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Abstract
With the availability of music streaming platforms, listening behavior has seen fundamental changes in the past
two decades, going from mere consumption of and recommendation within personal collections to an exploration
of massive catalogs. As part of this trend, collaborative filtering algorithms that exploit consumption data, user
feedback, and, most recently, the sequential order of music consumption, have become indispensable.

In prior work, it has been shown that the incorporation of negative feedback (skipped track information) via
contrastive learning can be applied to and improve existing sequential recommendation models. In this work,
we extend previous findings by investigating two notable aspects of music listening data in detail. First, we
analyze popular public datasets used in music recommender systems research (LFM-1k, LFM-2B, and the Music
Streaming Sessions Dataset) with respect to the evolution of consumption activity and track skipping behavior,
and show strongly deviating patterns based on data creation context. Second, focusing on LFM-2B, we further
study the impact of data and skipping information availability on sequential and non-sequential recommendation
algorithms over the different years available in the data set. We observe deviating model performance using
time-based subsets of LFM-2B compared to experiments on the entire dataset. In conclusion, we argue for more
careful discernment and understanding of listening tasks and user intents leading to creating datasets, as well as
explicitly modeling different types of interactions.
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1. Introduction

Music recommender systems have become central in shaping how users interact with streaming
platforms, significantly influencing music listening and discovery. These systems have evolved over
the past two decades from simple personal collection recommendations to sophisticated tools capable
of navigating vast music catalogs. This evolution has been driven by the increasing availability of
streaming data and the continuous advancement of recommendation algorithms.
Recent studies have highlighted the importance of understanding user behavior to improve the

effectiveness of music recommender systems. For instance, Hidasi et al. (2020) emphasized the role
of contextual information in music recommendation, by modeling the whole session, to achieve more
accurate results [1]. While Quadrana et al. (2020) explored howmultiple user-item interactions influence
recommendation quality in a sequence-aware recommender system [2]. Furthermore, research by Wen
et al. (2019) has shown that incorporating user feedback, such as track skips and short plays, can
significantly enhance recommendation accuracy [3]. Dai et al. (2024) modeled user attention prediction
as a positive-unlabeled learning problem, where active feedback is treated as positive samples and
passive feedback is treated as unlabeled samples to increase user engagement [4].
In parallel, the availability of extensive datasets has provided valuable resources for analyzing user

interactions and behavior on a large scale. For example, Yao et al. (2020) utilized these datasets to
study session-based recommendations, highlighting the need for models that can adapt to evolving
user preferences [5].
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Furthermore, incorporating real negative feedback, such as user skips, significantly enhances recom-
mender systems. Mei et al. (2024) have shown that using explicit negative samples reduces training
time and improves test accuracy [6]. Pan et al. (2023) showed that, in sequential recommendation tasks,
leveraging passive negative feedback, like video skips, provides crucial insights into user preferences [7].
Methods combining positive and passive-negative feedback through sub-interest encoders have demon-
strated superior performance, highlighting the importance of diverse feedback types for improving
accuracy and user satisfaction. In a related direction, we proposed a contrastive learning framework that
directly incorporates skip behavior as informative negative signals. This method improves sequential
music recommendation by aligning user representations with positively preferred tracks and pushing
away tracks associated with negative feedback, thus leveraging fine-grained temporal dynamics of
skips for better modeling [8].
In this work, we aim to identify trends in music consumption and track skipping behavior across

public datasets used in music recommender systems research. By focusing on the LFM-1k, LFM-2B,
and Music Streaming Sessions Dataset (MSSD), we analyze the evolution of these behaviors and their
implications for recommender system design. Focusing on LFM-2B for in-depth evaluation, for each
contained year individually, we explore SASRec [9] as a sequential model, negative feedback enhanced
SASRec [8], and two non-sequential baseline algorithms, Weighted Regularized Matrix Factorization
(WRMF) [10] and Bayesian Personalized Ranking (BPR) [11], using the methodology introduced by
Wen et al. [3] to incorporate negative feedback.

This work aims to fill a gap in existing research by focusing on how music listening behavior has
evolved over the past two decades and how these changes impact recommender systems. Unlike previous
studies that have largely ignored this aspect, our study examines trends across public datasets used in
music recommender systems research, specifically looking at consumption activity and track-skipping
behavior. By comparing sequential and non-sequential recommendation algorithms incorporating
negative feedback against feedback-agnostic baselines, we demonstrate the increasing importance of
integrating different forms of interaction into recommender models. This underscores the necessity of
understanding listening tasks and user intents to create better datasets and explicitly model various
types of interactions.

2. Datasets

For this study, we use three real-world music recommendation datasets: the Music Streaming Sessions
Dataset (MSSD) [12] using data from Spotify,1 the LFM-2B dataset [13], and the LFM-1k dataset [14, 15],
both using data from Last.fm.2. These datasets have been instrumental in uncovering patterns in music
consumption and track-skipping behavior, which are critical for refining recommendation algorithms.

2.1. Music Streaming Sessions Dataset

The MSSD contains 160 Million user sessions of 10 to 20 consecutively listened songs (<60 seconds
between listens), which are uniformly sampled from a variety of contexts, such as the user’s personally
selected collections, expertly selected playlists, contextual non-personalized recommendations, and
personalized recommendations. As this dataset is pseudonymized and lacks user labels, we can treat
each session as a new user for recommendation tasks.
Each listening event contains a skip label from 0-3, with 0 denoting ”no skip” and 1-3 denoting the
length of time before a user skipped a given track. This is defined as ”played very briefly”, ”played
briefly”, and ”played mostly (but not completely)”, respectively for labels 1 to 3. In this study, we would
mainly assume skip label 3 not to be a strong indicator of negative preference for the given session, so
we only assume labels 1 and 2 as true skips.

1https://open.spotify.com
2https://last.fm
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Figure 1: Skip counts per year for LFM-1k, LFM-2B, and Spotify(MSSD) datasets, respectively. Each stack plot
presents the total number of listening events for each year, with skips represented by the black segments and
not-skipped events by the white segments. The entirety of each bar illustrates the total number of listening
events recorded in that particular year across the datasets.

2.2. LFM-1k

The LFM-1k dataset contains 19M discrete listening events for 1000 users, containing time stamps, user
IDs, track IDs, and track names for each event. Therefore, we create implicit sessions, such that for
each user, we consider a sequence of chronological listening events with less than 20 minutes between
any individual event as a “session”. We consider skips to be any prior listening event with less than 30
seconds between its subsequent event. We additionally prune any sessions with fewer than 5 events for
a total of 650K sessions, with around 1M unique tracks. In line with the MSSD, we can discard user
labels and treat each individual session as a new user in recommendation tasks.

2.3. LFM-2B

The LFM-2B dataset contains more than 2 billion listening events for 120,322 users and 50,813,373 tracks,
which is collected over 15 years (from 2005 until 2020). The dataset includes demographic details of
users (such as age, country, and gender), metadata related to music (such as artist and track names),
and timestamps indicating the exact time when a user listened to a specific track [13]. Similarly to
the other datasets, we discard metadata and demographic information. Similar to the LFM-1k dataset,
we define implicit ”sessions” for each user by grouping together a chronological sequence of listening
events where the time interval between any two consecutive events is less than 20 minutes. We define
skips as any previous listening event followed by another event within a time difference of less than 30
seconds. In addition, we remove user labels and treat each session as a distinct user.
We applied the same session extraction process to all yearly subsets of the data. However, the

numbers of sessions per year are significantly larger than in the 2020 subset reported earlier in [8] —
with over 250 million interactions recorded annually between 2012 and 2014, as shown in Figure 1.
Therefore, after creating the sessions as described earlier, we randomly sampled 100k sessions from
each year. These sampled sessions were then used to evaluate the different methods.

3. Dataset Analysis and Comparison

For clarity, we note that the following analyses are performed on the complete datasets and not the
evaluation subsets used for impact analysis (sec. 4). Figure 1 illustrates the number of listening events
and skips per year for each dataset separately. It is notable that a significant portion of the Spotify
(MSSD) dataset’s listening events was gathered in 2018, showing an uneven distribution over the
dataset’s collection period. In contrast, the data collection distribution for the LFM-1k and LFM-2B
datasets appears more even within the 5 and 15 years data collection period, respectively. In addition,
the skip percentages are relatively low, showing a maximum skip percentage of 1.5% for LFM-1k and



Figure 2: Comparison of skips relative to total listening events per year for LFM-1k, LFM-2B, and Spotify-MSSD
datasets.

6.1% for LFM-2B datasets. However, the skip percentage is considerably higher for the Spotify (MSSD)
dataset, which reached ∼ 66% in 2018 and higher in other years when less data has been gathered. The
high skip rate in the data may be related to the different types of skip behavior that were represented in
the data [12].
The overall skip comparison between the three datasets is illustrated in Figure 2. As expected, the

Spotify (MSSD) dataset has a higher skip rate than others in the same time interval. For the LFM-2B
dataset, there is no clear pattern indicating whether the number of skips increases along with the
number of listening events, or if the number of skips increases/decreases in the corresponding years.
However, the overall skip percentage for LFM-2B is lower than LFM-1k within the same time interval.
Regarding the LFM-1k dataset, there appears to be a trend of increasing skips over the years. However,
since the data is presented for only a five-year sequence, it is not conclusive evidence of a continuous
increase. While the overall skip trend for LFM-1k and LFM-2B datasets is similar, there are considerable
differences between them, particularly shown in the subplot in Figure 2. Notably, for the LFM-2B
dataset, the overall skip rate increased after 2012, despite a decrease in overall listening events. This
observation motivates our current study, in which we focus on examining the LFM-2B dataset from
2012 onwards in more detail.

4. Experiments

Previously, Seshadri et al. conducted experiments on a selection of well-established sequential and
non-sequential recommendation models across different datasets to evaluate the impact of integrating
negative feedback [8]. Building on this, we extend the analysis by examining the performance of
selected models across multiple yearly subsets of the LFM-2B dataset. We focus on three representative
models: Bayesian Personalized Ranking (BPR) [11], Weighted Regularized Matrix Factorization (WRMF)
[10], and Self-Attentive Sequential Recommendation (SASRec) [9], where the first two models (BPR,
WRMF) are non-sequential approaches. Each model was selected for its distinct approach to modeling
user preferences—BPR and WRMF rely on matrix factorization techniques, while SASRec employs a
self-attention mechanism for sequential modeling. All models were configured according to the original
implementations and subsequently modifications incorporating negative feedback.

We aim to investigate how the integration of negative feedback influences model performance across



these different approaches and whether temporal variation (i.e., using different yearly subsets) leads to
noticeable differences in results.
For SASRec, we use the same training strategies as in [8]. This includes modifications to standard

practices to incorporate negative feedback effectively into sequential recommender systems. We use
a sampled softmax approach with negative log-likelihood to handle the extensive item space, which
ranges from 300,000 to 500,000 items. During each training iteration, we sample 1,000 unseen items
to rank against the target items. This approach allows the model to adjust to an expanding subset of
items, thereby enhancing its ability to rank items accurately as training progresses.
To ensure consistency, we set the sequence length limit to 20 items, splitting longer sessions into

multiple segments. Model embeddings and hidden layers are uniformly set to a dimension of 128. For
SASRec, we use two layers of self-attention with eight attention heads each. Initial parameters are
sampled from a truncated normal distribution with 𝜇 = 0 and 𝜎 = 1 within a range of [−0.02, 0.02]. We
optimize the 𝛼 and 𝛽 parameters from the set [0.1, 0.2, 0.5, 0.75, 1], choosing 𝛼 = 1 and 𝛽 = 0.2 for the
LFM-2B dataset. The ADAM optimizer [16] is used with a learning rate of 0.005.
The training process varies by model. For SASRec, we reserve the final and penultimate items in

each session for testing and validation purposes. For BPR and WRMF, we focus on predicting the next
item in a sequence. We integrate negative feedback into these models, following the methods proposed
in [3]. These methods include -BL, which adjusts preference labels based on post-click feedback, and
-NR, which probabilistically samples items across different feedback types.

5. Discussion of Results

The results of evaluating on year-based subsets are shown in Table 1. As described earlier, we randomly
sampled 100k sessions for each year and calculated the skip percentage in both the sampled subset and
the original dataset. As shown in the table, the overall skip occurrence is preserved.

In line with previous results we can see that sequential models outperform the non-sequential base-
lines consistently. However, we can also observe less consistency regarding the impact of incorporating
negative feedback. While we can see some improvements on the sequential model in the earlier years
(2012–2014) and the last years (2019–2020), negative feedback improves the baseline models in all
subsets, albeit at a much lower performance level and dependent on the strategy chosen. For the
sequential model, there seems to be no clear trend of impact based on the skip ratio of the corresponding
year alone, indicating that different years exhibit different patterns and that a generalization of results
on individual subsets is not possible.
To further investigate this indication, we assess the effect of the proportion of skip events relative

to total interactions in a dataset for one of the subsets. The results are shown in Table 2. Changing
the sampling method increases the proportion of skips in our used dataset. Consequently, methods
that incorporate negative feedback (skips) benefit from this change and achieve better performance.
This becomes more pronounced when comparing with our previous work [8], where we applied an
oversampling processing on the 2020 LFM-2B subset that resulted in a much higher skip ratio (around
∼14% compared to 3.86% in our current sampling method) and leading to a much better outcome—
e.g., HR@1 for SASRec (original and negative-feedback versions) reached .190 and .221, resp. in the
oversampled setup, a result which could only be achieved by current sampling process at HR@20. The
two non-sequential models showed a similar pattern, while oversampling led to better results for them,
they were more robust to changes and showed smaller performance differences in comparison. These
findings highlight how important maintaining a higher ratio of skip interactions is for this approach,
once again confirming the conclusions in [8].

6. Conclusion

From the results obtained, we can see the potential of incorporating negative feedback, however with a
high sensitivity of algorithms regarding the underlying data. While the effect is more robustly seen



Table 1
Performance of LFM-2B from 2012-2020 using Hit Ratio @ [1, 5, 10, 20] for the sequential model (SASRec)
and the non-sequential baselines (WRMF, BPR). Bold faced entries in the SASRec Neg., -BL, and -NR
columns indicate an improvement of the negative feedback incorporating approach over the feedback
agnostic versions. The Skip Ratio column shows the percentage of skip events in our sampled subset
(with the overall percentage of skips in that year in parentheses for reference).

Year Skip Metric
SASRec WRMF BPR

Orig. Neg. Orig. -BL -NR Orig. -BL -NR

2012 0.59% (0.81%)

HR@1 .129 .116 .000 .006 .004 .000 .009 .008
HR@5 .158 .151 .000 .015 .013 .000 .026 .024
HR@10 .167 .168 .001 .025 .023 .001 .042 .040
HR@20 .177 .181 .007 .079 .075 .009 .087 .083

2013 1.84% (1.88%)

HR@1 .165 .172 .000 .003 .006 .000 .007 .007
HR@5 .205 .210 .000 .011 .014 .000 .022 .020
HR@10 .222 .224 .001 .022 .029 .001 .041 .038
HR@20 .234 .234 .006 .071 .080 .007 .084 .080

2014 6.36% (6.14%)

HR@1 .303 .320 .012 .018 .012 .013 .014 .022
HR@5 .354 .365 .039 .037 .042 .039 .047 .067
HR@10 .369 .378 .061 .086 .066 .065 .075 .099
HR@20 .384 .391 .133 .163 .138 .137 .150 .170

2015 5.50% (5.67%)

HR@1 .268 .101 .006 .008 .010 .012 .014 .012
HR@5 .304 .154 .013 .016 .029 .025 .043 .028
HR@10 .315 .180 .028 .029 .039 .063 .071 .071
HR@20 .327 .212 .082 .086 .086 .122 .143 .129

2016 3.57% (3.31%)

HR@1 .276 .084 .019 .020 .015 .019 .021 .018
HR@5 .315 .136 .051 .058 .047 .040 .063 .051
HR@10 .329 .167 .089 .100 .089 .091 .102 .094
HR@20 .315 .204 .161 .168 .159 .162 .171 .164

2017 3.18% (3.26%)

HR@1 .213 .047 .019 .018 .018 .014 .017 .018
HR@5 .256 .083 .059 .076 .036 .047 .036 .035
HR@10 .277 .104 .100 .129 .089 .073 .089 .089
HR@20 .301 .129 .166 .270 .178 .157 .159 .165

2018 4.24% (4.56%)

HR@1 .062 .032 .011 .010 .012 .010 .012 .011
HR@5 .153 .058 .025 .025 .025 .022 .038 .022
HR@10 .198 .072 .058 .037 .069 .055 .065 .058
HR@20 .240 .093 .119 .078 .121 .103 .136 .106

2019 3.79% (3.99%)

HR@1 .059 .063 .018 .020 .017 .016 .017 .019
HR@5 .149 .140 .047 .055 .042 .028 .038 .054
HR@10 .191 .174 .081 .087 .079 .087 .089 .096
HR@20 .229 .204 .162 .173 .155 .159 .166 .188

2020 3.86% (3.62%)

HR@1 .082 .065 .010 .013 .010 .021 .060 .071
HR@5 .138 .139 .021 .025 .021 .039 .120 .135
HR@10 .165 .174 .060 .074 .067 .094 .156 .168
HR@20 .194 .208 .152 .165 .154 .168 .202 .213

with non-sequential models, their overall performance is limited. For the sequential algorithm, we see
a much higher dependency on the choice of subsets, availability of negative data, and sampling method
due to the contrastive learning approach.
Other conclusions concern the bias in the data distribution over different years represented in

the data—not only in the descriptive analysis and across datasets but also impacting the predictive
capabilities of models. The overall performance on LFM-2B based on the originally provided 2020



Table 2
Performance comparison on LFM-2B dataset across different skip numbers for 2019.

Year Metric
SASRec (100k sampled)

# of skips
SASRec (20 int./sess. sampled)

# of skips
Negative-feedback Negative-feedback

2019

HR@1 .063

5928

.033

62396
HR@5 .140 .119
HR@10 .174 .185
HR@20 .204 .270

subset, as shown in [8], is not necessarily indicative of individual annual subsets, which by themselves
should represent different trends in consumption. The observed trends in the data likely reflect the
dataset creation process in addition to the consumption patterns of these years.

Extrapolating from these findings also to other datasets, it is inherent that individual datasets represent
only some aspects of the larger picture and overall trends of shifting consumption patterns. The models
learned from a single dataset are therefore limited in terms of validity and generalization. However,
even with the zoo of music recommender datasets available (or partly not available anymore, e.g. [13]),
one can not easily discern listening trends and listening modalities. While certain preferences and
temporal phenomena are only represented in some datasets capturing data from the respective time,
they are strongly linked to the platforms, applications, and recommendation paradigms of that time.
This presents a conundrum as one can not simply “add up” different datasets to create a larger and
more “complete” pool. Instead, we first need to understand the individual backgrounds, foci, tasks, and
intents captured in and connected to the individual datasets, before devising strategies to craft a more
holistic picture of music listening preferences—if that is considered a goal worthwhile and a relevant
research question.
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