
Simplify the creation of remote controls and monitoring 
interfaces for microcontrollers and automation systems 
using IoT Cloud services

Filippos Kladouchas1,†  and Nikitas N. Karanikolas1,∗,† 

1 University Of West Attica, Ag. Spyridonos street 12243 Egaleo, Greece

Abstract
Usually,  remote  controls  of  automation  systems or  electronic  devices  is  based  on  infrared  radiation. 
Microcontroller based automation systems can be further controlled by laptops, tablets and smart phones 
with the help of the local Wi-Fi and HTTP Requests services running on the automation’s microcontroller. 
For extending further the distance of the controlling device, out of the range of the local Wi-Fi of the 
automation system, some extra machine (usually computer) is needed for hosting some Web Server that  
communicates (on one hand) through the internet with the controlling device and communicates (on 
another hand) with the microcontroller with the local WiFi. Consequently, we have more complicated 
systems that demand more infrastructures and can cause troubles. In this study, we have investigated the 
possibility to decrease the complexity of controlling automation systems with the IoT Cloud. Our research 
shows that the existing technology together with the IoT Cloud can make possible the far-away control of 
Microcontroller based automation systems without the complexity of an extra machine (computer) and an 
extra Web Server. The relevant IoT Cloud services and the alternative solutions are discussed. Further, a  
prototype system is also described. The positive and negative conclusions are presented.

Keywords 
IoT, Microcontrollers, Home Security, IoT Cloud1

1. Introduction

A microcontroller is a compact, low-power integrated circuit designed to perform dedicated control 
tasks  in  embedded  systems  [1].  With  built-in  memory,  processing,  and  I/O  capabilities, 
microcontrollers such as Arduino [9], ESP8266 [6], and ESP32 [7] are widely used in automation. 
Their programmability and modularity allow developers to create flexible and customized solutions 
for home, industrial, and agricultural applications. Open-source ecosystems further support this  
adaptability.

Cloud computing, as described in [2], delivers scalable computing resources via the internet, 
eliminating the need for locally managed infrastructure. In automation, it enables seamless remote 
access, real-time data processing, and on-demand resource allocation.

IoT  Cloud  platforms—purpose-built  for  Internet  of  Things  applications—combine  cloud 
computing with embedded control [3, 4]. Services like Arduino IoT Cloud [8] and Blynk [17] simplify 
device integration, remote management, and dashboard creation by abstracting networking and 
server complexity.

Microcontroller connectivity is enhanced through communication modules such as Wi-Fi (e.g.,  
ESP8266), GSM [11], and Bluetooth. These extend access to remote networks or local devices, making 
automation more scalable and responsive.

1RTA-CSIT 2025: 6th International Conference on Recent Trends and Applications in Computer Science, May 22-24, 2025, 
Tirana, Albania.
∗ Corresponding author.
† These authors contributed equally.

 ice18390067@uniwa.gr (F. Kladouchas); nnk@uniwa.gr (N. N. Karanikolas)
 0000-0003-1777-892X (N. N. Karanikolas)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0003-1777-892X
mailto:nnk@uniwa.gr


This paper explores our conjecture that IoT Cloud services can simplify remote control and 
monitoring for microcontroller-based automation systems. By removing the need for an on-site 
server, such platforms reduce cost and complexity while improving system reliability. We compare 
traditional and cloud-based approaches and present a case study in home security to evaluate the  
proposed solution’s effectiveness.

2. Αutomation systems

For  each  automation  scenario  presented,  this  chapter  explores  and  compares  three  distinct 
implementation approaches: a from-scratch solution, a commercial off-the-shelf solution, and the 
proposed custom IoT Cloud-based approach, which is characterized by minimal coding effort and 
low hardware complexity.

2.1. Smart Lighting Automation

Smart lighting systems offer remote and automated control of lights using communication protocols 
such as Wi-Fi, Zigbee [21], Bluetooth, and cloud technologies. They allow users to adjust brightness, 
set schedules, and integrate lighting into broader home automation systems.

2.1.1. From Scratch – Local Server-Based – Approach for Lighting 

In  a  from-scratch  approach,  a  microcontroller  like  Arduino  [9,  10,  15]  connects  to  lighting 
components (e.g., relays, LEDs) and communicates with a local server (PC or Raspberry Pi) via Wi-
Fi or Ethernet. The server, running software such as Apache, Flask, or Node.js, hosts a dashboard 
accessible through a browser or mobile app. When the user sends a command, the server relays it to 
the  microcontroller  using  HTTP [22]  or  MQTT [13,  23,  24],  which  then  controls  the  lighting 
devices.

This architecture offers full control and data privacy, without relying on third-party platforms.  
However, it requires a continuously running local server, increasing energy use and maintenance  
demands. Initial setup is complex and hardware-intensive, and remote access is restricted unless 
additional configurations like VPN [25] or port forwarding [26] are implemented.

To enable remote access, users typically configure port forwarding to direct incoming traffic to 
the  server’s  local  IP.  Though  easy  to  implement,  it  can  introduce  security  vulnerabilities.  
Alternatively, VPNs provide secure, encrypted access by placing the user virtually within the local 
network. VPNs are generally considered safer for sensitive applications. Both methods are viable,  
but VPNs offer superior privacy and control.

2.1.2.  Commercial IoT Cloud-Based Solutions for Lighting

Commercial  smart  lighting  solutions  typically  rely  on  proprietary  IoT  cloud  platforms  for 
automation and remote access. Devices connect directly to the manufacturer’s cloud using Wi-Fi or 
Zigbee, and users manage them via mobile apps or voice assistants like Alexa [27], Google Assistant 
[28], or Apple HomeKit [29]. The cloud handles command processing and sends instructions to the 
lighting devices.

This plug-and-play model requires no advanced network setup and provides seamless remote 
access.  However,  it  operates  within  closed  ecosystems,  limiting  customization.  Additionally, 
functionality depends entirely on the provider's cloud infrastructure; service discontinuation could 
render devices unusable. These solutions are generally more expensive than DIY alternatives.



2.1.3. Custom IoT Cloud-Based – Proposed – Approach for Lighting

This approach uses platforms like Arduino IoT Cloud [8], Blynk [17], or Firebase [16] to implement 
a customizable and scalable smart  lighting system. A microcontroller  (e.g.,  ESP8266,  ESP32,  or 
Arduino) connects to lighting components and communicates directly with the cloud, which handles 
automation rules, real-time data exchange, and remote access. Users control the system via a mobile 
app or web dashboard linked to the cloud service.

The solution eliminates the need for a local server, lowering hardware and maintenance costs. It 
offers greater flexibility than commercial products, allowing full customization at a lower price. 
While some setup and coding are required, development is simplified through prebuilt dashboards 
and APIs. Free-tier cloud services may impose device or data limits, but the approach remains cost-
effective and suitable for personalized automation systems.

2.2. Smart Irrigation Automation

A smart irrigation system is designed to automatically manage water usage in agricultural or garden 
environments,  optimizing water consumption while ensuring plants receive adequate moisture. 
These systems often use sensors (such as soil moisture sensors) to collect real-time data, and utilize  
microcontrollers and communication technologies (Wi-Fi, Zigbee, Bluetooth) to control irrigation 
valves or pumps.

2.2.1. From Scratch – Local Server-Based – Approach for Irrigation

The microcontroller (e.g., Arduino, ESP32, or Raspberry Pi) collects real-time soil moisture data from 
soil moisture sensors and controls water pumps or solenoid valves. The local web server (running 
Flask, Node.js, or Apache) processes user commands and automation rules. Users access the system 
via a local interface to send HTTP requests for manual or scheduled irrigation. Operating entirely 
within the local  network,  this  setup guarantees full  data privacy,  zero cloud reliance,  and full  
customization.  However,  it  requires  a  24/7  running  server,  complex  network  setup,  and  port 
forwarding or VPN for remote access. Additionally, power consumption is higher due to continuous 
operation of the local host.

2.2.2. Commercial IoT Cloud-Based Solutions for Irrigation

Commercial irrigation controllers [20] connect to the manufacturer’s cloud via Wi-Fi, Zigbee, or 
LoRaWAN [30], using data from soil sensors, weather APIs, and past trends to automate watering 
schedules. Users interact with the system through mobile apps or web interfaces, often enhanced 
with voice assistant integration (e.g., Alexa, Google Assistant, Apple HomeKit).

These solutions are easy to set up and provide seamless remote access. Some employ AI for smart 
scheduling  to  reduce  water  waste.  However,  they  are  dependent  on  the  provider’s  cloud 
infrastructure, limit user customization, and tend to be more expensive, especially with subscription-
based models.

2.2.3. Custom IoT Cloud-Based – Proposed – Approach for Irrigation

In this approach, a microcontroller (ESP8266, ESP32, or Arduino) connects to soil and temperature 
sensors and controls water pumps through an IoT cloud platform like Arduino IoT Cloud, Blynk, or 
Firebase. Connectivity is established via Wi-Fi or GSM, and users monitor and manage irrigation 
remotely through a mobile or web dashboard. The platform handles data processing and automation 
logic.



This solution is cost-effective, using low-cost hardware and free or low-tier cloud services, while 
offering high flexibility for configuring sensors, dashboards, and rules. It also avoids vendor lock-in 
by relying on open-source tools. Minor coding is needed, but far less than in server-based setups.  
Usage limits may apply to free cloud plans, but the overall approach offers an excellent trade-off 
between customization, scalability, and ease of deployment.

2.3. Smart Security System

Smart Security Systems are IoT-enabled systems with the purpose to monitor, detect, and respond 
to  potential  threats  in  both  residential  and  commercial  environments.  These  systems  leverage 
sensors, cameras, and communication technologies to provide real-time alerts and remote access. 

2.3.1. From Scratch – Local Server-Based – Approach for Security

In  a  local  server-based setup,  security  components  operate  entirely  within the home network, 
ensuring full data privacy and no reliance on third-party services. Microcontrollers (e.g., ESP32, 
Raspberry Pi, or Arduino) handle sensor inputs from PIR motion detectors, door/window contacts, 
and cameras. Security footage is stored locally using NAS [31, 32, 33] or SD cards. A Raspberry Pi or 
PC hosts a web server (Flask, Node.js, Apache) that manages user interaction and communication 
with wireless devices.

The microcontroller triggers alarms upon detecting unauthorized access, while more demanding 
tasks like video processing require an additional processor. Alerts are sent via SMS, email, or local 
apps. Remote access is possible only through VPN or port forwarding.

This setup offers full control, no recurring fees, and high customizability. However, it requires 
complex server configuration, dedicated hardware, and secure network management, increasing 
both cost and maintenance overhead.

2.3.2. Commercial IoT Cloud-Based Solutions for Security

Commercial security systems [18, 19] rely on cloud infrastructure for monitoring, video recording, 
and  remote  access.  Cameras  and  sensors  connect  via  Wi-Fi  or  proprietary  protocols  to  the 
manufacturer’s cloud, where motion or intrusion events trigger alerts and cloud-based recording. 
Users receive notifications and can view live feeds through mobile apps or web interfaces, with many 
systems supporting voice assistant integration (Alexa, Google Assistant, Apple HomeKit).

These solutions are easy to deploy and offer seamless remote access with advanced features like 
facial recognition and cloud analytics. However, they depend entirely on the provider’s cloud, limit 
user customization, and often involve subscription fees for storage and premium capabilities.

2.3.3. Custom IoT Cloud-Based – Proposed – Approach for Security

This solution uses open-source microcontrollers (ESP32, NodeMCU [6]) connected via Wi-Fi to IoT 
cloud platforms like Arduino, Blynk, or Firebase. The microcontroller interfaces with PIR sensors, 
contact sensors, and optionally IP cameras. Through a cloud-linked dashboard, users monitor status, 
trigger alarms, and receive push or email alerts in real time. The cloud service automates security 
responses such as activating sirens.

It combines low cost with high flexibility, allowing full customization of automation rules and 
notifications, without vendor lock-in. While minimal programming is needed, advanced features like 
video handling may require more powerful or additional processors. Free cloud tiers may also have 
limits, but overall, this approach balances affordability, control, and scalability for effective security 
automation.



3. Methodology

Here  we  provide  the  general  ideas  behind  each  of  the  two  non-commercial  implementation 
approaches without focus on any specific automation scenario (Lighting, Irrigation, and Security). 
Based on these we draw our conclusion. We then apply our conclusion in a case study of a home  
security automation system utilizing IoT Cloud facilitates and not a Local Server. The results of the  
case study system verifies our conjecture.

3.1. From scratch Approach: Using a Local Server

A from scratch method of implementing home automation uses an Arduino microcontroller with a 
local server (e.g., PC or Raspberry Pi) that hosts a PHP/JavaScript dashboard. Through Wi-Fi, users  
send HTTP requests, which the Arduino processes to control devices and return sensor data.

Although this setup offers full control and local data handling, it has limitations. A computer must 
run continuously, increasing energy use and maintenance needs. External access requires VPN or  
port forwarding, and services like No-IP [34] provide DDNS for dynamic IP resolution. However, 
even with DDNS, port forwarding must be configured manually,  and server upkeep—including 
updates and security—is required.

Communication via HTTP can be slow, adding latency. Improvements include adopting MQTT 
for  more  efficient  messaging  and  using  a  secondary  microcontroller  (e.g.,  ESP8266/ESP32)  for 
network communication, leaving the main controller focused on sensors. These challenges support 
the adoption of IoT Cloud platforms as a simpler, more scalable alternative.

3.2. IoT Cloud-Based Solution

The IoT Cloud-based approach marks a major improvement over traditional server-based systems. 
Instead of relying on a local server, platforms like Arduino IoT Cloud, Blynk, and Firebase allow 
microcontrollers such as Arduino, ESP8266, or ESP32 to connect directly to the internet via Wi-Fi or 
GSM, eliminating the need for intermediary infrastructure.

This simplifies remote access—users can control  devices from any location through a cloud 
dashboard, without requiring VPNs, port forwarding, or firewall adjustments. Cloud-based systems 
reduce hardware requirements, leading to lower power consumption and easier setup.

Sensor data is processed in real time by the cloud, enabling immediate response for critical 
applications like security or irrigation. Cloud scalability ensures that expanding the system doesn’t 
require architectural changes.

Development is accelerated using prebuilt APIs, dashboards, and mobile apps, while platform 
providers  handle  updates  and  backups,  reducing  maintenance.  Security  is  also  improved  via 
encrypted protocols like HTTPS and MQTT over TLS. Centralized storage enhances data analytics,  
and regular system updates keep devices secure.

The cost is lower than local server setups, as free or affordable cloud tiers are often sufficient. The 
flexibility  of  open  platforms  also  allows  full  customization,  unlike  proprietary  commercial  
alternatives.

However, stable internet connectivity is essential, and reliance on a specific provider could lead 
to vendor lock-in or pricing issues. Cloud-based storage also raises privacy considerations, requiring 
trusted providers.

In summary, IoT Cloud solutions offer a scalable, low-cost, and secure foundation for remote 
automation. Their simplicity and flexibility make them ideal for modern systems across a wide range 
of applications.



3.3. Case Study: Home Security Automation Using NodeMCU and Arduino IoT 
Cloud

This project presents a home security automation system developed with cost-effectiveness and 
scalability in mind. The implementation leverages a NodeMCU board (ESP8266-based) as the primary 
microcontroller, combined with a range of hardware components and cloud services for remote 
monitoring and notification. The following paragraphs detail the system’s hardware configuration, 
signal  conditioning and isolation,  user  interface,  cloud integration,  and alternative  notification 
solutions.

To achieve an efficient and economical design, the system utilizes a NodeMCU microcontroller  
operating at 3.3V. Given that many peripheral components—such as sensors, sirens, and batteries—
commonly require a 12V supply, a dual-voltage approach was necessary. A commercially available 
12V power supply was employed to power these components. However, to ensure the NodeMCU 
operates reliably,  the 12V input had to be strictly reduced to the 3.2–3.3V range.  This voltage 
regulation was achieved using an LM317 voltage regulator [5], which provided a stable 3.3V output 
for the NodeMCU.

To protect the sensitive logic circuitry of the NodeMCU and ensure proper interfacing between 
different voltage levels, electrical isolation was implemented. The outputs from the NodeMCU that 
drive the siren and buzzer were routed through optocouplers (PC817X). These devices, through their 
internal photodiode, offer galvanic isolation between the microcontroller and the high-power output 
circuitry. Additionally, transistors were connected on the 12V side to drive the external components 
(sensors and sirens) while providing further isolation and protection. This dual approach—using 
optocouplers combined with transistors—ensured that any voltage spikes or faults in the high-power 
circuitry did not affect the microcontroller.

For local, manual control of the system, a 3x4 matrix keypad was integrated. Although a typical  
keypad configuration would require seven digital I/O pins, this implementation leveraged a specially 
designed voltage divider to encode the keypad output into a single analog input. The NodeMCU’s 
analog pin, which accepts voltages in the 0–3.3V range, reads the normalized values (mapped to a 
range of 0–1023) corresponding to different key presses. This configuration simplifies the hardware 
interface while ensuring reliable detection of user input for system activation and deactivation.

The schema in figure 1 represents the General Circuit Diagram of the designed home security  
automation.  It  respects/implements  all  the  above  (system’s  hardware  configuration,  power 
regulation,  signal  isolation,  output  control  and  local  user  input).  The  physical  prototype,  the 
implemented system, can be seen in figure 2.

Figure 1: The General Circuit Diagram of the designed home security automation.



Figure 2: The physical / implemented prototype.

Remote access and control were achieved by integrating the system with the Arduino IoT Cloud. 
A dedicated cloud server was chosen due to its robust IoT services and strong security features. In 
the Arduino Cloud, a device object—named “JARVIS” (inspired by the artificial intelligence from Iron 
Man comics)—was created. This object holds various variables representing the states of sensors and 
the overall alarm system. A custom graphical dashboard was implemented in the cloud, allowing 
real-time reading and updating of these variables. Users interact with the system via the Arduino IoT 
Cloud Remote [12] mobile application, which provides an intuitive interface for monitoring sensor 
data and controlling the security system.

The notification system of the security automation operates in an autonomous, state-driven [14] 
manner.  Each  sensor  is  programmed  with  a  series  of  states:  IDLE,  SENSOR_TRIGGERED, 
NOTIFY_SENT, ALARM_TRIGGERED, and ALARM_NOTIFY_SENT. These states determine the 
progression of the sensor’s response to detected events. For example:
Detect Mode: Sensors in this mode can progress up to the NOTIFY_SENT state.
Detect & SMS Mode: These sensors can trigger both notifications and additional actions.
Armed Mode: Sensors configured in armed mode can trigger the alarm if an event occurs, even if the 
siren is already active, and they follow a specific countdown mechanism that eventually returns 
them to either IDLE or ALARM_TRIGGERED state.
This hierarchical state management ensures that the system can differentiate between minor events 
and serious security breaches, thereby optimizing the response actions such as sending notifications 
and activating alarms.

Although Arduino IoT Cloud supports email triggers, alternatives were explored to improve 
performance. These included HTTP-based email via Mailjet's API and direct SMTP email sending 
from the microcontroller. However, both methods added processing overhead to the NodeMCU, 
prompting the use of a secondary microcontroller. In this dual-processor setup, a secondary module 
(e.g., ESP-01) manages notifications independently, communicating with the primary NodeMCU over 



serial or I2C. Offloading these tasks reduces latency and ensures that the primary microcontroller's 
performance is not compromised by intensive network operations.

The  case  study  demonstrates  a  comprehensive  approach  to  developing  a  home  security 
automation  system  that  is  both  cost-effective  and  scalable.  By  employing  a  NodeMCU-based 
architecture  with  careful  voltage  regulation,  signal  isolation,  and  intelligent  sensor  state 
management, the system achieves robust local performance. Integrating with the Arduino IoT Cloud 
facilitates secure remote access and user-friendly control via a mobile dashboard. Furthermore,  
exploring alternative notification methods and the incorporation of a secondary microcontroller 
addresses  the  processing  limitations  inherent  in  single-board  designs,  ensuring  real-time 
performance and reliability. This multi-layered approach not only meets the immediate requirements 
for home security but also provides a flexible framework for future expansion and enhancements.

4. Discussions and Conclusions

The integration of IoT Cloud services into automation systems marks a significant advancement over 
traditional  and  commercial  methods.  Platforms  like  Arduino  IoT  Cloud  and  Blynk  allow 
microcontrollers  (e.g.,  ESP8266,  NodeMCU,  ESP32)  to  connect  directly  to  cloud  infrastructure, 
eliminating the need for a local server. This reduces hardware costs, setup complexity, and ongoing 
maintenance.

IoT  Cloud  solutions  provide  secure,  built-in  remote  access  via  dashboards  or  mobile  apps,  
avoiding the need for VPNs or port forwarding. This capability is essential in applications like home 
security, but also beneficial in lighting, irrigation, and broader automation use cases.

Their flexibility and scalability enable system expansion without reworking the architecture. The 
use of affordable hardware and free or low-cost cloud tiers makes them highly accessible. Unlike 
proprietary commercial solutions, which limit customization, IoT Cloud systems give developers full 
control over logic, interfaces, and data handling. As shown in the case study, sensor-based states can 
be  tailored  to  different  needs,  while  protocols  like  MQTT  reduce  latency  and  improve 
responsiveness.

By shifting processing and communication to the cloud, these systems become more energy-
efficient and resilient to local server failures. Although commercial products offer simplicity, they 
often require subscriptions and restrict user control.

While concerns remain—such as reliance on internet connectivity or vendor-specific platforms—
the benefits clearly outweigh the drawbacks. Hybrid approaches, combining local fallbacks with 
cloud services, may further improve reliability.

In conclusion, IoT Cloud platforms offer a cost-effective, customizable, and scalable foundation 
for smart automation, enabling the development of robust, user-centric systems that can evolve with 
future needs.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Grammarly in order to: Grammar 
and spelling check, Paraphrase and reword. After using this tool/service, the author(s) reviewed and 
edited the content as needed and take(s) full responsibility for the publication’s content.

References

[1] Márquez-Vera, M.A., Martínez-Quezada, M., Calderón, R., Rodríguez, A., & Ortega-Mendoza, R. 
(2023).  Microcontrollers  programming  for  control  and  automation  in  undergraduate 
biotechnology engineering education. Digital Chemical Engineering, Volume 9, December 2023. 
doi:10.1016/j.dche.2023.100122



[2] Praveen Borra (2024). An overview of Cloud Computing and Leading Cloud Service Providers. 
International Journal of Computer Engineering and Technology, Volume 15, Issue 3, May-June 
2024, pp. 122-133. doi:10.17605/OSF.IO/5HQ4M. 

[3] Alessio Botta, Walter de Donato, Valerio Persico, Antonio Pescapé (2016). Integration of Cloud 
computing and Internet of Things: A survey. Future Generation Computer Systems, Volume 56, 
Pages 684-700. doi:10.1016/j.future.2015.09.021.

[4] H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters and G. B. Wills (2027). Integration of Cloud  
Computing with Internet of Things: Challenges and Open Issues. IEEE International Conference 
on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) 
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),  
Exeter, UK, 2017, pp. 670-675. doi:10.1109/iThings-GreenCom-CPSCom-SmartData.2017.105.

[5] Texas Instruments, LM317 Adjustable Voltage Regulator, URL:
https://www.ti.com/product/LM317.

[6] Espressif Systems, NodeMCU (ESP8266), URL:
https://www.espressif.com/en/products/hardware/esp8266ex/overview.

[7] Espressif Systems, ESP32 Overview, URL: https://www.espressif.com/en/products/socs/esp32.
[8] Arduino, Arduino Cloud, URL: https://www.arduino.cc/en/ArduinoCloud.
[9] Arduino, Arduino Uno Rev3, URL: https://store.arduino.cc/arduino-uno-rev3.
[10] Arduino, Arduino Mega 2560 Rev3, URL: https://store.arduino.cc/arduino-mega-2560-rev3.
[11] Arduino, GSM Shield 2.0, URL: https://store.arduino.cc/usa/gsm-shield-2.0.
[12] Arduino, Arduino IoT Remote, URL: https://www.arduino.cc/en/ArduinoIoTRemote.
[13] EMQ Technologies Co., MQTT vs HTTP: Why MQTT Is Better for IoT, URL:

https://www.emqx.com/en/blog/mqtt-vs-http.
[14]  J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and 

Computation, 3rd ed. Boston, MA, USA: Pearson Education, 2006.
[15] (in Greek) Παπάζογλου and Σ. Π. Λιωνής, Ανάπτυξη Εφαρμογών με το Arduino, 3η έκδοση, 

Εκδόσεις Τζιόλα. 
[16] Google, Firebase and Google Cloud, URL: https://firebase.google.com/firebase-and-gcp.
[17] Blynk, Blynk: A Low-Code IoT Software Platform, URL: https://blynk.io/.
[18] Ring, Business Security Systems - Cameras, Alarms, and More, URL: https://ring.com/business-

security-systems.
[19] Arlo, Arlo Security Cameras System & Video Doorbells, URL: https://www.arlo.com/en-us/.
[20] RainMachine, RainMachine - Forecast Smart WiFi Irrigation Controllers, URL: 

https://www.rainmachine.com/.
[21] Zigbee Alliance, FAQ. (Archived on Wayback Machine.) URL: 

https://web.archive.org/web/20130627022836/http://www.zigbee.org/About/FAQ.aspx 
[22] T. Berners-Lee,  Basic HTTP as defined in 1992. World Wide Web Consortium, 1992. URL: 

https://www.w3.org/Protocols/HTTP/AsImplemented.html.
[23] OASIS, “MQTT Version 5.0, OASIS Standard, 07 March 2019”. URL: 

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.
[24] S. Cope, “MQTT For Complete Beginners: Learn The Basics of the MQTT Protocol”, 2022, p. 71. 

ISBN: 9798779030762.
[25] NIST Computer Security Resource Center (CSRC) Glossary, “virtual private network (VPN)”. 

URL: https://csrc.nist.gov/glossary/term/virtual_private_network
[26] PC Magazine Encyclopedia, “port forwarding”. URL:

 https://www.pcmag.com/encyclopedia/term/port-forwarding.
[27] Wikipedia, Amazon Alexa. URL: https://en.wikipedia.org/wiki/Amazon_Alexa.
[28] Wikipedia, Google Assistant. URL: https://en.wikipedia.org/wiki/Google_Assistant.
[29] Apple Inc., HomeKit, URL: https://developer.apple.com/documentation/homekit/
[30] Wikipedia, LoRa. URL: https://en.wikipedia.org/wiki/LoRa.
[31] Seagate,  NAS  vs  Desktop.  URL:  https://www.seagate.com/files/www-content/product-

content/nas-fam/nas-hdd/en-gb/docs/nas-vs-desktop-marketing-bulletin-mb633-1-1304gb.pdf.

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.rainmachine.com/
https://www.arlo.com/en-us/
https://ring.com/business-security-systems
https://ring.com/business-security-systems
https://blynk.io/
https://firebase.google.com/firebase-and-gcp
https://www.emqx.com/en/blog/mqtt-vs-http
https://www.arduino.cc/en/ArduinoCloud
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.ti.com/product/LM317


[32] Wikipedia, Network-attached storage. URL: 
https://en.wikipedia.org/wiki/Network-attached_storage.

[33] B. Callaghan, NFS Illustrated, Boston, MA, USA: Addison-Wesley, 2000. ISBN: 0-201-32570-5.
[34] P. Vixie (ed.), S. Thomson, Y. Rekhter, and J. Bound, Dynamic Updates in the Domain Name 

System (DNS UPDATE). RFC 2136, Apr. 1997. URL: https://doi.org/10.17487/RFC2136.


	1. Introduction
	2. Αutomation systems
	2.1. Smart Lighting Automation
	2.1.1. From Scratch – Local Server-Based – Approach for Lighting
	2.1.2. Commercial IoT Cloud-Based Solutions for Lighting
	2.1.3. Custom IoT Cloud-Based – Proposed – Approach for Lighting

	2.2. Smart Irrigation Automation
	2.2.1. From Scratch – Local Server-Based – Approach for Irrigation
	2.2.2. Commercial IoT Cloud-Based Solutions for Irrigation
	2.2.3. Custom IoT Cloud-Based – Proposed – Approach for Irrigation

	2.3. Smart Security System
	2.3.1. From Scratch – Local Server-Based – Approach for Security
	2.3.2. Commercial IoT Cloud-Based Solutions for Security
	2.3.3. Custom IoT Cloud-Based – Proposed – Approach for Security


	3. Methodology
	3.1. From scratch Approach: Using a Local Server
	3.2. IoT Cloud-Based Solution
	3.3. Case Study: Home Security Automation Using NodeMCU and Arduino IoT Cloud

	4. Discussions and Conclusions
	Declaration on Generative AI
	References

