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Abstract

Indoor navigation has turned into a critical area for research on account of its applications 
across multiple fields, along with robotics, healthcare, as well as smart buildings. Compared 
with outdoor navigation, interior settings pose some special problems such as fewer GPS 
signals, detailed arrangements, and moving impediments. This paper provides a detailed 
look at multiple methods used for finding routes in indoor spaces, like graph-based methods, 
probabilistic methods, and machine learning methods. We evaluate these algorithms based on 
their own accuracy, computational efficiency, scalability, and robustness across multiple indoor 
scenarios. The paper discusses the strengths and limitations with each approach and provides 
understandings into future research directions within the field.
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1. Introduction
Nowadays navigation is an important task that is embedded in every aspect of our daily routines. 

Navigation is generally defined as the process of directing the movements of a vehicle, nave, plane, 
and people from one place to another [1]. Although there are different types of navigation, one 
that faces the most challenges is indoor navigation due to the non – existence of the GPS signal, 
complexity in indoor layouts, moving obstacles like people and furniture, and the need for alternative 
technologies like Wi-Fi, Bluetooth, and sensors.

Indoor navigation i.e., localization, is the process of determining the location and orientation of a 
person or object inside a building and guiding them to a place of interest in that location. Applications 
for this technology range from autonomous robots to assistance technologies for visually impaired 
people to navigation in smart buildings [2].

With satellite-based devices currently available for precise position data, outside navigation is 
far easier. However, indoor navigation presents a unique set of challenges that call for a different 
approach. For instance, while GPS performs exceptionally well outdoors, it may not work well indoors 
because to elements including signal attenuation, multipath, and dynamic spillway development [3].

Thus, indoor navigation has received much interest, especially in the scenarios of smart 
buildings, healthcare facilities, and commercial spaces. Due to the failure of GPS-based localization 
to work indoors, different solutions have been developed, using Wi-Fi fingerprinting, Bluetooth, and 
sensors [4].

The subject of the study was to compare different algorithm types and summarize their pros 
and cons, as well as best practices in environments suitable for different solutions. To solve these 
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problems, indoor navigation systems were evaluated using a systematic approach that incorporates 
advanced localization technologies and algorithmic frameworks, as outlined in the subsequent 
section.

1. Methodology
This study adopts a narrative review approach to explore and synthesize the current state of 

research concerning traditional and machine learning algorithms for indoor navigation. A narrative 
review is a recognized methodology for providing a comprehensive and critical overview of a research 
topic without the rigid procedural constraints typical of systematic reviews or bibliometric analyses. 
It is particularly suited to fields where the literature is heterogeneous in terms of methodologies, 
outcomes, and technological focus, as is the case for indoor navigation.

The literature considered in this review was identified through searches conducted in major 
academic databases, including Google Scholar, ScienceDirect, and Web of Science [5][6]. Keywords 
such as “indoor navigation,” “traditional algorithms,” “SLAM,” “deep reinforcement learning,” and 
“machine learning for localization” guided the selection process. No formal systematic protocol—
such as PRISMA guidelines or a predefined inclusion/exclusion matrix—was applied, given the 
exploratory nature of the investigation [8][9]. The objective was not to exhaustively catalog all 
available studies but rather to capture the main trends, strengths, and limitations emerging from 
significant and representative contributions to the field.

While care was taken to prioritize peer-reviewed journal articles and recent conference 
proceedings [10], this narrative review does not claim to be exhaustive or to eliminate all potential 
selection biases. Instead, it aims to offer an informed, critical, and structured discussion of the topic 
based on a purposive selection of relevant literature, in line with the objectives and constraints of 
narrative reviews.

Through this methodological lens, the study seeks to compare the traditional indoor navigation 
methods—such as SLAM-based approaches and classical path-planning algorithms—with more recent 
machine learning-based techniques, particularly deep reinforcement learning (DRL), highlighting 
the relative advantages, limitations, and future research directions.

2. Results and discussion
To achieve indoor navigation that is as seamless as outdoor navigation, the integration of advanced 

technologies is essential. The primary methods adopted are Wi-Fi-based positioning systems, LiDAR, 
visual and deep learning enhanced SLAM (Simultaneous Localization and Mapping). At large, these 
technologies increase the accuracy, robustness, and adaptability of systems in indoor environments, 
improving overall user experience [11].

To enhance the user experience, these improvements focus on accuracy, robustness, and 
adaptability in complex indoor environments. For instance, many 3D deep learning methods today 
aim to leverage technical progress from robotics and autonomous driving to consume less energy 
and perform in real-time by processing raw point cloud data [12].

Deep Learning neural networks (DNNs) have excelled at the understanding and extraction of 
a high level of intelligence for outlandish datasets, such as point clouds, which can achieve tasks 
such as object detection, semantic segmentation, and scene reconstruction [13]. Multimodal fusion 
techniques (e.g., BubblEX) integrate information across multiple modalities in point cloud data to 
enhance feature learning and further facilitate understanding of how neighboring points (e.g., cells 
surrounding a treated patch) contribute to the KM feature extraction process. [feasibility of 5G, 
lightweight data acquisition strategies in geomatics, smart urbanism etc].

These technologies serve as the foundation for the algorithmic approaches compared in the next 
section, ranging from traditional SLAM to data driven DRL methods.

3. Algorithms
Indoor navigation presents several challenges; nonetheless, certain algorithms can assist in 

overcoming these obstacles. These algorithms are categorized into traditional and deep reinforcement 



learning (DRL)-based algorithms.
4.1.	 Traditional Algorithms

Traditional methods include SLAM, global planning, and local planning. SLAM (Simultaneous 
Localization and Mapping) is one of the most common approaches employed in robotic indoor 
applications, where algorithms create maps of the environment and localize a robot at the same 
time, using the position information gathered by LiDAR, cameras, Wi-Fi, or Ultra-Wideband (UWB) 
[11] For instance, LiDAR SLAM is recognized for its accuracy as well as real-time data processing, 
however it might have problems in closed environments due to its expense as well as its problems 
with reflections [3].

Visual SLAM, using camera systems, is more affordable and widely used in aerial vehicles and 
mobile robots, but can suffer from reduced performance in low light or with reflective surfaces 
[14]. Global planning involves creating a complete map of the environment and then calculating 
the optimal path from start to finish, while local planning focuses on making decisions based on the 
immediate surroundings of the robot [11]. These methods are often computationally intensive and 
may not perform well in dynamic environments. In this manner, SLAM algorithms require significant 
processing power to handle sensor data and update the map in real-time, and global planning needs a 
complete and accurate map, which is difficult to maintain in changing environments [15].

Traditional autonomous navigation often employs Simultaneous Localization and Mapping 
(SLAM) to build a map of the environment while simultaneously estimating the robot’s pose within 
that map. Algorithms like Karto-SLAM, which is based on graph optimization, are used in this process. 
Global planning then uses this map to find an optimal route from a starting point to a goal, often 
using algorithms like Dijkstra’s algorithm as implemented in the Navfn planner. Local planning, 
such as with the Dynamic Window Approach (DWA) or Timed-Elastic-Band (TEB), then adjusts this 
global plan in real-time to avoid obstacles and account for dynamic changes in the environment [11]. 
In contrast, DRL-based methods replace these individual components with a single agent that learns 
to navigate directly from sensor inputs to motor outputs, effectively learning a navigation policy.
4.1.1. 	 Strength and limitation of traditional algorithm

Traditional path – planning algorithms, such as Dynamic Window Approach (DWA) and Times 
Elastic Band (TEB), offer several strengths in indoor navigation. These strengths excel in path planning 
and efficiency, with DWA providing high temporal efficiency and shorter routes, particularly in 
environments where line-of-sight (LOS) conditions are sufficient and lastly can provide a quick path 
calculation in simpler environments [11].

Another strength in traditional algorithms is in the safety features where TEB can generate a 
route with the least number of collision while maintaining safe distances from obstacles and making 
it highly effective in static or well-mapped environments [11].

From an implementation point of view, these algorithms are easier to implement than AI-based 
algorithms, as they do not require extensive training data or high computational resources, ensuring 
predictable behavior in structured scenarios [16].

They have also been used effectively with pre – existing maps, resulting in reliable performance 
when precise environmental data are available [16].

These strengths make traditional methods ideal for controlled environments, but their strict 
dependence on the static maps and limited adaptability in dynamic environments highlight the need 
for complementary approaches, such as machine learning in more complex scenarios.

Despite their strength, traditional algorithms like DWA and TEB offers limitations in real 
world environments. One of the most important limitations is the environmental adaptability: these 
algorithms perform poorly in dynamic environments, struggling with unpredictable obstacles (e.g. 
sudden pedestrian movement), and cannot generalize well to new situations [15].

Sensor Dependencies further deepens these algorithms to not be more reliable because they are 
heavily reliant on sensor precision and accuracy, wheel odometer accumulates errors due to slipping, 
LiDAR suffers in featureless corridors (“corridor effect”), necessitating redundant sensor arrays to 
maintain line-of-sight (LOS) conditions [15].

Notably, performance degrades in sufficiently complex scenarios: for example, while performing 
DWA, collision rates increase by ~40% in cluttered environments; and while performing TEB, 
computational latency increases exponentially with the number of obstacles in a situation.

These algorithms do not learn; they remain inflexible to changes in their environment without 



being manually recalibrated. Compounding these problems is an infrastructure burden, where 
specific pre-mapping and regular upkeep increase deployment costs by an order of magnitude of 
2–3× versus data-driven alternatives. These constraints highlight the reason why modern systems 
are moving toward hybrid architectures, merging the interpretability of traditional methods with the 
flexibility that AI affords to create a balance between stability and flexibility [11][17][18]. Similarly, 
[19] observed TEB’s struggles with actuator constraints in maritime HIL testing, further motivating 
the exploration of adaptive learning methods like DRL.
4.2	 Deep Reinforcement Learning Algorithms

DRL-based approaches employ agents to acquire optimal navigation policies via interaction 
with the environment, providing adaptability to dynamic changes and intricate circumstances. In 
mobile robotics, a Deep Reinforcement Learning (DRL) agent can acquire navigation skills within a 
warehouse setting by getting feedback, either incentives or penalties, contingent upon its actions, such 
as advancing, turning, or halting [11]. This enables the robot to adjust to environmental alterations, 
including new impediments or layout modifications, without requiring explicit reprogramming [20]. 

This adaptability is especially beneficial in intricate situations where conventional rule-based 
navigation systems may struggle, such as congested surroundings or regions with erratic human 
behavior [16][12]. Imagine a scenario in which a robot is tasked with bringing packages across a 
crowded office building. For example, a robot that has been trained in deep reinforcement learning 
would be able to autonomously avoid collisions with other robots it crosses paths with, navigate 
through narrow hallways, or even prioritize delivery requests based on their urgency—without 
requiring explicit instructions to program it for each new case it encounters. 

This is distinct from classic approaches that require extensive manual tuning and reprogramming 
whenever the environment changes. Furthermore, DRL algorithms can utilize transfer learning 
approaches to expedite the learning process in novel situations. A robot taught to navigate one 
warehouse can swiftly adjust to a different layout by refining its existing policies instead of starting 
from the beginning.
4.2.1. Strength and limitation of machine learning algorithm

Deep reinforcement learning algorithms offers several strengths in indoor navigation systems, 
such as environmental adaptability by learning optimal navigation policies through continuous 
interaction with both static and dynamic environments without relying on pre – existing maps or 
precision sensors [11]. 

A distinguish feature of this algorithm is its ability to effectively integrate and execute complex 
decision-making task through their trial – and – error, capabilities, utilizing policies, reward, and 
value function to maximize performance with approaches like Soft Actor-Critic (SAC) showing 
particularly efficient sample usage and lower collision rates compared to traditional methods [11]. 

Another feature that deep reinforcement learning algorithms has that the traditional algorithms 
does not have is the benefit of the performance such as SAC demonstrating efficient sample usage 
and lower collision rate, has better computational efficiency, achieves higher rewards in testing 
scenarios, can function effectively in maples environments. [11].

The configurability of DRL architectures allows for both model – free and model – based 
configurations along with the capability to handle continuous or discrete action spaces and hence 
allows developers a great deal of flexibility when devising their architectures, depending on their 
specific application requirements. These qualities allow DRL to perform well in complex, real-world 
navigation tasks, especially when environmental unpredictability is a major factor [11]. 

However, while being powerful and adaptable to the environment, DRL algorithms face major 
obstacles such as exceedingly virtual trial and error paths, unavoidable collision happening in the 
training process, along with high requirement of calculating resources, resulting in difficulty to 
implement it in real world problems [11][12].

Moreover, their significant reliance on the large, heterogeneous datasets and the need to collect 
location-related sensitive information raises privacy and security issues receiving the attention 
of scholars and practitioners [21]. To alleviate these limitations, researchers recommend the 
implementation of hybrid systems that integrate DRL with traditional methods, federated learning 
for the retention of privacy, and constant updates of the system to ensure accuracy [11][21]. For 
systems functioning in dynamic environments with movable obstacles or where facts regarding maps 
are false DRL is optimal for this [11]. Continuous research into privacy-preserving technologies as 
well as hybrid methods will likely continue to improve the applicability and robustness of these DRL-



based navigational systems  as the field matures.
The flexibility of DRL architectures supports both model – free and model – based designs, with 

the ability to manage continuous or discrete action spaces, offering developers a broad spectrum of 
configurations based on specific application needs. These attributes make DRL particularly suitable 
for complex, real-world navigation tasks, especially where environmental unpredictability is a 
challenge [11]. 

Despite their strength and adaptability of the environment, DRL algorithms face significant 
challenges, including extensive virtual training requirements, inevitable collisions during the 
training phase, and substantial computational resource demands, which complicate real-world 
implementation [11][12]. 

Additionally, their performance depends heavily on large, heterogeneous datasets and raises 
privacy and security concerns due to the collection of sensitive location information [21]. To mitigate 
these limitations, researchers advocate for hybrid systems that combine DRL with traditional 
methods, federated learning to preserve privacy, and regular system updates to maintain accuracy 
[11][21]. DRL is particularly well-suited for dynamic environments with changing obstacles or where 
map information is unreliable, making it a powerful tool for adaptive navigation in complex, real-
world settings [11]. As the field evolves, ongoing advancements in privacy-preserving techniques 
and hybrid approaches promise to further enhance the practicality and robustness of DRL-based 
navigation systems.

In a summarized way comparison of indoor navigation algorithms discussed are presented in 
table 1.

Table 1 
Comparison of Indoor Navigation Algorithms

Algorithm Accuracy Computational 
Cost Robustness Best Use Case Limitations

LiDAR SLAM High Very High Moderate Static 
environments

Costly; 
struggles 
with 
reflections

Visual SLAM Moderate Moderate Low Affordable 
robotics

Fails in low 
light

Wi-Fi 
Fingerprinting

Low-
Moderate

Low High Large 
buildings

Requires pre-
mapping

DRL-Based High High (training) Very High Dynamic 
environments

Needs large 
training 
dataset

4. Conclusion
Indoor navigation remains a complex and evolving field, demanding solutions that can navigate 

challenges such as dynamic environments, occluded signals, and diverse spatial layouts. This study 
has compared traditional algorithms—such as SLAM, DWA, and TEB—with machine learning-
based approaches, particularly Deep Reinforcement Learning (DRL), to highlight their respective 
strengths and limitations. Traditional methods excel in controlled, static environments with high 
predictability, offering low-cost, easy-to-implement solutions with high interpretability. However, 
their dependency on precise mapping and limited adaptability restricts their effectiveness in real-
world, dynamic scenarios.

In contrast, DRL-based algorithms demonstrate significant advantages in adaptability and 
autonomous decision-making by learning from real-time interactions with the environment. Their 
ability to operate without pre-mapped data and adapt policies through trial-and-error makes them 
highly suitable for complex and unpredictable settings. Nevertheless, DRL faces considerable 
implementation challenges, including high training costs, computational demands, and privacy 
concerns related to data acquisition.



The findings emphasize the growing need for hybrid navigation architectures that blend the 
robustness and interpretability of traditional algorithms with the flexibility and learning capabilities 
of AI-based methods. As indoor navigation continues to expand across domains such as smart 
infrastructure, robotics, and assistive technologies, future research should focus on optimizing hybrid 
solutions, improving training efficiency, and addressing data privacy through federated learning and 
secure data management practices. Such advancements will be critical for enabling reliable, scalable, 
and context-aware indoor navigation systems in the years to come.
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