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Abstract 
The growing sophistication of distributed denial-of-service (DDoS) attacks poses persistent challenges to 
security operations centers (SOCs). This paper presents a structured, evidence-based framework for 
integrating artificial intelligence (AI) into layered cyber defenses. Through systematic literature review and 
mapping of peer-reviewed intrusion detection techniques, we examine the applicability of ensemble 
learning, explainable AI (XAI), and federated learning across the defense-in-depth spectrum. We also 
propose an AI-maturity roadmap grounded in ENISA and NIST frameworks to guide phased SOC integration. 
Our findings support strategic AI deployment for improved detection accuracy, reduced triage time, and 
enhanced operational resilience against large-scale DDoS campaigns 
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1. Introduction 

Distributed Denial-of-Service (DDoS) attacks remain a critical cybersecurity challenge, frequently 
targeting national infrastructure, enterprise networks, and public-facing systems. These attacks 
disrupt availability, overwhelm detection systems, and expose operational gaps in many security 
operations centers (SOCs). While perimeter-based defenses and reactive mitigation techniques have 
improved in speed and scale, attackers have likewise evolved, leveraging low-and-slow volumetric 
traffic, botnets, and encrypted payloads to evade traditional controls. 

In mid-2022, the Albanian government experienced one of the most impactful nation-state-
sponsored DDoS attacks in Europe. Key online portals, digital identity systems, and e-governance 
platforms were rendered inoperable. Although mitigation strategies succeeded in halting peak traffic 
volumes, post-incident analysis by CESK [3] and external vendors [4] revealed two major weaknesses: 
delayed anomaly detection at the network layer and insufficient coordination between security layers, 
highlighting the importance of layered defense, also known as defense-in-depth. 
These deficiencies emphasize a growing need to rethink SOC architecture through the lens of artificial 
intelligence (AI). AI has demonstrated significant potential in augmenting anomaly detection, 
reducing triage time, and supporting threat attribution, yet its deployment across SOC maturity levels 
remains inconsistent. 

Moreover, existing research lacks comprehensive frameworks that align AI capabilities to 
specific defense-in-depth layers, making operational integration ad hoc or siloed. 

This paper proposes a structured, AI-enhanced defense-in-depth framework. We build upon 
validated techniques, including ensemble learning, explainable AI (XAI), and federated learning, to 
map AI tools to each of the seven core security layers. In doing so, we aim to support both immediate 
SOC performance improvement and long-term maturity planning.  

Drawing from a systematic review of literature and industry reports, we identify AI 
techniques most commonly validated in DDoS detection and correlate them to real-world SOC 
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functions. Furthermore, we introduce an AI-maturity roadmap aligned with guidance from ENISA [1] 
and NIST [2], offering a phased progression from experimental pilots to autonomous, self-healing 
SOCs. 

The research is guided by three questions: 
(1) How can validated AI models be aligned with state-level DDoS indicators? 
(2) Which AI methods best support each layer of defense-in-depth? 
(3) What performance gains are feasible based on published SOC benchmarks? 

2. Background and Real-World Catalyst 
2.1 The Albanian DDoS Campaign 
 
In July 2022, Albania experienced a coordinated cyberattack targeting its national e-governance 
infrastructure. The campaign disabled multiple public-facing systems, including e-Albania (citizen 
services), the TIMS border control platform, and public communications for several ministries. 
Technical forensics and geopolitical analysis traced the origin to state-sponsored threat actors, 
reportedly in response to political tensions and diplomatic decisions. The attack involved high-
volume HTTP floods and DNS reflection attacks distributed via botnets, primarily launched from 
anonymized infrastructure and abused cloud services. 

Despite deploying external mitigation support and filtering capabilities, Albania’s internal 
SOC structures struggled to detect the attack’s slow-burn indicators during its early stages. According 
to CESK’s 2023 national threat bulletin [3], lateral movement occurred between perimeter gateways 
and internal data services undetected for several hours. Moreover, the lack of automation in 
correlating indicators of compromise (IOCs) across endpoints, users, and data systems delayed 
incident containment and public service restoration. 

These operational gaps demonstrated the need not just for stronger firewalls or endpoint 
defenses, but for a more adaptive, layered approach capable of detecting and responding across 
multiple security domains. The incident has since served as a regional wake-up call, prompting 
renewed interest in scalable, intelligence-driven SOC frameworks, particularly those leveraging AI 
for anomaly detection, behavior correlation, and strategic automation. 

 

2.1.1 Defense-In-Depth and AI Alignment 
Defense-in-depth is a foundational cybersecurity principle that emphasizes redundancy across 
multiple, logically distinct layers of protection. Typical SOC architecture involves defenses at the 
perimeter (e.g., firewalls), network layer (e.g., traffic analysis), endpoint (e.g., endpoint detection and 
response- EDR), application (e.g., web application firewall- WAF), user (e.g., authentication), data 
(e.g., encryption and access control), and increasingly, the cloud environment. While each of these 
layers serves a specific role, cross-layer visibility and rapid triage remain critical weak points, 
especially during fast-evolving campaigns like DDoS attacks. 

Emerging AI techniques offer new ways to strengthen these layers both individually and 
collectively. Ensemble learning methods such as eXtreme Gradient Boosting (XGBoost) and random 
forests (RF) have been validated for high-speed anomaly detection [10], while deep learning 
techniques including long short-term memory (LSTM) and autoencoders are increasingly applied in 
traffic inspection and endpoint telemetry [14, 16]. Explainable AI (XAI) frameworks like SHapley 
Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) reduce 
analyst workload during triage by offering human-readable model reasoning [11], and federated 
learning allows SOCs to collaborate on model refinement without compromising sensitive data [12]. 

While these tools show promise in isolation, their systematic mapping to SOC layers and 
maturity stages remains underdeveloped in both academic literature and industry implementation. 
This study aims to fill that gap by presenting a structured mapping of AI techniques to defense-in-
depth layers and introducing a scalable AI-Maturity Roadmap tailored for SOC evolution. 

 
 



3. Related Work 
The intersection of artificial intelligence and cybersecurity has been widely explored over the last 
decade, with a surge of interest in using machine learning (ML) and deep learning (DL) models for 
intrusion detection, traffic classification, and threat hunting. Traditional supervised models such as 
Decision Trees, Support Vector Machines (SVMs), and ensemble methods like Random Forests and 
eXtreme Gradient Boosting (XGBoost) have demonstrated high detection accuracy on structured 
datasets [10]. Unsupervised approaches, including clustering and autoencoders, have proven effective 
for anomaly detection, especially in encrypted or imbalanced data environments [13]. More recent 
advances include Graph Neural Networks (GNNs), used for correlating signals across entities like 
hosts, users, and devices [15]. 

In parallel, the field of DDoS mitigation has seen the adoption of AI-based approaches for 
traffic profiling and early warning. LeCun et al. [9] outlined the advantages of long short-term 
memory (LSTM)-based neural networks for sequential traffic analysis, which has been applied to 
detect slow-burn DDoS attacks. Other studies have highlighted hybrid approaches, combining 
statistical baselines with AI to flag zero-day anomalies and protocol abuses. However, many of these 
implementations are evaluated in isolation—on public datasets or simulations—rather than mapped 
to actual SOC roles or operational maturity stages. 

Explainable AI (XAI) methods such as SHAP and LIME have emerged to address the 
interpretability gap between complex models and human analysts. Ribeiro et al. [11] demonstrated 
how XAI frameworks can reduce triage time by helping analysts understand the rationale behind 
predictions. Still, few papers examine how XAI scales within SOC workflows or how it aligns with 
layered defense strategies in real-world incident response. 

On the organizational side, both ENISA and NIST have introduced AI-related maturity 
frameworks, though they are largely generic and policy-focused [1, 2]. ENISA’s SOC-CMM highlights 
capability maturity dimensions such as automation and threat intelligence sharing, while NIST’s AI 
RMF offers guidelines on managing AI risk in critical infrastructure. However, there is limited 
operational guidance on how specific AI techniques map onto these maturity stages—particularly in 
SOC environments managing DDoS threats. 
In summary, while literature offers a rich pool of validated AI techniques for specific cybersecurity 
functions, it lacks integrative studies that: 

• Map these techniques to the full spectrum of defense-in-depth layers 

• Align them with SOC maturity models grounded in real-world case studies 

• Benchmark performance gains or operational impact using published SOC metrics 

This paper contributes to filling that gap through structured synthesis, mapping, and roadmap 
design, all contextualized by the Albania case and grounded in peer-reviewed evidence. 

 

4. Methodology and Research Questions 
4.1 Scope and Methodology Note 

 
This study uses a structured literature synthesis guided by the PRISMA 2020 framework [5] approach, 
guided by principles from evidence-based cybersecurity research. The goal is not to introduce novel 
AI models or conduct live experimentation, but to systematically evaluate and map existing AI 
techniques to a layered defense structures and SOC maturity stages. Our methodological design is 
informed by the PRISMA framework for structured evidence review and enhanced with conceptual 
benchmarking drawn from published SOC metrics and DDoS reports. 

Sources were selected using keyword-based queries across multiple peer-reviewed databases 
including IEEE Xplore, SpringerLink, and ACM Digital Library, Google Scholar, Scopus, as well as 
validated practitioner repositories (e.g., ENISA, NIST, CESK). Inclusion criteria focused on (a) AI 
models empirically validated for cybersecurity detection or triage, (b) alignment with operational SOC 
environments, and (c) relevance to layered defense constructs. Studies published between 2018–2024 
were prioritized to reflect recent advances in explainable AI, federated learning, and SOC automation. 



We adopted a thematic coding approach to extract key attributes from each source, including 
the defense layer addressed, the AI method used, evaluation metrics, and maturity alignment. A 
bespoke mapping table (Table 1) was then constructed to visualize these relationships. Additionally, 
published performance metrics were reviewed from real-world DDoS campaigns, including the 
Albania case [3, 4], to conceptually benchmark expected gains from AI-enhanced defense models. 

The study does not attempt to reproduce or evaluate detection models experimentally. 
Instead, its goal is to provide a synthesis and framework useful for SOC architects, policy designers, 
and researchers seeking to operationalize AI across defense-in-depth environments. 

 
4.2 Research Questions 

 
The study is organized around three primary research questions: 

RQ1: How can validated AI models be mapped to the types of Indicators of Compromise 
(IOCs) observed during nation-state DDoS attacks such as the one affecting Albania in 2022? 
RQ2: Which AI techniques correspond most effectively with the seven canonical layers of 
defense-in-depth, and how are they best operationalized within a SOC context? 
RQ3: Based on published case metrics, what performance improvements—such as detection 
latency, triage speed, and attack containment—can AI-enhanced SOCs achieve relative to 
traditional layered defenses? 

Together, these questions aim to bridge a gap in existing cybersecurity literature by 
connecting validated AI methods to practical SOC implementation stages. The answers inform both 
the AI-to-layer mapping table, and the maturity roadmap proposed in Section 5. 

5. Results and Conceptual Mapping 
5.1 AI Techniques to Defense-In-Depth Layers 
Table 1 presents a structured mapping of AI techniques to the seven core layers of defense-in-depth: 
perimeter, network, endpoint, application, user, data, and cloud. Each entry includes the technique’s 
primary use case and supporting peer-reviewed references. The table synthesizes insights from over 
60 reviewed sources and aligns with ENISA’s defense layering model [1] and NIST AI guidance [2]. 

Table 1 – AI Techniques Mapped to Defense-in-Depth Layers 
Defense Layer Relevant AI 

Technique(s) 
Primary Use Case Supporting 

References 
Perimeter Rule-Based 

Detection, XGBoost 
Traffic filtering 
and basic anomaly 
detection 

[10] 

Network LSTM, Random 
Forest, 
Autoencoders 

Deep packet 
inspection, lateral 
movement 
detection 

[10, 13] 

Endpoint GNN, Federated 
Learning 

Host-based event 
correlation, device 
profiling 

[12, 15] 

Application Signature Learning, 
NLP 

Code injection and 
API abuse 
prevention 

[9] 

User Behavioral 
Biometrics, 
Anomaly Detection 

Access control and 
behavior deviation 

[11] 

Data Data Labeling 
Algorithms, 
Privacy-Preserving 
AI 

Data integrity and 
leakage prevention 

[12] 

Cloud Federated Learning, 
Cloud-Native AI 
Agents 

Multi-tenant 
anomaly detection 

[12] 



and policy 
enforcement 

This mapping reveals clear alignment between certain AI capabilities and specific security 
layers. For example, ensemble classifiers (e.g., Random Forest, XGBoost) are particularly effective in 
NetFlow analysis at the network layer [10], while GNNs and federated learning methods are emerging 
in endpoint protection and device correlation use cases [12][15]. At the user and application layers, 
behavioral biometrics and NLP methods have shown promise for role-based access deviation and code 
injection detection, respectively [9, 11]. 

Importantly, this layered mapping supports not only technical integration, but also roadmap 
design, maturity assessment, and policy planning for AI-enhanced SOC development. 

5.2 AI-Maturity Roadmap 
 

While individual AI techniques offer tactical benefits, their strategic deployment across an SOC 
lifecycle requires a maturity model. Figure 1 presents the proposed AI-Maturity Roadmap for SOCs, 
developed from a synthesis of ENISA’s SOC Capability Maturity Model (SOC-CMM) [1], the NIST AI 
Risk Management Framework [2], and published case studies. 

Figure 1 visualizes the phased maturity progression from isolated AI pilots to autonomous, 
self-healing SOC operations. Each tier builds upon the previous, incorporating explainability (XAI), 
collaborative governance, and automated retraining. The model aligns with ENISA's SOC capability 
maturity model and the NIST AI Risk Management Framework. 

 
 

Figure 1 – AI Maturity Roadmap for SOCs 

 
The roadmap consists of four tiers: 

• Tier 1 – Ad Hoc Pilots: Isolated deployment of AI tools in non-critical environments 
without operational feedback loops 

• Tier 2 – Integrated Detection and XAI: Incorporation of explainable AI for analyst 
triage and correlation within specific SOC functions 

• Tier 3 – Federated Collaboration: Cross-organizational AI refinement using 
federated learning and shared models across regional or sectoral SOCs 

• Tier 4 – Autonomous, Self-Healing SOC: AI not only detects and responds but 
also adapts models in real-time with minimal human interventionEach tier builds on 
the last, moving from technical experimentation to full operational AI governance. 
This roadmap is intended to guide both public and private sector SOCs in aligning 
internal capabilities with external threat landscapes. 



 
 

5.3 Benchmarking AI vs Traditional SOC Metrics 
To evaluate the conceptual effectiveness of AI-enhanced SOC models, we conducted a 
benchmarking synthesis using published DDoS incident metrics (e.g., Albania, NETSCOUT data [4]) 
compared with performance indicators from AI-based SOC research. While no live testing was 
conducted, the review showed that AI-enhanced models consistently outperform rule-based 
approaches in key areas: 

• Detection Latency: Reduced from ~300–500ms in traditional systems to under 50ms in some 
AI-optimized SOCs using ensemble learning [10] 

• Triage Time: XAI tools reduced average analyst triage time by 20–25% in trials involving 
SHAP and LIME [11] and broader reviews on explainable AI in SOC environments [7] 

• Anomaly Identification Rate: Deep learning models improved detection of novel DDoS 
flows by 15–30% on average [9][13] 

These results suggest that aligning AI methods to defense-in-depth layers not only improves 
localized detection but also enhances organizational resilience across SOC tiers. 

 

6. Future Work and Policy Implications 
While this study presents a structured roadmap for aligning AI techniques with SOC operations, 
several limitations and opportunities for future exploration remain. First, the analysis is based on 
published models and documented SOC case studies. No new datasets or live experimentation were 
conducted. As such, future work should involve real-world validation through controlled pilot 
deployments and quantitative performance tracking across multiple SOC tiers. 

One promising direction involves regionally distributed pilots—particularly among Balkan 
national and municipal SOCs. These environments are uniquely positioned to benefit from AI-
enhanced defense frameworks due to shared threat landscapes, language constraints, and varying 
maturity levels. Coordinated implementations across these networks could serve as real-world 
testbeds for validating the AI-Maturity Roadmap proposed in this study, especially in low-resource 
settings with minimal automation. Such efforts would also align with ENISA’s emphasis on regional 
capability building [1] and support the cross-border resilience strategies outlined by the European 
Union Agency for Cybersecurity. 

In terms of technical development, future studies should address known risks in AI 
deployment, including adversarial poisoning (e.g., during federated learning), model drift, and 
explainability trade-offs. While XAI tools like SHAP and LIME provide interpretability, they often 
introduce additional latency or require expert supervision. Balancing these trade-offs will be crucial 
in achieving Tier 3 and Tier 4 SOC capabilities without overwhelming existing analyst teams. 

Another challenge involves the integration of AI into SOC governance structures. As 
organizations scale toward Tier 3 (federated collaboration) and Tier 4 (autonomous response), 
questions around legal liability, explainability compliance, and workforce readiness will become more 
pressing. These policy dimensions, especially those involving GDPR compliance, NIST AI fairness 
principles [2], and operational transparency—should be treated as integral to AI maturity, not 
peripheral. 

Finally, future work could explore extending the current roadmap to other domains beyond 
DDoS mitigation, such as ransomware detection, insider threat prediction, and incident postmortem 
analysis. The layered AI approach proposed in this study is generalizable and may offer similar 
performance and resilience benefits when applied to broader cyber-defense contexts. 

7. Conclusion 

As DDoS attacks continue to evolve in scale, complexity, and geopolitical significance, traditional 
security operations center (SOC) architectures must adapt to more intelligently defend against and 
recover from such campaigns. This paper contributes to that transition by proposing a structured 



framework that aligns validated AI techniques with defense-in-depth layers, contextualized through 
a real-world case and grounded in peer-reviewed research. 

Through systematic literature synthesis, we identified AI methods—such as ensemble 
classifiers, deep learning, explainable AI (XAI), and federated learning—demonstrated to improve 
detection accuracy, triage speed, and anomaly recognition. These techniques were then mapped to 
their most appropriate SOC defense layers based on operational use cases, forming the basis of Table 
1. To further support implementation, we proposed a four-tier AI-Maturity Roadmap for SOCs, 
drawing from ENISA’s capability maturity model and NIST’s AI governance guidance. This roadmap 
outlines a progression from ad hoc AI pilots to autonomous, self-healing SOCs and is illustrated in 
Figure 1. 

The study also benchmarked reported performance gains from AI-enhanced SOC 
deployments, showing measurable advantages in detection latency, triage efficiency, and anomaly 
identification. Although the results are conceptual rather than experimental, they offer useful 
indicators for future deployment planning, especially in regions like the Balkans where SOC maturity 
is uneven and threat exposure is growing. 

In summary, this research bridges a critical gap in cybersecurity literature by connecting 
theoretical AI models to operational security strategies. By mapping capabilities across layers and 
maturity stages, it enables SOCs, policymakers, and researchers to plan, justify, and scale AI 
deployment in a structured, evidence-informed manner. Future efforts should focus on validating the 
roadmap through cross-national pilot deployments, addressing technical risks, and embedding AI 
more deeply into SOC governance and strategic planning. 
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