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Abstract

Clustering is an unsupervised learning form which aims at revealing intrinsic patterns in data based on the 
distances or similarities of instances among each other. In real world datasets, clustering procedures may 
be significantly affected by noise, outliers and low-confidence data points. This paper presents a fuzzy  
clustering approach based on modified objective functions employing adaptive reliability measures, striving 
to enhance the robustness of the clustering results. The modification on the objective function integrates 
the notion of a point’s influence into the clustering procedure. Therefore, the influence of each point will 
be controlled by a reliability score which will be evaluated adaptively. The root mean square propagation 
(RMSprop) algorithm is applied to dynamically assess the reliability score of the data points. Finally, this  
framework will be experimentally tested on several benchmark datasets to assess the quality of generated 
clusters and compare it to classical fuzzy clustering algorithms.
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1. Introduction

In machine learning, clustering is a core unsupervised learning task which intends to group similar 
data instances together, forming clusters (subsets) where elements share strong similarities with one 
another and clear dissimilarities from those in other clusters. The clustering process is guided merely 
by the inter-point similarity or distance, without any available external information about the latent 
structure of the dataset. Clustering has proven to be a valuable and flexible technique due to its wide-
ranging applications,  including recommendation systems in  e-commerce,  customer  profiling  in 
marketing, topic discovery in text mining, behavioral pattern analysis in psychology, and species 
categorization in biological sciences [1]. For any sizes of datasets, clustering constitutes a powerful 
tool for exploring and summarizing data, but especially for larger volumes of data it remains essential 
for  uncovering  patterns,  revealing  hidden  structures,  and  often  guiding  downstream  machine 
learning tasks [2]. 

There are multiple approaches to the clustering problem, among which can be distinguished hard 
clustering and fuzzy clustering. In the hard clustering approach, each data instance is assigned to 
exclusively one cluster, consequently the cluster boundaries are crisp and without overlapping. In 
contrast, fuzzy clustering allows instances to belong to multiple clusters simultaneously with varying 
degrees of membership (values between 0 and 1), making it a more flexible and realistic approach in 
circumstances where data points are not clearly separable. The traditional fuzzy clustering algorithm 
operates  by  implying  an  equal  contribution  of  the  data  points  to  the  clustering  procedure,  
nonetheless this makes the algorithm susceptible to presence of noise and outliers [3, 4].
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This paper presents a modification to the classical fuzzy clustering algorithm, incorporating adaptive 
reliability scores in the definition of the objective function of the algorithm. The central idea of this 
modification is to regulate the influence of the data points into the clustering process, based on a 
dynamically  assessed  reliability  score.  More  specifically,  the  proposed  method  computes  the 
reliability score of each point using entropy-based confidence metrics and the entire model is trained 
using the RMSprop optimizer, in order to adaptively scale learning rates. This approach allows the 
algorithm to down-weight the influence of uncertain or noisy data points during the clustering 
procedure, avoiding distortions that they may induce to the generated clusters. As a result, the model 
strives to be more resilient towards the presence of outliers and operates more effectively upon real-
world, imperfect datasets. Together, the use of reliability scoring and adaptive optimization are  
expected to contribute to more stable, accurate, and interpretable clustering results. This approach 
will be tested extensively on several benchmark datasets and slightly distorted variants of benchmark 
datasets to assess quantitively the quality of the generated clusters.

2. Related work

In the recent decades, significant progress has been made in the field of unsupervised learning, 
designing various forms of clustering approaches and enhancements tailored to specific scenarios.  
Nevertheless, clustering remains a challenging problem, there is no algorithm capable of learning 
the patterns of every dataset. The idea of modifying the objective function and the idea of reliability 
measures usage have been presented in different flavors in various research works, often separately, 
but also occasionally intertwined together. In this section, the main approaches in these directions 
will be summarized and the differences in our approach will be accentuated.
F. Hoppner et al. have explored how the traditional fuzzy c-means objective function can be modified 
to support different levels of fuzziness in cluster memberships.  They have analyzed how these 
modifications of the objective function allow for more flexible, partial membership values, enabling 
the clustering algorithm to better capture different data distributions and overlapping between 
clusters. These modifications were demonstrated to enhance the interpretability and robustness of  
fuzzy clustering in practical applications [5].
M. Menard et al. have proposed approaches to fuzzy clustering devising objective functions based on 
the principle of Extreme Physical Information. In their work, authors have exhibited how this method 
can systematically incorporate into the objective functions effectively minimal constraint terms. 
Their  work  is  very  well  semantically  explained  for  the  physical  perspective  compared  to  the 
traditional algorithms [6].
H. Timm and R. Kruse have addressed a drawback in classical possibilistic fuzzy clustering, where 
the objective function is really minimized only if all cluster centers are equivalent and have proposed 
a modification to the objective function to trigger mutual repulsion among clusters, thus enhancing 
the clustering process [7]. 
J.  Kang et  al.  have proposed a modified fuzzy c-means (FCM) algorithm that augments spatial  
neighborhood  information  into  the  conventional  objective  function.  This  approach  was 
demonstrated to enhance the robustness of fuzzy clustering, especially when applied for image 
segmentation purposes [8].
H. Wang et al. have presented an automated multiscale fuzzy c-means (MSFCM) method for magnetic 
resonance images (MRI). The objective function of the conventional FCM method is modified to allow 
multiscale classification processing, thus improving the robustness especially when operating on 
low-contrast MR images [9].
X. Xiong et al. have proposed a modified generalized objective function for prototype-based fuzzy 
clustering incorporating a p-norm distance measure. Their approach induces cluster merging and 
the key innovation is the integration of principal component analysis (PCA) into the objective 



function. This methodology successfully captures the directional structure of the clusters utilizing 
the principal components [10].
K. Zhao et al. have introduced a generalized fuzzy c-means (FCM) clustering strategy that modifies 
the objective function involving a mechanism to control the degree of fuzziness in clustering results. 
Via this this mechanism, the algorithm can tune between hard and fuzzy clustering, making it more 
adaptable to various datasets [11].
A. Bagherinia et al. have presented a reliability-driven cluster indicator to assess the reliability of 
fuzzy  clusters  within  an  ensemble  framework.  This  methodology  assigns  weights  to  multiple 
clustering outcomes based on their reliability, which achieved an overall higher clustering quality 
and robustness [12]. 
The approach presented in this paper revives partially ideas by F. Hoppner et al. and K. Zhao et al.,  
but the execution strategy is vastly different as instead of Lagrange multipliers, the numerical root  
mean squared propagation (RMSprop) method is employed.  

3. The classical Fuzzy C-Means (FCM) algorithm

The classical Fuzzy C-Means algorithm (FCM) is the most significant algorithm in the field of fuzzy 
cluster analysis. It generalizes the well-known K-Means algorithm, involving the concept of partial 
degree  of  membership,  thus  allowing  the  instances  of  dataset  to  belong  to  several  clusters 
simultaneously, with different degrees of membership.  Therefore, the outcome of this algorithm, 
instead of being a set of clusters with their exclusive member points (like in the case of K-Means),  
will  be  the  fuzzy  membership  matrix  (U)  containing the  respective  membership  values  of  the 
instances  into  the  clusters.  The  FCM  algorithm  operates  as  in  iterative  procedure  aiming  to 
approximate the nonlinear optimization of the objective function formulated classically as:

J (X ,  U ,  V ;m ,  C )=∑
i=1

n

∑
j=1

C

μij
md2 (xi ,  c j) (1)

The hyperparameter m is the fuzzy exponent, which controls the degree of fuzziness in the generated 
clusters, i.e. the larger the value of m, the more distributed may be the instances into the clusters. 
Parameter  C  represents  the  number  of  clusters  and  it  may  either  given  externally  as  a  
hyperparameter, or tuned based on cluster validation measures. Additionally, n is the number of 
instances in the dataset,  xi is the i-th instance for  1≤i≤n,  c j is the centre of the jth cluster for 

1≤ j≤C  (i.e. the entries of the vector V) and  μij is the entry of membership matrix U corresponding 
to the ith element and the jth cluster. Furthermore, two other hyperparameters are the tolerance 
level Tol and the distance norm (typically the Euclidean distance) [13]. 
The algorithm runs in iterations where it updates the membership degree of each point into each 
cluster, then adjusts the cluster centers based on the memberships. Eventually the convergence is  
achieved, settling into a configuration that best fits the dataset. The hyperparameters collectively 
influence the clustering results, so good choices of them typically assisted by tuning procedures are 
helpful. The following pseudocode describes the FCM algorithm [14]:

1. Randomly initialize the centers of the clusters.
2. Initialize the fuzzy membership matrix with zero values.
3. Let k = 1 (iteration counter)

4. Evaluate the distances of data points from cluster centers (d ij values). 



5. Update the fuzzy membership matrix, according to: μij=
d ij

-
2

φ -1

∑
k =1

c

d ik

-
2

φ -1

6. Calculate the new centers of the clusters, according to: ci=
∑
j=1

n

μij
φ X j

∑
j=1

n

μij
φ

7. k = k+1 (increment the iteration counter)

8. If ‖U k -1 -U k - 2‖>Tol  repeat at step 4.

9. END.

Despite the multiple successful applications of the FCM algorithm across a wide range of domains,  
it struggles when operating in datasets characterized by complex structures such as overlapping 
clusters, varying cluster sizes and shapes, presence of noise and or outliers. In such datasets, the FCM 
algorithm typically underperform resulting in poorly constructed clusters [15].  In this work, is 
proposed a modification (detailed in the next section) which modifies the objective function of FCM 
incorporating the notion of influence of a data point in the cluster. Moreover, the optimization  
approach in this work will be based on a numerical optimization method: the root mean squared 
method.

4. An entropy-based modified objective function FCM

The key idea of the modification proposed in this work is to control the influence that each point  
will have in the clustering process based on a reliability score that will be dynamically adapted. The 
definition of the objective function is:

J (X ,  U ,  V ;m ,  C )=∑
i=1

n

∑
j=1

C

r i  μij
md2 (xi ,  c j)+ λR (r ) (2)

In the above definition, X, U, V, m, C, μij, c j are the same as in the classical FCM, while r i is the 
reliability score of each instance which will be dynamically updated, R(r) is a regularization term 
upon the vector of reliabilities and λ is a coefficient controlling the weight of the regularization term. 
The usage of the regularization term intends to avoid degenerate or extreme reliability assignments, 
inducing stability in the clustering process. There are several possibilities how the regularization 
term can be designated; in our case is used the L2 regularization, which discourages extreme values 
in the reliability scores vector:

R (r )=∑
j=1

C

r i
2

(3)

On the other hand, in order to evaluate the reliability scores of the data points, an entropy-based 
approach is employed. For each data point will be evaluated the entropy value which quantifies how 
well distributed are the point memberships into the clusters:

H i=-∑
j=1

C

μij log μij
(4)



A high value of entropy indicates that a point is ambiguously participating in many clusters, while a 
low value of entropy (ideally zero) indicates a strong, reliable association of a point with a certain  
cluster. So, the value of the entropy can vary from 0 to logC , where the value 0 indicates the highest 
reliability  and  the  value  logC  indicates  the  lowest  reliability.  In  the  light  of  these  facts,  the 
evaluation of the reliability scores of the data points is handled as:

r i=1-
H i

logC (5)

Obviously, the reliability scores of the points will vary from 0 (the lowest reliability) to 1 (the highest 
reliability). 
In order to approximate a solution to the non-linear optimization problem defined by the given 
objective function, the root mean square propagation (RMSprop) method will be used. This method 
is an improvement over the classical gradient descent optimization technique. The fundamental 
principle of gradient descent is tracking the direction of the steepest descent, using a constant  
learning rate, while RMSprop adapts the learning rate adjusting it to the current landscape of the 
objective function. So generally, for a parameter θ, the update is handled as [16]: 

θ(k +1)=θ(k ) -
η

√E [ g2 ](k )+ ϵ
∙ g(k ) (6)

Parameter η represents the learning rate, g(t) denotes the gradient at the k-th iteration, E[g2](k) denotes 
the root mean square of the recent gradients and ɛ is a small constant to avoid division by zero. 
Furthermore, the update of the root mean square will be handled based on a decay parameter β as [17, 
18]:

E [ gμij

2 ](k +1)= β ∙ E [ gμij

2 ](k )+(1- β ) ∙(gμij

( t ))2 (7)

The general iterative scheme of the modified fuzzy clustering algorithm will remain the same as in 
the classical FCM, with the primary distinction that the updates for the cluster centres and the fuzzy 
membership values will be carried out numerically, according to the equations (8) and (9):

gc j

(k )=
∂  J
∂  c j

=2(∑
i=1

N

r i ∙ μij
m ∙ (xi -  c j))+ λ ∙

∂ R
∂  cij

(8)

gμij

(k )=
∂  J
∂  μij

= r i ∙m ∙ μij
m -1d2 (xi ,  c j)+ λ ∙

∂  R
∂  μij

(9)

Finally, the entire adaptive reliability-based fuzzy clustering algorithm is described by the following 
pseudocode:

1. Randomly initialize the centers of the clusters.
2. Initialize the fuzzy membership matrix with zero values.
3. Let k = 1 (iteration counter)

4. Update the gradients of the memberships, as:  gμij

(k )= r i ∙m ∙ μij
m -1d2 (xi ,  c j)+ λ ∙

∂  R
∂  μij

5. Update the weighted root mean square, as:

E [ gμij

2 ](k +1)= β ∙ E [ gμij

2 ](k )+(1- β ) ∙(gμij

(k ))2



6. Update the fuzzy membership matrix: μij
(k +1)= μij

k -
η

√E [ gμij

2 ]( t )+ ϵ
∙ gμij

(k )

7. Normalize the fuzzy membership matrix: μij
(k +1)=

μij
(k +1)

∑ μij
(k +1)

8. Update the gradients of the centers, as:  gc j

(k )=2(∑
i=1

N

r i ∙ μij
m ∙ (xi -  c j))+ λ ∙

∂ R
∂  cij

9. Update the centers, as c j
(k +1)=c j

k -
η

√E [ gc ij

2 ]( t )+ ϵ
∙ gc j

(k )

10. Update the reliability values: r i=1-
H i

logC
11. k = k+1 (increment the iteration counter)
12. If ‖U k -U k -1‖>Tol  jump to step 4.

13. END.

5. Experimental results

In order to assess the robustness and the quality of the generated clusters generated by the proposed 
modified  version  of  FCM  algorithm,  a  series  of  experimental  tests  are  conducted  on  several 
benchmark datasets. In order to evaluate the stability of the algorithm, in addition to the original  
versions of the benchmark datasets, two distorted versions are created for each benchmark dataset 
by adding artificial noise at different levels. The employed benchmark datasets were:  Breast Cancer, 
Ionosphere, Vertebral Column, Dermatology, E. coli and Shuttle [19]. For each of the aforementioned 
datasets, two distorted versions are also created, with an additional quantity of respectively 2% and 
5% noise points being added. The noise points are randomly placed at a distance from the cluster  
centres that is 8-10% larger than the average distance of the top-5 farthest genuine points from the 
respective cluster centre. The details of the original datasets are displayed in Table 1 below:

Table 1 - Summary of original benchmark datasets

Although the class labels for the employed classes are known, this information is not provided to the 
clustering procedures, instead it is utilized as the ground truth for the assessment of the clustering 
results.   The quality assessment of the generated clusters is  done via the V-measure,  which is 
evaluated as the harmonic mean of homogeneity and completeness scores, so:

Dataset Number of 
attributes

Number 
of instances

Number 
of clusters

Breast Cancer 9 286 2

Ionosphere 34 351 2

Vertebral Column 6 310 3

Dermatology 34 366 6

E. coli 8 336 7

Shuttle 9 58000 7



V =
2  

1
H

+
1
C

(10)

The homogeneity score measures the degree to which each cluster contains data points of only one 
particular label, while the completeness score measures how well all data points with the same label 
are grouped into the same cluster. In order to be compatible with the fuzzy scenario, firstly the 
conditional fuzzy entropy between the generated clusters and the ground truth is evaluated, and 
afterwards these results are utilized to calculate the fuzzy homogeneity and fuzzy completeness 
scores. 
The results of the experimental procedures are summarized in Table 2 in the following page:

Table 2 – Fuzzy V-measure scores of the algorithms across the datasets

Dataset Version Classical FCM Modified FCM

Breast Cancer

Original 0.82 0.83

Distorted level 1 0.76 0.80

Distorted level 2 0.67 0.75

Ionosphere

Original 0.74 0.76

Distorted level 1 0.71 0.74

Distorted level 2 0.65 0.70

Vertebral Column

Original 0.79 0.81

Distorted level 1 0.73 0.77

Distorted level 2 0.68 0.73

Dermatology

Original 0.70 0.73

Distorted level 1 0.62 0.69

Distorted level 2 0.57 0.67

Ecoli

Original 0.66 0.68

Distorted level 1 0.60 0.65

Distorted level 2 0.51 0.59

Original 0.62 0.64

Shutttle Distorted level 1 0.58 0.62

Distorted level 2 0.52 0.59



As noticed from the table, the modified version of the FCM performs typically with a higher V-
measure,  pointing out  the effectiveness  of  this  approach.  Moreover,  it  can be noticed that  the 
difference in the V-measure values increases as the distortion level increases, which indicates a better 
robustness of this methodology. However, a drawback of this method is the increased computational 
complexity compared to the classical FCM.

6. Conclusions

This paper presented a modified reliability-based fuzzy clustering algorithm devised by modifications 
on the objective function of the classical FCM algorithm. The primary goal of this approach was to 
construct a more robust clustering framework, less sensitive to the presence of noise, outliers and 
uncertain  instances.  The  proposed  approach  leverages  entropy-based  metrics  to  dynamically 
evaluate a confidence value for each data point,  in order to control their influence during the  
clustering process. The optimization of the modified objective function is carried out by the RMSprop 
optimization techniques, in order to achieve a more flexible and adaptive clustering process.

The experimental procedures applied on several benchmark datasets and their slightly distorted 
variants demonstrated that the proposed algorithm generally performs with better fuzzy V-measure 
scores compared to the classical FCM algorithm. These findings indicate the method’s improved 
resilience to noise and uncertain data and its capability to distinguish inherent clusters in challenging 
scenarios. Despite the natural computational overhead introduced by the adaptive modification, the 
overall gains in clustering quality and stability suggest that this reliability-based framework offers 
promising directions for robust fuzzy clustering in real-world applications.
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