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Abstract
Finding the most relevant person for a job proposal in real time is challenging, especially when resumes are long, structured, and
multilingual. In this paper, we propose a re-ranking model based on a new generation of late cross-attention architecture, that
decomposes both resumes and project briefs to efficiently handle long-context inputs with minimal computational overhead. To mitigate
historical data biases, we use a generative large language model (LLM) as a teacher, generating fine-grained, semantically grounded
supervision. This signal is distilled into our student model via an enriched distillation loss function. The resulting model produces
skill-fit scores that enable consistent and interpretable person–job matching. Experiments on relevance, ranking, and calibration metrics
demonstrate that our approach outperforms state-of-the-art baselines.
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1. Introduction
The application of machine learning to Human Resources
(HR) data has led to significant advances in tasks such as
career path prediction [1] or skill extraction [2]. Central to
this domain is the challenge of matching talent to projects, a
core component of modern recommender systems. On large-
scale platforms, this task requires an automated process to
navigate thousands of potential candidates efficiently. This
challenge is especially acute in freelancing marketplaces,
like Malt, Europe’s leading freelancing marketplace with
over 850.000 freelancers among a broad range of industries
(from technical roles like back-end development to creative
fields such as design), where precision is critical: freelancers
are often expected to contribute effectively upon starting a
project.

A common approach for such systems is a two-stage
pipeline consisting of a retrieval and a ranking phase. Our
work focuses on the latter, where creating an effective and
scalable model presents several challenges. First, freelancer
profiles and project briefs are often long, structured docu-
ments written in multiple languages. While lexical match-
ing methods fall short in capturing deep semantic meaning,
many transformer-based models that excel at this are lim-
ited to short input lengths or require significant computa-
tional resources not suitable for real-time inference. Second,
the performance of supervised learning-to-rank models is
highly dependent on the quality of training data. Real-world
recommender systems often produce sparse, biased interac-
tion data [3]. Selection and exposure biases stem from users
engaging only with visible items, making missing data am-
biguous [4]. Presentation and popularity biases inflate the
most popular and top-ranked items, limiting diversity [5].
In addition, interaction histories can reinforce stereotypes
and underrepresent certain user groups [6].

Beyond the challenges of training on biased data, neural
ranking models present another critical limitation in HR
contexts: their outputs frequently lack the global score cali-
bration that is essential for interpretability and consistent,
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query-invariant comparisons. A promising strategy to in-
still these desired properties while maintaining efficiency
is knowledge distillation [7]. This paradigm, which trans-
fers the nuanced judgments of a large "teacher" model to
a compact "student" model, has emerged as a powerful ap-
proach for complex reranking tasks and provides a pathway
to bridge this gap.

To address all of these challenges, we propose a novel
framework that distills the semantic reasoning of a gen-
erative Large Language Model (LLM) into a lightweight,
efficient, and calibrated ranking model. We use the LLM
as a "teacher" to generate fine-grained and semantically
grounded relevance scores, creating a robust supervisory
signal that overcomes the limitations of biased historical
data. Our contributions are twofold:

• A Distillation Framework for a Calibrated and Inter-
pretable Semantic Score: We introduce a distillation
framework to produce a relevance score that is both
interpretable and semantically calibrated. First, to
overcome the limitations of biased and sparse histor-
ical interaction data, our method uses a generative
LLM to provide a semantically calibrated relevancy
score. Second, we combine a distillation loss sensi-
tive to both ranking and score magnitude with di-
rect score supervision to improve calibration. Over-
all, This ensures that the final score produced by
our model has a consistent meaning across different
freelancer-project pairs, making it suitable for rank-
ing and for use in downstream business applications.

• A Lightweight, Long-Context Reranking Architec-
ture: We propose an efficient student model that
processes long-form profiles and project briefs by
decomposing them into structured utterances. Its
cross-attention comparison block, inspired by late
interaction mechanisms, effectively captures fine-
grained semantic alignment while remaining com-
putationally inexpensive for real-time inference.

The remainder of this paper is organized as follows. Sec-
tion 2 refines our problem statement and reviews related
work on HR recommendation systems and semantic ranking
algorithms. Section 3 presents in depth our dataset creation
and ranking algorithm alongside the training objective. Sec-
tion 4 describes the experimental setup and results. We
conclude in Section 5 with future directions.
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2. Related Work
In HR applications, ranking or re-ranking is used to refine
candidate-job matches after an initial retrieval stage, aim-
ing to surface the most relevant candidates efficiently. One
approach to candidate-job ranking uses single-stream com-
parison models, from Recurrent Neural Networks (RNNs)
with attention [8] to Graph Convolutional Networks (GCNs)
that capture structured relationships [9].

Driven by real-time constraints in deployment, bipartite
architectures (bi-encoders) became popular. These encode
candidates and jobs separately before applying a similarity
function. Early implementations relied on convolutional en-
coders and contrastive training [10, 11], while more recent
work adopted transformer-based models such as Consul-
tantBERT [12], extending Sentence-BERT [13] to the HR do-
main. Contrastive performance has been further improved
via data augmentation—either through heuristics [14] or
LLM-generated synthetic resumes [15], and federated learn-
ing setups [16].

To go beyond independent encoding, graph-based meth-
ods capture richer structural relationships. Some use exter-
nal knowledge graphs to learn job and candidate embed-
dings [17], while others incorporate relational structure into
transformers branches using losses [18] or relational GCNs
trained jointly with encoders [19].

Recent attention-based comparison models reintroduce
interaction layers, similar to earlier single-stream designs, to
capture fine-grained alignments between job requirements
and candidate profiles, improving ranking accuracy [20].

Large, Structured, Multilingual Documents. HR plat-
forms operating across countries must match candidates
to jobs using long, structured, and multilingual documents
[10, 12, 14]. To capture structural information, such as ed-
ucation, skills, and experience, some approaches adopt hi-
erarchical or field-aware encoders that reflect document
layout [8, 10], while others use segment-level encoding and
aggregation to align subfields across candidate and job pro-
files [14, 21]. Language alignment in bi-encoders has been
tackled through distillation techniques [22], as in multilin-
gual Sentence-BERT [13]. Arctic-Embed-v2 [23] extends
this paradigm to both long-context and compact variants.
To incorporate interaction modeling without retraining, late
interaction mechanisms such as ColBERT [24] have been
introduced. Alternatively, single-stream rerankers such as
Qwen3 [25] also support long multilingual inputs.

Generative Large Language Models for Reranking.
Generative large language models (LLMs) have recently
emerged as competitive zero-shot rerankers, for large mul-
tilingual documents, by leveraging their capacity to rea-
son over document-query pairs in natural language. Un-
like dense retrieval or cross-encoders trained on annotated
datasets, generative LLMs can predict ranking permutations
directly [26], or assign relevance scores to each candidate
[27] without needing further training. Several techniques
have been proposed to improve reranking performance:
prompt design algorithms [28] and output manipulation
strategies [29]. In-context reranking (ICR) methods use
the LLM’s attention dynamics to infer preferences across
candidates [30]. Others explore using internal representa-
tions such as first-token embeddings to train lightweight
rerankers on top of frozen LLMs [31]. These approaches

offer a flexible, instruction-following alternative to tradi-
tional supervised rankers, especially in zero-shot setups
where labeled training data is unavailable or biased. How-
ever, their high latency and computational cost are often
not compatible with live inference.

Distillation from Generative LLMs. To address the im-
practicality of using directly generative LLMs in production,
they can serve as teachers in a distillation setup—generating
either synthetic training data (e.g., queries or candidate
items [15]) or soft supervision signals (e.g., scores or rank-
ing permutations). This information is then used to train
smaller, efficient student models. For example, Sun et al.
[32] demonstrate that listwise permutations produced by
LLMs can be treated as ground-truth orderings for training
student models using RankNet [33], outperforming tradi-
tional supervised baselines. Other works, such as Shang
et al. [34], explore score-level distillation by fine-tuning on
margin-aware objectives tailored for LLM-generated super-
vision. Their approach builds on margin-MSE [35], adapting
it for better transfer from LLM score distributions. Although
these methods might bring biases from their own training
data[36], for example, minor group favoritism or skewed
token priors, they highlight the promise of generative LLMs
as a rich source of ranking signal to tackle many of the
biases present in recommender training data.

Ranking Calibration. In ranking systems, score cali-
bration is critical when downstream tasks rely not just on
item orderings but also on the absolute values of predicted
scores—for example, in multi-stage retrieval, risk-aware de-
cisions, or interpretability of results. However, most ranking
losses do not enforce calibration, often producing scores
that lack a consistent scale [37]. Solutions include model-
ing uncertainty via dropout or ensembles [38], leveraging
LLM-generated explanations as auxiliary signals [39], or ap-
plying post-hoc corrections like binning. Some approaches
directly integrate calibration into the loss function, includ-
ing recent work on distillation-aware objectives such as
CLID [40]. Together, these methods help ensure that rank-
ing models produce scores that are meaningful, comparable
across queries, and robust for real-world applications.

3. Approach
Let P and F denote the sets of all projects and freelancers,
respectively. Each project 𝑝 ∈ P is represented by a brief
document 𝑥𝑝, and each freelancer 𝑓 ∈ F by a profile 𝑥𝑓 .
These documents are composed of structured textual sec-
tions denoted 𝑠𝑑,𝑙, where 𝑑 ∈ {P,F} and 𝑙 ∈ 𝐿𝑑 refers to
a document-specific section type. Thus, each document is
defined as:

𝑥𝑑 = {𝑠𝑑,𝑙 | 𝑙 ∈ 𝐿𝑑}.

Our goal is to obtain a model 𝑀𝜃 with parameters 𝜃 that
estimates a continuous skill fit relevance score 𝑠𝑓,𝑝 ∈ [0, 1]
for any pair (𝑓, 𝑝):

𝑀𝜃(𝑥𝑓 , 𝑥𝑝) = 𝑠𝑓,𝑝.

This score is intended to reflect the skill-fit between a
freelancer and a project, enabling skills based ranking such
that:

∀𝑓, 𝑓 ′ ∈ F, 𝑠𝑓,𝑝 > 𝑠𝑓 ′,𝑝 ⇒ 𝑓 ≻𝑝 𝑓 ′.



Figure 1: Overview of the semantic score distillation pipeline: a
generative LLM assigns semantic labels that are mapped to refer-
ence scores to form a calibrated teacher model 𝑀teacher, whose
outputs are used to train a lightweight student model 𝑀student.

Beyond ranking accuracy, we aim for the scores
to be interpretable and comparable across different
project–freelancer pairs, i.e., semantically calibrated. This
enables to use them as meaningful features for down-
stream applications such as explanation, policy decisions,
or business-level ranking.

Let ℛ be a fixed reference set of matching interpretations
(e.g., “unqualified,” “partial match,” “strong match”, ...), and let
𝜑 : [0, 1] → ℛ be a mapping from scores to interpretation.
In this setting, semantic calibration requires:

∀𝑓,𝑓 ′∈F
𝑝,𝑝′∈P

(𝑠𝑓,𝑝 = 𝑠𝑓 ′,𝑝′) ⇒ (𝜑(𝑠𝑓,𝑝) = 𝜑(𝑠𝑓 ′,𝑝′)) . (1)

This ensures that identical scores carry consistent
meaning across contexts, facilitating explanations and
cross-project comparability.

To obtain such calibrated scores, we assume the existence
of a model 𝑀𝜃′ that assigns a relevance category 𝑟 ∈ ℛ to
any freelancer–project pair (𝑥𝑝, 𝑥𝑓 ):

𝑀𝜃′(𝑥𝑝, 𝑥𝑓 ) = 𝑟.

Conceptually, an approximate inverse mapping 𝜑̃
−1

:
ℛ → [0, 1], can be constructed to associate each semantic
category with a reference score:

𝜑̃
−1

(𝑟) = E𝑠∼𝑝(𝑠|𝜑(𝑠)=𝑟)[𝑠].

In results, a teacher model 𝑀teacher can be defined as :

𝑀teacher(𝑥𝑝, 𝑥𝑓 ) = 𝜑̃
−1

(𝑀𝜃′(𝑥𝑝, 𝑥𝑓 )),

which outputs semantically calibrated scores grounded in
the interpretation space ℛ.

To make inference scalable, we train a compact student
model 𝑀student that mimics 𝑀teacher:

𝑀student(𝑥𝑝, 𝑥𝑓 ) ≈ 𝑀teacher(𝑥𝑝, 𝑥𝑓 ). (2)

This distillation process, illustrated in Figure 1, enables
us to preserve the hypothetic semantic calibration and in-
terpretability of teacher-generated scores in a lightweight
model suitable for real-time deployment.

3.1. Generative LLM relevance scoring
Having outlined our general approach and the necessity of
semantic calibration, we now detail our methodology for

obtaining calibrated training data.

In the absence of high-quality, semantically calibrated
data, we propose leveraging generative large language
models (LLMs) as teachers to generate skill-fit supervision
signals. Indeed, as stated in the introduction (Section 1),
our historical data is mostly sparse, noisy, biased and
uncalibrated. In contrast, a generative LLM can evaluate
tasks within a defined context, allowing us to create more
fine-grained and semantically accurate supervision signals,
denoted as 𝑠𝑡𝑓,𝑝 ∈ [0, 1]. We assume that a generative
LLM possesses sufficient semantic reasoning capacity
to determine the correct relevance category 𝑟 ∈ ℛ and
execute the inverse mapping 𝜑̃

−1
.

To generate these scores, the following context is defined
in the model’s prompt:

" You are an objective assistant in a freelancer-job match-
ing platform. Given a job description and several freelancer
profiles, evaluate each freelancer’s suitability for the job. Pro-
vide a concise reasoning and a score between 0 and 1 for each
freelancer. "

Within this context, the model is instructed to return both
a score and a reasoning justification which has been shown
to provide better results for complex tasks [41]. Both the
job description and the freelancer profile are provided in
plain text, with each section clearly delineated by specific
indicators (e.g., "skills:", "description", etc.). By providing
these information, the aim for the model is to generate a
score that is aligned with the context and independent of
user behavior artifacts, such as :

𝑀teacher(𝑥𝑝, 𝑥𝑓 ) = 𝑠𝑡𝑓,𝑝 ∈ [0, 1]. (3)

To ensure semantic calibration, the prompt also contains
a predefined matching interpretation set ℛ, aligning each
score with a relevance category :

Listing 1: Reference list within the teacher model’s prompt

0.0: No relevant skills or experience. Completely unable to
perform the job.

0.2: Minor relevance. Few matching skills or limited experience.
High chance they will be unable to perform the job.

0.4: Moderate match. Some relevant skills or experience. Would
probably not be able to do the job.

0.6: Good match. Mostly relevant skills and experience. Can
perform with some ramp−up.

0.8: Strong match. Highly relevant skills and experience. Ready
to perform well.

1.0: Perfect match. Skills and experience fully aligned with job
needs. Expert on the topic.

By inserting this predefined mapping directly into the
prompt design, the LLM is able to select a score that best
represents the skill-fit between the freelancer and the job,
according to the defined semantic categories.

To promote better instruction understanding and score
consistency, the LLM is prompted with twelve freelancer
profiles per project, with at least one "unsuitable" and one
"perfect". While each candidate is scored independently,
batching them in the same prompt encourages the model to
improve the score quality, without compromising semantic
interpretability.



Figure 2: Illustration of the proposed brief encoder branch
(top) and profile encoder branch (bottom). Similar sections
across freelancer profiles are first projected into a latent space
(shown in the first three blocks). Positional encodings are then
added, and the resulting embeddings are combined with learned
section-type embeddings to retain structural information. These
enriched vectors are finally passed through a linear layer.

While this approach allows to obtain the expected seman-
tically calibrated relevancy score, it remains computation-
ally and environmentally expensive for large-scale inference.
To overcome such limitations, a lightweight student model
can be designed to approximate the LLM’s output, as de-
tailed in the following sections.

3.2. Light relevance scoring architecture
To retain the semantic abilities of the teacher model within a
more compact one, the proposed architecture for the student
model, 𝑀student, illustrated in Figure 1, is composed of two
main components:

1. Document Encoders: One encoder branch for each
document type (i.e., project briefs and freelancer
profiles), as shown in Figure 2.

2. Comparison Block: An attention-based compari-
son module, detailed in Figure 3.

The following sections describe each of these components
in detail.

3.2.1. Leveraging Pre-trained Multilingual Sentence
Encoder — Document Encoders

To encode documents, we build upon our previous work on
retrieval models [21] within the same project-freelancer
matching setting. Each document 𝑥𝑑 (either a brief
or a profile) is encoded independently by processing
its structured textual sections 𝑠𝑑,𝑙 using a pre-trained
multilingual sentence encoder and a categorical encoding.
This process is illustrated in Figure 2.

Unlike our previous token-level model, each section 𝑠𝑑,𝑙
is segmented into minimal textual units that are referred to
as utterances

𝑠𝑑,𝑙 = {𝑢𝑑,𝑙,𝑖 | 𝑖 = 1 · · ·𝑛𝑑,𝑙}.

This strategy aligns with the intended use of sentence-BERT
models [13] and the short length of utterances simplifies
encoding, enabling the use of smaller backbones.

Utterances are defined differently depending on the sec-
tion type:

• For paragraph-based sections (e.g., descriptions), ut-
terances correspond to individual sentences.

• For tag-based sections, each tag is treated as a sepa-
rate utterance.

• Titles are encoded as single-utterance sequences.

Each utterance 𝑢𝑑,𝑙,𝑖 is processed by the pre-trained sen-
tence encoder backbone and enriched with a learned cate-
gorical encoding 𝑒categorical𝑙 specific to section type 𝑙. The
resulting vector is passed through a linear layer:

𝑒𝑑,𝑙,𝑖 = 𝑊𝑑 ·
(︀
Backbone(𝑢𝑑,𝑙,𝑖) + 𝑒categorical𝑙

)︀
+ 𝑏𝑑. (4)

This categorical encoding helps preserve structural informa-
tion. While the sentence encoder backbone remains frozen,
both the categorical encoding and the projection layer are
trained, effectively adapting the general-purpose encoder
to our domain-specific skill matching task.

Thus, each document (𝑥𝑝 or 𝑥𝑓 ), is ultimately represented
by a sequence of utterance embeddings:

𝐸𝑓 = {𝑒𝑓,𝑖 | 𝑖 = 1 · · ·
∑︁
𝑙∈𝐿𝑓

𝑛𝑓,𝑙},

𝐸𝑝 = {𝑒𝑝,𝑖 | 𝑖 = 1 · · ·
∑︁
𝑙∈𝐿𝑝

𝑛𝑝,𝑙},
(5)

where 𝑛𝑓,𝑙 and 𝑛𝑝,𝑙 denote the number of utterances per
section and document.

This utterance-based encoding strategy significantly re-
duces the computational cost of processing long documents.
Since most of the computational burden lies in encoding,
the backbone’s utterance embeddings can be pre-computed
and cached to accelerate training. In production, 𝐸𝑓 can be
computed and stored in advance, leaving only the project’s
utterances to be encoded at inference time, along with the
final comparison block, presented in the next section.

3.2.2. From Two Sequences of Embeddings to a
Similarity Distribution — Comparison Block

Inspired by the late interaction mechanism [24], similarities
between the obtained embedding sequences are computed to
compare briefs and profiles. However, instead of computing
only the maximum similarity per brief embedding across
profile embeddings, a two-step approach that better models
mutual interest is adopted. Indeed, we hypothesize that this
process can capture more complex interactions (illustrated
in Figure 3).

First, context-aware embeddings 𝐸context𝑓 and 𝐸context𝑝

are derived using cross-attention. Then, similarity distri-
butions 𝒮𝑝,𝑓 and 𝒮𝑓,𝑝 are computed between the original
embeddings and their respective context vectors.

To compute 𝐸context𝑓 , multi-head attention from the brief
to the profile embeddings is applied:

MultiHead(𝐸𝑝, 𝐸𝑓 , 𝐸𝑓 ) = head1 ‖ · · · ‖ head𝑘

= 𝐸context𝑓 ,
(6)

where each attention head is defined as:

head𝑖 = softmax

(︃
𝐸𝑝𝑊

𝑄
𝑖 (𝐸𝑓𝑊

𝐾
𝑖 )⊤√

𝑑

)︃
𝐸𝑓𝑊

𝑉
𝑖 . (7)

This results in a new sequence 𝐸context𝑓 of the same
length as 𝐸𝑝, where each embedding 𝑒context𝑓,𝑖 reflects



Figure 3: Overview of the proposed comparison architecture. The first two blocks (“Profiles to Brief” and “Brief to Profiles”) depict
the multi-head cross-attention mechanism. The following stages show the computation of cosine similarity distributions, statistical
pooling into fixed-size features, and final concatenation before scoring via an MLP.

the best-matching combination of profile content for the
corresponding brief utterance 𝑒𝑝,𝑖.

To assess how well this profile context aligns with the
original brief, their pairwise cosine similarities are com-
puted:

𝒮𝑝,𝑓 =

⎧⎨⎩sim(𝑒𝑝,𝑖, 𝑒context𝑓,𝑖 )

⃒⃒⃒⃒
⃒⃒ 𝑖 = 1 · · ·

∑︁
𝑙∈𝐿𝑝

𝑛𝑝,𝑙

⎫⎬⎭ . (8)

This results in a similarity distribution with one score per
brief utterance.

Symmetrically, the process is reversed to account for mu-
tual interest. First, the profile is attended to the brief :

MultiHead(𝐸𝑓 , 𝐸𝑝, 𝐸𝑝) = 𝐸context𝑝 , (9)

then the corresponding similarity distribution is computed:

𝒮𝑓,𝑝 =

⎧⎨⎩sim(𝑒𝑓,𝑖, 𝑒context𝑝,𝑖 )

⃒⃒⃒⃒
⃒⃒ 𝑖 = 1 · · ·

∑︁
𝑙∈𝐿𝑓

𝑛𝑓,𝑙

⎫⎬⎭ . (10)

These distributions, 𝒮𝑝,𝑓 and 𝒮𝑓,𝑝, provide a detailed
view of skill alignment: how well a profile matches the most
relevant parts of a brief, and vice versa. They form the basis
for the final scoring step, described in the following section.

3.2.3. Distribution pooling and scoring

Since the similarity distributions 𝒮𝑝,𝑓 and 𝒮𝑓,𝑝 vary in
length,

∑︀
𝑙∈𝐿𝑝

𝑛𝑝,𝑙 and
∑︀

𝑙∈𝐿𝑓
𝑛𝑓,𝑙 respectively, the origi-

nal late interaction mechanism aggregates them using only
a sum over brief-wise similarities to produce a score.

Instead, more expressive statistical pooling operations
are computed over both distributions to produce fixed-size
feature vectors more suitable for scoring. Specifically, we ex-
tract descriptive statistics from both 𝒮𝑝,𝑓 and 𝒮𝑓,𝑝, defined
as

desc(𝒮) =
[︀
min(𝒮),max(𝒮), 𝜇(𝒮), 𝜎(𝒮), 𝛾1(𝒮), 𝛾2(𝒮)

]︀
,

where 𝜇 denotes the mean, 𝜎 the standard deviation, 𝛾1
the skewness, and 𝛾2 the kurtosis (see Appendix A). These
richer features are hypothesized to better capture the
interaction dynamics between the documents’ utterances.

Finally, these descriptive statistics are concatenated with
the averaged pooled embeddings from the two branches,

𝐸𝑝 and 𝐸𝑓 , as well as the averaged context embeddings
𝐸context𝑓 and 𝐸context𝑝, forming the input to a multi-layer
perceptron (MLP):

MLP

(︃
desc(𝒮𝑝,𝑓 ) ‖𝐸𝑝 ‖𝐸context𝑓

‖ desc(𝒮𝑓,𝑝) ‖𝐸𝑓 ‖𝐸context𝑝

)︃
= 𝑠𝑠𝑝,𝑓 . (11)

Adding the averaged pooled embeddings enriches the
similarity distributions with contextual information from
the documents.

Only the projection layers of the branches, the two multi-
head attention modules, and the MLP require training.
These components are trained to approximate the semanti-
cally calibrated scores produced by the LLM teacher model
via distillation, as described in the next section.

3.3. Training objective
It is often possible to derive a binary relevance label from
historical interaction data. We denote this indicator function
as:

𝛿𝑝,𝑓 =

{︃
1 if freelancer 𝑓 is relevant to project 𝑝,
0 otherwise.

Let I be the set of all project–freelancer pairs for which such
a label is available:

I = {(𝑝, 𝑓) ∈ P× F | ∃!𝛿𝑝,𝑓},

and let 𝐼 ⊂ I be the subset used for training.

When using these historical relevance labels, a standard
approach is to frame the problem as binary classification.
Hence, a model 𝑀𝜃(𝑝, 𝑓) can be trained using common
classification losses such as Binary Cross-Entropy, Focal
Loss, or Asymmetric Loss [42]. This setting has been
extensively used in recommender systems and information
retrieval tasks [43, 44].

In contrast, ranking distillation considers supervision
from a teacher model that outputs continuous-valued scores
rather than binary labels. One straightforward approach is
to treat the teacher’s score (cf. eq.3) as a regression target for
the student model score, (cf. eq. 11), which can be optimized
using a mean squared error (MSE) objective:

ℒMSE(𝐼) =
1

|𝐼|
∑︁

(𝑝,𝑓)∈𝐼

(︀
𝑠𝑡𝑝,𝑓 − 𝑠𝑠𝑝,𝑓

)︀2
. (12)



To validate the use of teacher model scores as ground
truth, we compared relevancy metrics across three settings:
the teacher model, the student model trained on histori-
cal data, and the same student further trained on teacher-
generated scores.

Table 1
Evaluation of different models on historical relevance labels.
"Ours (Historical labels)" is trained with ASL [42] on binary labels;
"Ours (Gemini scores)" is trained with MSE on the teacher scores.
Re. = Recall, Spe. = Specificity, R–P = R-Precision, R̄-𝒪 = Non
relevant - false omission rate, see section 4.4 for metric details.

Model Training
Data

Re. Spe. R-P R̄-𝒪

Gemini ~ 0.913 0.287 0.734 0.216

Ours Historical
Labels

0.984 0.058 0.811 0.413

Ours Gemini
Scores

0.912 0.208 0.808 0.401

As shown in Table 1, knowledge distillation from
Gemini-2.0-flash (cf. section 4 for details) improves the
model’s ability to reject non-relevant candidates compared
to training on historical binary labels. While this comes
with a slight decrease in recall, the ranking quality remains
comparable, suggesting that supervision via soft scores
enhances discriminative capacity without sacrificing
relevance. Furthermore, a qualitative evaluation, based on
expert curation, supported the relevance and consistency of
the generated scores. Overall, this setup provides access to
finer-grained signals, such as ranking quality and model
interpretability, that are not directly measurable from
historical binary labels alone.

However, the MSE formulation treats each (𝑝, 𝑓) pair
independently, ignoring the relative ordering between can-
didates, which is central to ranking tasks. This point-wise
distillation approach may therefore be suboptimal for rank-
ing supervision [44]. In the following sections, we explore
alternative pair-wise and list-wise objectives that better
align with the ranking nature of the problem.

3.3.1. Pair-wise Distillation

To overcome the limitations of treating interactions inde-
pendently, the relative ordering between two freelancers 𝑓
and 𝑓 ′ competing for the same project 𝑝 can be distilled.
Specifically, the score difference given by the teacher model:

∆𝑡
𝑝,𝑓,𝑓 ′ = 𝑠𝑡𝑝,𝑓 − 𝑠𝑡𝑝,𝑓 ′ ,

is used to train the student model to replicate this margin:

∆𝑠
𝑝,𝑓,𝑓 ′ = 𝑠𝑠𝑝,𝑓 − 𝑠𝑠𝑝,𝑓 ′ .

This approach can be implemented using the Margin MSE
loss [35], which compares the predicted differences between
relevant and non-relevant candidates:

ℒmargin_mse(𝐼) =
1

𝑛

∑︁
(𝑝,𝑓)∈𝐼
𝛿𝑝,𝑓=1

∑︁
(𝑝′,𝑓 ′)∈𝐼
𝛿𝑝′,𝑓′=0

𝑝=𝑝′

(︀
∆𝑡

𝑝,𝑓,𝑓 ′ −∆𝑠
𝑝,𝑓,𝑓 ′

)︀2

=
1

𝑛

∑︁
(𝑝,𝑓)∈𝐼

(𝑝,𝑓 ′)∈𝐼

1[𝑓≻𝑝𝑓 ′]
(︀
∆𝑡

𝑝,𝑓,𝑓 ′ −∆𝑠
𝑝,𝑓,𝑓 ′

)︀2
.

(13)

In the later, the indicator function ensures that only pairs
where 𝑓 is relevant and 𝑓 ′ is not (for the same project) are
included, and n is the number of such pairs. This formula-
tion encourages the student model to preserve the relative
ordering 𝑓 ≻ 𝑓 ′ induced by the ground truth.

An extension [34] was proposed relaxing the dependency
on ground-truth labels by computing pairwise differences
over all possible interactions (𝑝, 𝑓), (𝑝, 𝑓 ′) for the same
project:

ℒmargin_mse(𝐼) =
1

𝑛

∑︁
(𝑝,𝑓)∈𝐼

(𝑝,𝑓 ′)∈𝐼

(︀
∆𝑡

𝑝,𝑓,𝑓 ′ −∆𝑠
𝑝,𝑓,𝑓 ′

)︀2
. (14)

This loss encourages the student model to preserve both
the ordering and the magnitude differences between the
teacher’s predictions. However, it does not enforce align-
ment of the absolute score values themselves.

To address this, we propose coupling the margin-based
objective with a pointwise MSE regression loss (Eq. 12) com-
puted on the teacher’s scores. This yields our combined
loss:

ℒCMMD(𝐼) = ℒmargin_mse(𝐼) + ℒMSE(𝐼), (15)

which we refer to as the Calibrated Margin MSE Distillation
(CMMD) loss. Empirically, this combination yields improved
performance by aligning both relative and absolute seman-
tics of the teacher’s signal

3.3.2. List-wise Distillation

Another training strategy employs a more natural list-
wise objective. List-wise losses are well-aligned with
ranking problems which aim to order a set of candidates
for a given project. Early methods such as ListNet [45]
and ListMLE [46] can be adapted for distillation by us-
ing teacher scores to construct ground-truth permutations.
More recently, the Calibrated List-Wise Distillation (CLID),
method [40] was introduced to facilitate calibated distilla-
tion using a list-wise approach.

In the CLID framework, the scores from both teacher and
student models are normalized across the candidate set 𝐼
(i.e. all freelancer profiles associated with a given project 𝑝):

𝑠̂𝑡𝑝,𝑓 =
𝑠𝑡𝑝,𝑓∑︀

(𝑝,𝑓 ′)∈𝐼 𝑠
𝑡
𝑝,𝑓 ′

and 𝑠̂𝑠𝑝,𝑓 =
𝑠𝑠𝑝,𝑓∑︀

(𝑝,𝑓 ′)∈𝐼 𝑠
𝑠
𝑝,𝑓 ′

.

A cross-entropy loss is then applied to align these two score
distributions:

ℒCLID(𝐼) = − 1

|𝐼|
∑︁

(𝑝,𝑓)∈𝐼

𝑠̂𝑡𝑝,𝑓 log
(︀
𝑠̂𝑠𝑝,𝑓

)︀
(16)

CLID can be interpreted as aligning the probabilities of
each freelancer 𝑓 being ranked above all others within the
candidate set 𝐼 . These probabilities are derived from the
normalized scores:

P(𝑓 ≻𝑡
𝑝 {𝑓 ′}) = 𝑠̂𝑡𝑝,𝑓 and P(𝑓 ≻𝑠

𝑝 {𝑓 ′}) = 𝑠̂𝑠𝑝,𝑓 .

Alternative normalization strategies (such as computing
the probability of outranking only lower-scored candidates,
i.e., P(𝑓 ≻𝑝 {𝑓 ′ | 𝑠𝑡𝑝,𝑓 > 𝑠𝑡𝑝,𝑓 ′}), as in ListMLE [46])
proved empirically less effective. In contrast, the original
normalization proposed in [40], which considers the full
candidate set, consistently yielded better performance.



4. Experiment
The following section presents our experiments, which as-
sess the effectiveness of the proposed distillation strategy
and student model architecture in generating semantically
calibrated similarity scores between freelancers and project
briefs suitable for large-scale deployment

4.1. Implementation and baselines
First, we introduce the teacher model used to generate the
semantically calibrated ground-truth scores, before defin-
ing our student’s model settings. Then, we compare our
approach against a state-of-the-art re-ranking model and
a small generative language model. For both baselines, we
present results using publicly available pre-trained check-
points, with and without fine-tuning for our specific use
case.

Teacher model: Gemini 2.0. As a teacher model, we
employed the generative LLM Gemini-2.0-flash, supporting
up to 1M input tokens. It provides structured responses with
reduced latency, balancing performance and computational
efficiency compared to Gemini-1.5 and Gemini-2.0-pro. Ad-
ditionally, Gemini-2.0-flash offers multilingual capabilities.

Student model: our model. We use the multilingual
Arctic Embed [23] (extra-small variant1) as a shared encoder
backbone in both branches. This lightweight model was
chosen to efficiently handle short utterances with minimal
performance tradeoff. Each branch includes a linear pro-
jection to a 32-dimensional latent space. The comparison
block consists of a single 8-head multi-head attention layer.
The MLP has layers of size 256, 128, 256, and 1, with GELU
activations, 0.4 dropout, and no activation in the final layer
(which empirically aids distillation). The architecture totals
45M parameters, with only 135K trainable.

Reranking baseline: Qwen3. As a strong re-ranking
baseline, we evaluate Qwen3 [25], using the pre-trained
Qwen3-0.6B checkpoint2. This model has 596 million pa-
rameters and supports inputs up to 32K tokens. We chose it
due to its strong multilingual capabilities and its state-of-the-
art performance on various re-ranking tasks. This makes it
well suited for document-level semantic comparison.

Small generative baseline: Gemma3. We include the
1B-parameter Gemma3 model [47]3 in our evaluation.
Gemma is a smaller and open-source generative LLM. Its
support for multilingual inputs and long contexts (up to
128K tokens) makes it a practical and accessible alternative
for approximating Gemini-style supervision and annotation
quality.

4.2. Dataset
Our corpus includes project briefs created between January
1, 2023 and April 15, 2024, along with historical versions of
freelancer profiles that either applied or were rejected due
to lacking skills. Profile representations are recomputed to
reflect their state at the time of interaction.

1https://huggingface.co/Snowflake/snowflake-arctic-embed-xs
2https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
3https://huggingface.co/google/gemma-3-1b-it

For evaluation, we reserve projects from January 1 to
May 1, 2024, yielding a test set of 85K interactions between
8K projects and 78K profile versions. The training set
contains 585K interactions across 55K projects and 520K
profile versions.

To mitigate presentation bias from training solely on
historical interactions, we augment the dataset with
two types of negative examples. For average matches,
additional freelancers are scored with Gemini 2.0 and those
with a score between 0.4 and 0.6 are retained, adding
265K interactions involving 256K additional profiles. For
unsuitable matches, profiles not having any job category in
common with the project are randomly sampled at batch
time.

All supervision signals, both for training and evaluation,
are derived from Gemini 2.0, as described in Section 3.1.
These scores are used as ground-truth relevance labels in
our experiments.

4.3. Training Settings
Our Architecture. We train our architecture using three
supervision strategies: point-wise, pair-wise, and list-wise.
For clarity, we report only the best-performing objective for
each.

Point-wise training uses the standard mean squared er-
ror loss (MSE), as defined in Eq. 12, denoted ℒMSE.

Pair-wise training employs our combined margin-based
distillation loss ℒCMMD (Eq. 15), which outperforms previous
formulations (Eq. 13, Eq. 14).

List-wise training uses a combination of calibration dis-
tillation loss (Eq. 16) and ℒMSE, mentioned as ℒCLID

+MSE
in the

results section.
Point-wise batches were sampled independently. For pair-

wise and list-wise, batches included one freelancer per dis-
crete teacher score (e.g., 0.0, 0.2, . . . ) per project, plus two
synthetic unsuitable profiles. Models were trained for 50
epochs with batches of 64 projects ( 320 profiles). The frozen
encoder allowed precomputing embeddings, reducing train-
ing time to 10 hours on an NVIDIA RTX A1000. Learning
rate followed linear decay starting at 0.001:

Qwen3 and Gemma3. Both were fine-tuned using ℒMSE

on 5,000 interactions for 10 epochs. Gemma3 was also
trained with next-token prediction to match Gemini 2.0’s
format. We used parameter-efficient quantized fine-tuning
(e.g., QLoRA [48] with 4 bits quantization, paged AdamW
8-bit as optimizer, bf16 floating point format) to reduce com-
pute. Training took 1 day for Gemma3 and 0.5 day for
Qwen3 on a Tesla T4 GPU.

Qwen3 was used in a standard BERT-style cross-encoder
setup, where the brief and profile were concatenated
before being fed into the model. Gemma3 followed the
Gemini distillation format, encoding the (freelancer,
project) context and criteria set. Profiles were truncated
to 2,000 tokens to fit memory, prioritizing recent relevant
experience.

https://huggingface.co/Snowflake/snowflake-arctic-embed-xs
https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
https://huggingface.co/google/gemma-3-1b-it


4.4. Evaluation Metrics
To evaluate model performances, three categories of metrics
are used: (i) relevancy metrics that evaluate the models’ abil-
ity to discriminate between relevant and non-relevant can-
didates; (ii) ranking metrics, that assess the correctness of
candidate ordering; and (iii) calibration metrics that evaluate
how well the predicted scores aligns with the ground-truth,
indicating calibration quality.

Relevancy metrics. We define a freelancer as relevant
if 𝑠𝑡 > 0.5, and non-relevant otherwise. Based on this
definition, we compute:

• Recall (Rec.), measuring the proportion of relevant
freelancers correctly identified.

• Specificity (Spec.), assessing the ability to correctly
reject non-relevant freelancers.

• R-Precision (𝑅-𝑃 ), which is the precision at 𝑘 per
project, with 𝑘 the number of relevant freelancers.

• Non-Relevant False Omission Rate (𝑅̄-𝒪), an
inverse analogue of 𝑅-𝑃 that captures how many
of the bottom-ranked freelancers are non-relevant.

• Mean Average Precision (mAP), a standard metric
assessing relevancy across ranks.

Ranking metrics. To evaluate the quality of the ranking
itself (independent of relevance thresholds), we report:

• Mean Reciprocal Rank (MRR), which considers
the position of the first relevant freelancer.

• Normalized Discounted Cumulative Gain
(NDCG), which accounts for the order of all
relevant items, assigning higher importance to
those ranked higher.

Calibration metrics. Assuming the teacher model (Gem-
ini 2.0) provides semantically calibrated scores, we assess
how well the predicted score distributions fit the teacher’s.
We measure the distance between the predicted and target
score distributions using:

• Mean Absolute Error (MAE),
• Difference in Means (∆mean),
• Difference in Interquartile Ranges (∆IQR),
• Wasserstein Distance, measuring the minimal cost

of transforming the predicted distribution into the
ground-truth one.

Unlike the other metrics, which are normalized between
0 and 1 (with higher being better), lower values indicate
better performance for these calibration metrics.

4.5. Results
Table 2 presents evaluation results on the test set (Sec-
tion 4.2), using the metrics from Section 4.4. It compares all
models from Section 4.1, in both zero-shot and fine-tuned
settings, as described in Section 4.3.

Figure 4 complements the evaluation with two plots per
model: a box plot (left) showing prediction errors across
ground-truth scores, and a kernel density estimates (right)
of the joint distribution between predicted and true scores.
Each row corresponds to a different model.
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Figure 4: Box plots of prediction errors grouped by discrete
ground-truth scores (left) and joint distribution between ground-
truth scores and model predictions (right) for each method.

In terms of relevance evaluation, we observe a trade-off
between discarding non-relevant candidates and preserving
relevant ones. Qwen3 performs well in zero-shot, particu-
larly on specificity and R-Precision (R-P), but fine-tuning
appears to harm its generalization. In contrast, regression-
based fine-tuning significantly boosts Gemma3’s perfor-
mance, especially in recall, R-P, and 𝑅̄-𝒪. Our model is
competitive, being second on key relevance metrics and
performing well in specificity.

Looking at ranking metrics such as mean average preci-
sion (mAP), mean reciprocal rank (MRR), and normalized
discounted cumulative gain (NDCG), our method achieves
consistently strong performance. When trained withℒCMMD,
it consistently achieves top performance across all metrics.
Gemma3 slightly outperforms on NDCG (0.975 vs. 0.973),
while our model with CLID loss is a close second in overall



Table 2
Evaluation results on the test set, including inference time. Best results per metric are in bold and second best underlined.

Model
(size)

Inf.
(𝑡@1𝑘)

Loss Relevancy (𝑠𝑡>0.5) Ranking Calibration (distances)

Rec. Spec. R-P R̄-𝒪 mAP MRR NDCG MAE Δ𝑚𝑒𝑎𝑛 Δ𝐼𝑄𝑅 𝑊1

Qwen
(0.6B)

7.06m
~ 0.774 0.717 0.942 0.552 0.567 0.610 0.973 0.291 0.007 0.517 0.224
ℒMSE 0.947 0.214 0.927 0.456 0.572 0.614 0.970 0.145 0.024 0.071 0.069

Gemma
(1B) 13.3m

~ 0.456 0.550 0.894 0.296 0.392 0.428 0.948 5.876 5.875 2.800 5.876
ℒCE 0.862 0.487 0.917 0.450 0.425 0.438 0.958 0.184 0.043 0.000 0.113
ℒMSE 0.997 0.072 0.942 0.557 0.593 0.635 0.975 0.141 0.024 0.169 0.128

Ours
(45M)

287ms
ℒMSE 0.897 0.383 0.926 0.488 0.578 0.622 0.969 0.151 0.074 0.061 0.087
ℒCMMD 0.949 0.271 0.931 0.517 0.631 0.675 0.973 0.131 0.004 0.034 0.057
ℒCLID

+MSE
0.902 0.405 0.929 0.506 0.627 0.672 0.972 0.140 0.051 0.032 0.068

ranking quality.
Calibration analysis based on Figure 4 reveals that Qwen3

often produces extreme scores (close to 0 or 1), suggest-
ing poor calibration despite good binary discrimination.
Fine-tuning helps mitigate this but does not fully resolve
the issue. Gemma3 in zero-shot generates a wide range of
hallucinated scores, which are corrected with fine-tuning.
However, next-token tuning introduces discretization that
appears misaligned with Gemini 2.0’s scoring, and regres-
sion reduces the expressiveness of the scores. Overall on
this aspect, Our method provides the best alignment with
Gemini 2.0 scores, both visually and based on evaluation
metrics.

In terms of efficiency, our model is highly scalable,
processing 1,000 profile-brief pairs in under one minute,
or just 287 milliseconds when using precomputed profile
embeddings. In comparison, Qwen3 requires 7 minutes and
Gemma3 about 13 minutes. This substantial speed advan-
tage makes our approach more practical for real-time or
large-scale deployments, including CPU-only environments.

To assess potential bias, we conducted a simple gender-
based fairness analysis. The test set was split by gender
declared by freelancers when creating their profiles, and
recall was computed for each gender group. The difference
in recall between women and men was 0.005 using historical
labels and 0.010 using Gemini 2.0 scores, suggesting our
model does not discriminate relevant freelancers based
on their gender. We acknowledge this is a preliminary
assessment and that a deeper fairness analysis [49] would
be beneficial.

Lastly, our model demonstrates good robustness to out-of-
distribution samples (Appendix C), while retaining semantic
alignment from the frozen backbone (Appendix B). However,
performance on synthetic average-match cases indicates
room for improvement, particularly in distinguishing non-
relevant profiles.

5. Conclusion
This paper presents a lightweight model for long-context
multilingual reranking of project–freelancer pairs, leverag-
ing a distillation framework to produce semantically cali-
brated and interpretable scores. Our two-step architecture,
comprising two encoding branch followed by a comparison
block, outperforms both zero-shot and fine-tuned baselines
on relevance, ranking, and calibration metrics, demonstrat-

ing its effectiveness for skill relevance assessment. Fur-
thermore, the proposed utterance-based encoding strategy
significantly reduces computational complexity, enabling
efficient processing of long documents. The ability to pre-
compute freelancer profile embeddings further supports
low-latency inference, making the model well-suited for
real-time deployment in production environments.

Future work will focus on refining key components of
the distillation framework. In particular, careful attention
should be paid to the construction of training and evalua-
tion datasets. A dedicated test set derived from historical
data with high-quality labels is essential to better evaluate
calibration and interpretability. This may require debiasing
the data and conducting a label annotation campaign to
introduce finer-grained, calibrated labels.

In addition, deeper analysis of potential biases, especially
under production conditions, is essential. We also plan to
extend the comparison of the teacher’s scores with expert
judgments to better assess its own calibration. Since our
supervision relies on synthetic labels, we must remain cau-
tious about inherited biases and explore strategies to moni-
tor and mitigate them. Long-term robustness will require
handling potential drift of the teacher model, for example
through periodic re-calibration or self-distillation. Finally,
future research should investigate how this model can be in-
tegrated into downstream systems, for example as a feature
within existing ranking algorithms or as a tool to improve
transparency and interpretability in user-facing applications.
Indeed, an important next step will be controlled online ex-
periments to assess business impact.

Declaration on Generative AI
During the preparation of this work, the authors used chat-
GPT 3.5 and Gemini-2.5-flash for grammar and spelling
check. After using these tools, the authors reviewed and
edited the content as needed and take full responsibility for
the publication’s content.
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Table 3
Model performance across brief languages. Red denotes the worst value; Green highlights the best.

Brief
Language Support Relevancy (𝑠𝑡>0.5) Ranking Calibration (distances)

Rec. Spec. R-P R̄-𝒪 mAP MRR NDCG MAE Δ𝑚𝑒𝑎𝑛 Δ𝐼𝑄𝑅 𝑊1

French 6277 0.951 0.264 0.936 0.513 0.632 0.677 0.974 0.129 0.005 0.033 0.056
English 770 0.928 0.315 0.890 0.543 0.610 0.644 0.962 0.146 0.003 0.045 0.068
Spanish 605 0.950 0.297 0.924 0.503 0.668 0.705 0.974 0.136 0.003 0.044 0.063
German 357 0.959 0.171 0.932 0.552 0.583 0.627 0.971 0.126 0.022 0.054 0.063
Dutch 30 0.925 0.421 0.946 0.513 0.690 0.690 0.976 0.130 0.023 0.047 0.056

Table 4
Impact of out-of-distribution examples on model robustness. The test set is enriched with synthetic average or unsuitable
matches. Red highlights show degraded performance, green indicates improvement or consistency.

Test data Relevancy (𝑠𝑡>0.5) Ranking Calibration (distances)

Rec. Spec. R-P R̄-𝒪 mAP MRR NDCG MAE Δ𝑚𝑒𝑎𝑛 Δ𝐼𝑄𝑅 𝑊1

historical interactions ♠ 0.949 0.271 0.931 0.517 0.631 0.675 0.973 0.131 0.004 0.034 0.057
♠ + average 0.885 0.363 0.790 0.529 0.548 0.604 0.963 0.132 0.026 0.026 0.069
♠ + unsuitable 0.949 0.861 0.886 0.938 0.624 0.669 0.957 0.103 0.033 0.096 0.063

A. Statistics description of
utterances interactions

Due to the varying length of the similarity distributions
𝒮𝑝,𝑓 and 𝒮𝑓,𝑝, we extract a set of descriptive statistics from
each distribution, in order to get fixed size features more
suitable for scoring. These descriptive statistics are defined
as the following for 𝒮𝑝,𝑓 :

desc(𝒮𝑝,𝑓 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝜌∈𝒮𝑝,𝑓

(𝜌) Minimum

max
𝜌∈𝒮𝑝,𝑓

(𝜌) Maximum

𝒮𝑝,𝑓 =
∑︁

𝜌∈𝒮𝑝,𝑓

𝜌

|𝒮𝑝,𝑓 |
Mean

𝜎𝑝,𝑓 =

⎯⎸⎸⎷ ∑︁
𝜌∈𝒮𝑝,𝑓

(𝜌− 𝒮𝑝,𝑓 )2

|𝒮𝑝,𝑓 |
Standard
deviation

1

|𝒮𝑝,𝑓 |

∑︁
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)︃4

Kurtosis

(17)
The same statistics are computed based on 𝒮𝑓,𝑝 to obtain
desc(𝒮𝑓,𝑝).

B. Robustness: Impact of Brief
Language

Table 3 reports the performance of our model (Section 3.2),
trained with the ℒCMMD loss (Eq. 15) and evaluated using
the metrics from Section 4.4, on test set splits by brief
language. Rows are ordered by language frequency. This
analysis assesses the model’s multilingual robustness,
despite relying solely on a multilingual backbone without
additional language-specific training.

French, being the most represented language, yields
“average” performance across most metrics. This confirms
that the model does not overfit to the dominant language in

a way that degrades generalisation.

Interestingly, Dutch achieves the strongest results across
most metrics, despite having the smallest support. This can
be explained by the recent introduction of Dutch on the
platform, which involved more manual curation, human
refinement, and assisted onboarding. We hypothetize that
These factors have led to cleaner training signals.

German shows excellent recall but poor specificity
and ranking metrics, suggesting that the model tends to
overestimate relevance in that language. This may reflect
weaker signal quality or domain mismatch.

English underperforms on multiple fronts, particularly
in calibration and ranking. As English is used in many
different regions and contexts, the briefs likely exhibit
higher lexical and stylistic variability, which may introduce
noise during training.

Overall, the model shows strong generalization across
languages, including underrepresented ones. This high-
lights the robustness of the approach, even in the absence
of multilingual-specific objectives or balancing strategies.
However, performance gaps observed in certain languages,
particularly German and English, suggest that enhancing
the quality of training signals in these languages could fur-
ther improve results.

C. Robustness: Impact of
Out-of-Distribution Samples

Table 4 reports the performance evaluation results for
our proposed model (Section 3.2), trained with the ℒCMMD

loss (Eq. 15) and evaluated using the metrics defined in
Section 4.4. The original test set (first row) is enriched with
out-of-distribution samples: average matches in the second
row, and unsuitable matches in the last row. The synthetic
average and unsuitable samples are constructed using the
same heuristics as those used during training.



The borderline average matches pose a challenge: the
model’s recall and precision (R-P) decrease, indicating
difficulty in confidently labeling them as relevant. However,
specificity and 𝑅̄ − 𝒪 improve, meaning the model
successfully avoids over-recommending these borderline
candidates. This behavior leads to a slightly worse mAP,
likely because some relevant items are misclassified as
irrelevant.

The model remains robust to "unsuitable" matches, with
unchanged recall and significant gains in specificity. Cali-
bration metrics are stable or slightly improved, indicating
good semantic separation. However, NDCG shows a small
drop, suggesting some unsuitable candidates may still rank
above borderline ones, an aspect for further exploration.

In conclusion, the model demonstrates strong robustness
to unknown interactions. It conservatively handles aver-
age cases and reliably down ranks unsuitable ones. This
behavior is desirable in production, where pushing weak
or irrelevant recommendations should be avoided, support-
ing its deployment in real-world scenarios. Nonetheless,
additional investigation is needed to mitigate undesirable
behaviors, such as the misclassification of relevant candi-
dates or the overranking of unsuitable ones.
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