the system’s capacity to the available 
RAM and forfeits  persistence across reboots,  these are acceptable trade-offs in a design where 
message permanence is  intentionally  avoided.  The full  application stack is  containerized using 
Docker and orchestrated with Docker Compose, enabling isolated, repeatable deployments across 
cloud infrastructure hosted on Proxmox. This architecture supports CrypticWave’s core objectives: 
secure message lifecycle control, minimal metadata exposure, and efficient, stateless deployment. 
While  its  functionality overlaps with some Docker-native features,  PM2 adds  another  layer  of 
resilience  and  observability  during  development  and  staging  without  introducing  significant 
complexity. 
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3. Results

The CrypticWave service was evaluated across three key dimensions:  (i)  security against post-
compromise threats, (ii) system performance under realistic load, and (iii) usability and user trust. 
Where  possible,  we  compare  CrypticWave  with  two  widely  used  ephemeral  messaging  tools:  
Privnote and OneTimeSecret. To the best of our knowledge, no prior academic work has published 
memory-dump analyses of ephemeral messaging systems such as Privnote or OneTimeSecret. At 
the same time, extensive memory-forensics research confirms that sensitive plaintext or encryption 
artifacts frequently remain in RAM post-deletion [18, 19]. Therefore, at this stage, we relied on data 
from literature  and assumed that  competing messaging tools  may leave  retrievable  ciphertext, 
identifiers (IDs), or metadata (IP logs) in memory that could be recovered via forensic tools in post-
compromise scenarios. For CrypticWave, we simulated a full server-compromise scenario where an 
attacker gains unrestricted access to the host system after a message is submitted but before it is  
accessed.  The  message  payloads  included  synthetic  sensitive  data  (e.g.,  API  keys,  passwords, 
session  tokens).  Using  standard  forensic  tools  such  as  volatility,  strings,  grep,  and  lsof,  we 
conducted  memory and disk  inspections.  No retrievable  plaintext  or  associated  metadata  (e.g., 
sender IPs, message IDs, encryption keys) were found after tmpfs reset and process cleanup. Logs 
were  also  non-persistent  and  cleared  upon  restart,  confirming  CrypticWave’s  effective 
implementation of zero-persistence principles.

To evaluate system performance, we deployed CrypticWave in a controlled environment on a 
Proxmox virtual container with 2 vCPUs and 4 GB RAM. Stress tests were performed using work  
and custom Python clients simulating concurrent user behaviour under various load conditions (10, 
50,  and  100  concurrent  users).  Under  varying  load  conditions,  CrypticWave  remained  highly 
responsive.  Cold response times,  which include initial  Docker container start-up,  averaged 145 
milliseconds, while warm response times stabilized around 48 milliseconds after boot. The system 
sustained a maximum throughput of approximately 620 messages per minute with 100 concurrent 
users, without degradation in performance. Steady-state memory usage remained around 208 MB, 
which includes the front-end, back-end, and the PostgreSQL database running entirely in RAM via 
tmpfs. This in-memory design significantly accelerated message access and deletion operations by 
eliminating disk I/O, and CPU usage did not exceed 11% even under peak load, confirming the 
system’s suitability for lightweight, ephemeral messaging in real-time environments.

A usability study was conducted with 24 participants (12 technical and 12 non-technical users),  
split between an A/B comparison of CrypticWave vs. Privnote. Each participant completed a set of  
guided tasks (send, view, and delete a message), followed by a post-test survey. Table 3 presents 
comparison of usability metrics gathered from CrypticWave and Privnote. 

Table 3 
Comparative usability and trust scores between CrypticWave and Privnote

Parameter CrypticWave Privnote

System Usability Score (SUS) 84.6 / 100 76.2 / 100

Error rate (task failures) 0.21 per user 0.24 per user

Time to complete task 34.1 msec 37.6 msec

Reported trust (qualitative) “High” (n=19) “Medium” (n=13)

Participants particularly appreciated the one-time access feature, lack of registration, and clarity 
of encryption messages on the UI. However, a few users initially struggled to understand that the 
system does not retain messages at all, a usability challenge also noted in open-ended feedback.
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Conclusions

This  study  presents  CrypticWave,  a  stateless,  zero-persistence  encrypted  messaging  service 
designed  around  the  principle  of  security  by  design.  Through  controlled  experiments,  we 
demonstrated that  CrypticWave effectively prevents  post-compromise  data  recovery,  maintains 
stable performance under realistic user loads, and delivers a positive user experience with high 
perceived  trustworthiness.  These  results  validate  the  system’s  core  architectural  choices, 
particularly full client-side AES-GCM encryption, RAM-only storage using tmpfs, and the absence 
of  user  tracking  or  persistent  logs.  However,  while  CrypticWave  eliminates  several  critical 
vulnerabilities found in traditional ephemeral messaging tools, some residual risks remain inherent 
to its architecture and operational environment. To further strengthen the security guarantees of 
CrypticWave, we plan to conduct controlled forensic analyses of self-hosted replicas of Privnote 
and  OneTimeSecret  and  compare  residual  artefacts,  metadata  retention,  and  RAM persistence 
behaviour  across  platforms.  Future  iterations  of  CrypticWave  will  explore  deploying  a 
decentralized proxy network to reduce dependence on third-party infrastructure. We also plan to 
extend the bearer-link mechanism with optional multi-factor access, ephemeral DNS entries, and 
client-side passphrase layers to reduce the risk of token interception. A formal threat model and 
penetration testing campaign will  be developed to evaluate CrypticWave against known attack 
vectors. Through these developments, we aim to establish CrypticWave not only as a practical tool 
for  secure ephemeral  messaging,  but  also  as  a  reference model  for  zero-trust,  zero-persistence 
communication architectures.
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