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Abstract
Improving the productivity of knowledge workers is a growing challenge in human-centered computing. This paper presents a
benchmark suite built on the RLKWiC dataset, which captures rich behavioral logs and contextual information from real-world digital
work environments. We define six practical tasks, including context detection, activity classification, and sequential prediction of web
domains, event titles, and applications, designed to reflect realistic productivity support scenarios. We evaluated baseline models that
incorporate event- and session-level behavior, using classification and sequence modeling techniques. The results demonstrate that
modeling fine-grained user interactions yields consistent performance improvements across tasks. The proposed benchmark provides a
reproducible foundation for building recommender systems that proactively support human intent, task continuity, and productivity.
By releasing standardized tasks and code, the benchmark addresses the current lack of reproducible evaluation on RLKWiC. Beyond
methodological contributions, these tasks provide building blocks for HR applications such as workplace analytics, training support,
and well-being monitoring.
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1. Introduction
In recent years, improving the productivity of knowledge
workers (KWs) has become a highly significant issue both
socially and economically [1, 2], particularly in the fields
of human-centered computing and recommender systems.
KWs must access various types of information, and their
productivity is influenced by multiple factors such as the
working environment, the psychological state, and the effi-
ciency of information access [3, 4, 5]. Among these, quick
access to appropriate information and tools is especially
critical [6, 7]. In practice, knowledge work often follows
certain behavioral patterns, making it possible to anticipate
future tasks or required knowledge [8, 9, 10]. More expe-
rienced KWs tend to retrieve information more efficiently,
select tools more accurately, and switch tasks more fluently.
These observations motivate the need for intelligent sys-
tems that can support knowledge work by estimating and
recommending the next relevant action, tool, or information
based on the behavioral history [11, 12, 13].

To build such systems, high-quality datasets that capture
real-world KW behavior are essential. However, publicly
available datasets with rich semantic annotations that re-
flect realistic workflows remain scarce [14]. Among the
few, BEHACOM [15] and RLKWiC (Real-Life Knowledge
Work in Context)1 [14] are notable. Although BEHACOM
primarily records low-level user actions (e.g., keystrokes,
mouse movements), RLKWiC organizes higher-level behav-
ioral structures, contexts, sessions, and events, and includes
semantic metadata such as file references, web pages, and
DBpedia entities2 [16].

Despite its rich structure, RLKWiC lacks well-defined
benchmark tasks and standardized baselines, which limits
its accessibility and broader use in reproducible research.
To address this gap, we define six practical tasks grounded

RecSys in HR’25: The 5th Workshop on Recommender Systems for Human
Resources, in conjunction with the 19th ACM Conference on Recommender
Systems, September 22–26, 2025, Prague, Czech Republic.
∗Corresponding author.
Envelope-Open tachioka.yuki@core.d-itlab.co.jp (Y. Tachioka)
Orcid 0009-0002-0587-2943 (Y. Tachioka)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1https://purl.org/RLKWiC
2https://purl.org/entity-recommendation-on-rlkwic

in RLKWiC’s behavioral and semantic annotations:

1. In-context prediction: Classifying whether a session
is aligned with the current task context

2. Knowledge work activity (KWA) label prediction:
Multi-label classification of the type of knowledge
work

3. Entity relevance estimation: Assessing howDBpedia
entities relate to the user’s session

4. Web domain recommendation: Predicting the next
accessed web domain

5. Event title recommendation: Predicting the next
window or content title

6. Application recommendation: Predicting the next
application to be used

These tasks, ranging from semantic classification to behav-
ioral prediction, are designed to enable intelligent systems
to proactively support user intent and reduce cognitive bur-
den. They reflect real-world productivity support scenarios
and form the basis of a reproducible benchmark for the
RLKWiC dataset.

Although prior work such as BEHACOM [15] and RLK-
WiC [14] has provided valuable behavioral datasets, they
have not established standardized tasks that allow repro-
ducible comparisons between models. Our work fills this
gap by aligning the six benchmark tasks with established re-
search trends in context-aware recommender systems [8, 9]
and productivity support tools [6, 7]. For example, sequen-
tial prediction tasks are directly related to previous studies
on next-domain prediction [17], URL auto-completion, and
entity-based recommendation [16]. This positioning en-
sures that the benchmark tasks are not arbitrary derivations
from RLKWiC, but validated scenarios grounded in existing
literature and practical needs of knowledge work support.

Section 2 provides an overview of the RLKWiC dataset3,
Section 3 defines the six tasks, Section 4 presents the baseline
models, and Section 5 reports experimental results.

Related Work and Positioning. To our knowledge, ex-
isting studies that have explicitly used the RLKWiC dataset

3Details are found in Section A in the appendix.
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are primarily those conducted by its original authors, focus-
ing on data collection [14] and entity recommendation [16].
In the absence of many independent studies on RLKWiC,
we position our benchmark within the broader context of
research on context-aware recommender systems [8, 9] and
productivity support tools [6, 7]. This situates the six bench-
mark tasks not only as natural extensions of RLKWiC’s
annotations, but also as representative of validated needs
in the field of knowledge work support. We believe that by
releasing standardized benchmark tasks and code, our work
will facilitate a wider adoption of RLKWiC, enabling future
studies to build on a common foundation.

Beyond methodological contributions, the proposed tasks
have direct implications for human resource (HR) systems.
For example, in-context prediction could support workplace
analytics tools that detect interruptions and provide feed-
back on focus patterns. The prediction of KWA labels could
enable automated profiling of employees’ work activities to
tailor training or learning support [18, 19]. Assessment of
the relevance of the entity can be integrated into knowledge
management systems to recommend reference materials
that are in line with ongoing tasks [20]. The prediction
of application and event title can be applied to intelligent
launchers or proactive assistants that reduce the cognitive
cost of frequent task switching [21, 22, 23]. These scenar-
ios illustrate how benchmark tasks can serve as building
blocks for HR applications that aim to improve employee
productivity, well-being, and training effectiveness.

2. RLKWiC Database
The RLKWiC dataset captures diverse knowledge-work be-
haviors with rich semantic annotations. RLKWiC employs a
three-layered hierarchical structure to model user behavior:
contexts, sessions, and events. In the highest-level layer, a con-
text refers to a user-defined unit of work, such as “lectures,”
“thesis writing,” or “trip planning.” This explicit manage-
ment allows analysis of context switches and multitasking.
Next, a session represents a coherent block of events within
a context. Each session is labeled as “in-context” or “out-
of-context”. In addition, in-context sessions are annotated
with one or more of the 12 KWA labels. In the lowest-level
layer, an event corresponds to a user interaction. Each event
is associated with the following features.

1. Event (window) title and URL: These are concate-
nated into a single text string (e.g., “Quantum Per-
sonalplanung” and “chat.openai.com”).

2. Active application: The name of the active applica-
tion used in the session (80 applications in total, e.g.,
“default browser”, “Telegram”).

3. Event cause labels: Categorical labels indicating the
trigger for event transitions (17 types in total (Ta-
ble 9)).

3. Benchmark Tasks
This section defines the six benchmark tasks derived from
the RLKWiC dataset. Here, we focus on the design and
formulation of each task, including their inputs and outputs
at the conceptual level. Implementation details such as
feature extraction, embeddings, and model architectures are
provided separately in Section 4.

3.1. In-context Prediction
In real-world work environments, users often experience in-
terruptions and these out-of-context activities can introduce
noise in knowledge work support systems or user behavior
analysis. Therefore, estimating whether an event is in con-
text is a critical task. To address this issue, we formulate a
binary classification task that determines whether a given
session is in context. A session consists of a sequence of
events grouped by a temporal window or by explicit user
operations.

As shown in Table 7, the proportion of events in context
varies between participants in the RLKWiC dataset. For
example, participant p6 shows a particularly low in-context
ratio, indicating frequent out-of-context behavior. Since
tracking start and stop actions were under the participant’s
control, the observed in-context ratio may be overestimated.
Consequently, constructing a robust in-context prediction
model is essential as a foundation for task-aware support
systems. For the in-context prediction task, the input is
a session consisting of a sequence of events, where each
event is associated with three types of feature (title/URL,
cause, application). The session-level representation of this
sequence is then used for classification. The output is a
binary label: 1 if the session is considered in context and 0
otherwise.

For consistency with the KWA label prediction task de-
scribed in Section 3.2, we adopt the same data split strategy
based on a five-fold cross-validation. This ensures that the
evaluation results are comparable between the two classifi-
cation tasks.

3.2. KWA Label Prediction
Each in-context session in the RLKWiC dataset is annotated
with one or more of the 12 KWA labels listed in Table 8.
These labels indicate the type of intellectual work that is
carried out during the session, for example, “Information
search,” “Authoring,” or “Networking.” While the RLKWiC
dataset provides these labels by manually analyzing partici-
pants, such labeling is impractical in real-world applications.
Therefore, in this study, we define a multilabel classification
task to automatically predict which KWA labels apply to a
given in-context session. The task is formulated as a mul-
tilabel classification problem: for each in-context session,
the goal is to predict a binary on/off value for each of the
12 KWA labels. Since a single session may be associated
with multiple labels, a multiclass setting is not suitable, and
a multilabel setting is adopted instead.

There is a strong class imbalance in KWA label distri-
butions: some labels are rare. To address this, we adopt
the following experimental settings and evaluation criteria.
Since KWA labels are assigned only to in-context sessions,
both training and evaluation are limited to these sessions.
To mitigate label imbalance, we partition the data using
5-fold cross-validation such that the label distribution is as
uniform as possible across folds.

The input features for this task are the same as those
described in Section 3.1. The output is a 12-dimensional
binary vector that indicates the on/off status of each KWA
label.



3.3. Relevance Estimation of DBpedia
Entities

In the RLKWiC dataset, each work session is annotated with
relevance labels that indicate how strongly the session is
related to specific DBpedia entities [16]. This annotation
connects the session context to external knowledge bases,
aiming to enhance context understanding and knowledge-
based recommendation. The relevance is expressed using a
three-level label:

• Irrelevant (0): The suggested entity has no meaning-
ful connection to the session context.

• Relevant (1): The entity is somewhat related to the
session, but does not fully represent its context.

• Representative (2): The entity is closely aligned with
the session context and strongly represents the ses-
sion’s main topic.

Bakhshizadeh et al. [16] proposed a method that uses
RDF2Vec to generate knowledge graph embeddings of DB-
pedia entities and match them with user history to estimate
relevance scores. In addition, they introduced an online
learning approach that dynamically updates these scores
based on user feedback. However, the classification perfor-
mance reported in that study remains limited. Specifically,
the F1 score for the binary task of distinguishing Irrelevant
vs Relevant+Representative (0 vs. (1,2)) was 0.686, while that
for Irrelevant+Relevant vs Representative ((0,1) vs. 2) was
0.444. Compared to a random baseline (F1 = 0.5), the latter
result indicates a particularly weak performance in identify-
ing representative entities. In this study, we define the task
as a 3-class classification problem (0 vs. 1 vs. 2). Prelimi-
nary analysis showed that online learning with sequential
updates posed challenges to reliable prediction. Therefore,
we instead adopt a cross-validation setup for performance
evaluation.

The input to the model is the title of the events along
with the candidate DBpedia entities and the output is the
relevance label: 0 (Irrelevant), 1 (Relevant), or 2 (Represen-
tative). All labeled entity-session pairs in the dataset are
included in the evaluation. For consistency and comparabil-
ity with previous work [16], in addition to evaluating the
model as a 3-class classifier, we also report additional binary
classification problems: one for 0 vs. (1,2) and another for
(0,1) vs. 2.

3.4. Sequential Domain Recommendation
Predicting the next web domain that a user will access based
on their behavior history is a key challenge to understand-
ing user intent and providing contextual task support [8, 17].
If we can anticipate the next domain (e.g., google.com,
mail.yahoo.com, qiita.com) a user is likely to visit, it pro-
vides valuable cues for inferring the type of task (e.g., web
search, email checking, document editing) and the under-
lying goal. In this task, we predict the next web domain to
be accessed on the basis of a user’s chronological behavior
log. We focus on domains that appear at least three times
in the dataset, resulting in a total of 376 unique domains as
prediction targets. Practical applications of this task include
automatic URL autocompletion tailored to current tasks,
intent inference in the early stages, and dynamic presen-
tation of bookmarks or search help. The input consists of
a user’s recent sequence of domain-level interactions (i.e.,

accessed domains per event). The output is the next domain
predicted to be accessed.

For each user, the behavioral history is sorted in chrono-
logical order and split into training, validation, and test sets
using a ratio of 0.8:0.1:0.1. For evaluation, we adopt
common ranking metrics such as Hit Rate (Hit@k), Mean
Reciprocal Rank (MRR), and Normalized Discounted Cu-
mulative Gain (NDCG), which are widely used in recom-
mendation tasks to assess top-𝑘 ranked outputs. The data
split method and metrics will also be used consistently in
subsequent recommendation tasks.

3.5. Sequential Event Title Recommendation
Compared to web domains, event (window) titles offer a
more fine-grained signal of user activity, as they often con-
tain explicit information such as search queries, document
titles, or visited page contents. Thus, accurate prediction
of the next event title can enable a more precise inference
of user intent and cognitive state. In this task, we predict
the next event title to appear in a user’s session stream. We
focus on titles that occur at least three times in the RLK-
WiC dataset, resulting in a total of 2,651 unique titles as
prediction candidates. Potential applications of this task
include prediction of the next page or query, automatic dis-
play of related documents, and reminder prompts during
task switching. The input is a chronologically ordered se-
quence of titles from past events, and the output is the title
predicted to occur next.

3.6. Sequential Application
Recommendation

Users frequently switch between multiple applications to
complete their tasks. For instance, a programmer may re-
fer to API documentation in a Web browser while coding,
or a writer may alternate between editing documents and
communicating via chat tools. If such application switches
can be predicted, it becomes possible to proactively assist
users based on their task intent. In this task, we predict
the next application that a user will use, focusing on 64
applications that appear at least three times in the dataset.
The cSpaces application, which is used solely for tracking
purposes, is excluded from the prediction targets. Potential
applications of this task include intelligent shortcut manage-
ment, such as dynamically reordering application launch
icons or suggesting a swap-style launcher, thus reducing
the effort required for application switching. The input is a
chronologically ordered sequence of applications used and
the output is the next application predicted to be launched
or used.

4. Baseline Methods
For each of the benchmark tasks proposed in Section 3, we
construct reasonable and comparable baseline methods. The
implementation of all baseline models and evaluation scripts
will be made publicly available via a GitHub repository4. For
the in-context prediction and KWA label prediction tasks de-
scribed in Sections 3.1 and 3.2, we design Transformer-based
classification models that utilize event-level embeddings, as
detailed in Sections 4.1 and 4.2. For the relevance estimation
of DBpedia entities task discussed in Section 3.3, we propose

4https://github.com/DensoITLab/RLKWiC_benchmark
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Figure 1: Architecture of the event embedding and sequence
classification model.

a model that constructs a contextual representation from the
preceding sequences of events and estimates the relevance
of the entity via similarity with the corresponding entity
vector, as described in Section 4.3.

We used the all-MiniLM-L6-v2 variant of Sentence-BERT
[24] for all embedding steps. When the concatenated title
and URL string exceeded the model’s maximum length, we
truncated the input while retaining the most informative
segments (title and domain). Cosine similarity scores were
assigned to categories 0, 1, or 2 using a pairwise classifica-
tion layer trained on labeled examples, rather than applying
a fixed threshold.

For three types of sequential recommendation tasks com-
posed of domain, event title, and application prediction pre-
sented in Sections 3.4, 3.5, and 3.6, we build datasets con-
forming to the atomic file format used in the RecBole
framework [25], and perform comparative evaluations us-
ing representative sequential recommendation models such
as GRU4Rec, SASRec, and BERT4Rec. More details are pro-
vided in Section 4.4.

4.1. Event Embedding and Sequence
Classification Model

In the RLKWiC dataset, the fundamental unit of user behav-
ior is defined as an event, each of which is associated with
the following attribute information: title/URL, cause label,
and active application. Based on this event-level informa-
tion, we design a Transformer-based session classification
model. The overall architecture is illustrated in Figure 1.
The input consists of three components:

• Title and URL: Concatenated and embedded into a
384-dimensional vector using Sentence-BERT [24]
(specifically, the all-MiniLM-L6-v2 model).

• Cause label and active application: Both are one-
hot encoded and passed through separate fully con-
nected (dense) layers to obtain 16-dimensional dense
vectors.

These components are concatenated to form a unified em-
bedding for each event. The sequence of event embeddings
is then fed into a Transformer Encoder in chronological
order. The final session representation is obtained by av-
eraging the hidden states across all events in the sequence.
At the output layer, the aggregated session representation
is passed through a fully connected layer to perform either:
Binary classification for in-context prediction, or Multi-label
classification for KWA label prediction. This model captures
short-term user intent and interest from event sequences,
integrates them into a session-level representation via the
Transformer, and makes task-specific predictions based on
this session embedding.

Figure 2: Architecture of the simple session-based classification
model.

4.2. Session Embedding and Simple
Classification Model

An alternative approach to event-wise modeling is to treat
an entire session as a single input unit and classify it using
static features. In this section, we introduce a simple session-
based classification model following this principle. The
overall architecture is illustrated in Figure 2. The input to
the model consists of three types of features:

• Title and URL: All title and URL strings within a ses-
sion are concatenated in chronological order and em-
bedded in a 384-dimensional vector using Sentence-
BERT [24].

• Cause labels and application types: Rather than us-
ing one-hot encodings, we adopt a bag-of-words
(BoW) representation that counts the frequency of
each label or application type occurring within the
session. This results in fixed-length vectors that are
independent of the number of events in the session.

These feature vectors (title embedding, cause BoW, and ap-
plication BoW) are concatenated and fed into a fully con-
nected (dense) layer to predict the target label. This simple
feedforward model does not explicitly consider the order
or structure of events but instead relies on aggregated sta-
tistical features at the session level. Although this model
has the advantage of architectural simplicity and efficient
training, its inability to model sequential dependencies may
limit its performance compared to the Transformer-based
event-wise model introduced in Section 4.1, but it may serve
as a practical baseline in settings with limited data or com-
putational resources.

4.3. Event-based Relevance Estimation
Model

In this section, we propose an embedding-based model for
estimating the semantic relevance between a user’s event
history and a candidate DBpedia entity. The overall archi-
tecture is illustrated in Figure 3. Given a pair consisting of
a user’s event history and a DBpedia entity to be evaluated,
the goal is to predict how strongly the entity relates to the
user’s current context (as defined in Section 3.3). The input
to the model is the sequence of events that occurred imme-
diately before the current session. From each event, the title
text is extracted and embedded in a 384-dimensional vec-
tor using Sentence-BERT. The embeddings from multiple
events are then averaged to generate a fixed-length vec-
tor that represents the user’s contextual intent. In parallel,
the abstract associated with the candidate DBpedia entity
is retrieved and embedded using the same Sentence-BERT
model, resulting in an entity representation vector. The
similarity between the user context vector and the entity



Figure 3: Architecture of the relevance estimation model.

vector is then calculated using cosine similarity5. The model
estimates the relevance level based on the similarity score,
assigning one of three labels: 0 (Irrelevant), 1 (Relevant),
or 2 (Representative). The cosine similarity scores are not
mapped to categories by fixed thresholds, but we employ a
supervised pairwise classification layer that takes the simi-
larity between two vectors as input and predicts one of the
three labels. This ensures that the mapping from similarity
values to discrete categories is learned from the annotated
data rather than predefined heuristics.

4.4. Sequential Recommendation Model
For the three sequential recommendation tasks defined in
Sections 3.4 through 3.6, we construct baseline models using
a variety of established sequential recommendation meth-
ods. To support these tasks, we provide scripts that auto-
matically generate datasets in the atomic file format 6

used by the RecBole framework [25], comprising .user,
.item, and .inter files. This setup enables ranking-based
evaluation that utilizes user-level behavioral histories. As
shown in Table 10, we evaluated six representative models
implemented in RecBole in consistent settings for all three
tasks. These models span a diverse range of architectures,
including RNNs, CNNs, Transformers, and attention-based
mechanisms, enabling comparisons of different sequence
modeling strategies 7. This benchmark allows us to quan-
tify the difficulty of behavioral prediction in the context of
knowledge work support, as well as to measure performance
differences across model types. Furthermore, comparing
architectures provides insight into model design choices
and the effectiveness of different feature representations.

5. Results and Discussions

5.1. In-context Prediction Results
Table 1 (event-based model) shows that the event-based
model achieved an average F1 score of 75.8% in a five-fold
cross-validation8, with a good balance between accuracy
and recall. The model also demonstrated stable performance
within the 95% confidence interval. These results suggest
that the model architecture, which sequentially incorporates
event-level information, is effective in predicting whether
a session is in context. This result shows that determin-
ing whether sessions are in context from limited features
remains a non-trivial task.

5Alternatively, a pairwise classification model that directly takes the two
vectors as input and predicts the relevance class can also be considered.

6https://recbole.io/docs/user_guide/data/atomic_files.html
7The details of selected model architectures are shown in Appendix-B.1.
8Further fold-wise results and implementation details are provided in
Appendix-B.2.

Table 1 (session-based model) shows the results of the
session-based model, which produced an average F1 score
of 68.5%, approximately 7 percentage points lower than
that of the event-based model. This performance gap can be
attributed to the session-based model’s inability to explicitly
model the sequential structure of events, relying instead on
aggregated features such as BoW and average embeddings.
Consequently, it may fail to capture dynamic behavioral
changes within a session. Although the event-based model
exhibited superior accuracy, the session-based model was
more efficient in terms of computation. Specifically, the
training and evaluation time per epoch was approximately
3.6 seconds for the session-based model, compared to 25.7
seconds for the event-based model, resulting in a roughly
7x speed-up.

5.2. KWA Label Prediction Results
Table 2 (event-based model) shows that the event-based
model achieved an average F1 score of 55.3%. Considering
that this is a multi-label classification task with 12 classes
and substantial class imbalance, the results suggest that the
model has achieved a reasonable level of accuracy. However,
recall (0.6227) is relatively higher than precision (0.5577) and
Jaccard score (0.4309), suggesting that the model tends to
overpredict some labels, leading to less precise but more
inclusive predictions.

Table 2 (session-based model) shows the results for the
session-based model. In particular, it achieved a slightly
higher average F1 score of 56.1%, and the average recall
reached 79.3%, which is a substantial improvement over the
event-based model. This suggests that the session-based
model is more effective at capturing label co-occurrence
tendencies across the session, possibly due to the use of
BoW representations. As a result, it tends to reduce label
omissions and achieve higher recall.

5.3. Entity Relevance Prediction Results
Table 3 summarizes the performance of the proposed model
in five-fold cross-validation under three classification set-
tings: two binary classification setups and one three-class
classification.

In the first setting, we distinguish irrelevant entities (label
= 0) from the rest (labels = 1 or 2). The model achieved a
high average F1 score of 81.9%. This indicates a strong se-
mantic similarity between the user context derived from the
event history and the knowledge embedding derived from
the entity abstract. These results validate the effectiveness
of sentence transformer-based representations and cosine
similarity scoring.

In the second setting, we isolate representative entities
(label = 2) from the other two categories (labels = 0 and 1).
Here, the model achieved an even higher average F1 score
of 85.9%. This suggests that entities labeled as “Representa-
tive” form semantically distinct clusters in the embedding
space and that the model effectively captures this distinc-
tion. Compared to previous work [16], where this binary
split yielded lower accuracy, our results indicate that identi-
fying “representativeness” can be learned as a meaningful
evaluation metric.

In the more challenging three-class classification setting,
the model still achieved a solid average F1 score of 67.6%.
However, the relatively wide 95% confidence intervals sug-

https://recbole.io/docs/user_guide/data/atomic_files.html


Table 1
Results for in-context prediction (event-based and session-based model).

Model Accuracy Precision Recall F1-Score

event-based model
Mean 0.7872 0.7694 0.7506 0.7576
95% CI [0.7606, 0.8137] [0.7379, 0.8008] [0.7280, 0.7732] [0.7352, 0.7800]

session-based model
Mean 0.7183 0.6894 0.6863 0.6854
95% CI [0.6706, 0.7659] [0.6481, 0.7306] [0.6284, 0.7442] [0.6325, 0.7382]

Table 2
Results for KWA label prediction (event-based and session-based model).

Model Jaccard Score Precision Recall F1-Score

event-based model
Mean 0.4309 0.5577 0.6227 0.5534
95% CI [0.3993, 0.4625] [0.5221, 0.5933] [0.5642, 0.6813] [0.5161, 0.5906]

session-based model
Mean 0.4158 0.5280 0.7925 0.5612
95% CI [0.3394, 0.4922] [0.4250, 0.6310] [0.6566, 0.9284] [0.4900, 0.6324]

gest variability across folds, likely due to contextual ambi-
guity or subjective differences in user annotations.

5.4. Sequential Web Domain
Recommendation Results

Table 4 shows the results of the web domain prediction
task (defined in Section 3.4). We compared six sequen-
tial recommendation models implemented in RecBole. In
general, NextItNet achieved the highest prediction perfor-
mance in most metrics, including Hit@1 (0.1783), MRR, and
NDCG. Furthermore, NARM outperformed all other models
in terms of Hit@5 and NDCG@5, making it another strong
candidate among baselines. In contrast, SASRec, BERT4Rec,
and GRU4Rec demonstrated relatively lower performance.
SASRec achieved a Hit@1 of only 0.0864, indicating poten-
tial limitations in its ability to capture contextual signals
from short-term histories. NextItNet’s architecture, which
employs dilated convolutions to model long-range depen-
dencies efficiently, appears particularly well-suited for this
task. Its ability to explicitly and hierarchically represent
broader contexts suggests the effectiveness of CNN-based
models in domain-level prediction. Similarly, NARM inte-
grates an attention mechanism into a GRU-based sequence
model, allowing it to dynamically combine both short- and
long-term user intent for improved recommendation quality.
However, self-attention-based models, such as SASRec and
BERT4Rec, may be less aligned with the characteristics of
this task. Since web domains are relatively abstract and
categorical compared to concrete item IDs or page titles,
global contextual patterns may be more important than lo-
cal sequential dependencies, potentially explaining their
underperformance in this setting.

5.5. Sequential Event Title
Recommendation Results

Table 5 shows the results for the event title prediction
task (defined in Section 3.5). Among all models, NextItNet
achieved the highest performance, outperforming others in
terms of Hit@1 (0.0808), MRR, and NDCG. These results
suggest that CNN-based architectures, which can efficiently
capture long-range dependencies in sequential data, are
also effective for next-step event-level predictions. SAS-
Rec and NARM were close followers, and SASRec achieved

the best performance in terms of Hit@5, indicating that its
self-attention mechanism is capable of dynamically attend-
ing to contextually important events in the input history.
In contrast, GRU4Rec showed the lowest performance in
all metrics. This result highlights the limitations of sim-
ple RNNs in handling highly diverse and semantically rich
output spaces such as event titles.

5.6. Sequential Application
Recommendation Results

Table 6 shows the results of the application prediction task
(defined in Section 3.6). In this task, all models demon-
strated relatively high performance. NARM, NextItNet, and
GRU4Rec emerged as the top performers. Application pre-
diction likely depends on the short-term context, and NARM
scored the best on all metrics except Hit@1, indicating its
strong effectiveness for this task. NextItNet also consis-
tently ranked high in all metrics. GRU4Rec achieved the best
Hit@1 score (0.6040). Importantly, all three leading mod-
els (NARM, NextItNet, and GRU4Rec) achieved more than
85% in Hit@5, indicating practical feasibility for application-
switching support systems. For example, the top five pre-
dicted applications could be presented as shortcut buttons,
significantly reducing the user’s switching effort. Applica-
tion usage is closely tied to user tasks and workflow struc-
ture, and patterns are often stable. Therefore, sequential
models are particularly well suited to this task.

5.7. Limitation
Despite its contribution, our work has several limitations.
First, the RLKWiC dataset was collected from only eight
university students in Germany [14], which restricts the
demographic and occupational diversity of the sample. As
a result, the generalizability of the reported benchmark per-
formance remains limited. Second, participants had control
over recording start and stop actions, which may have led to
biases in the proportion of in-context versus out-of-context
sessions. Third, the dataset exhibits strong label imbalance,
especially for rare knowledge work activities (Table 8) and
representative DBpedia entities (Table 3), which compli-
cates model training. Finally, the relatively wide 95% con-
fidence intervals observed in several tasks (e.g., in-context
prediction and entity relevance estimation) indicate vari-



Table 3
Five-fold cross-validation results for the DBpedia entity relevance prediction task.

Recommendation Task Accuracy Precision Recall F1-Score

0 vs. (1,2) discrimination
Mean 0.8293 0.8277 0.8184 0.8191
95% CI [0.7886, 0.8701] [0.7885, 0.8669] [0.7791, 0.8578] [0.7804, 0.8577]

(0,1) vs. 2 discrimination
Mean 0.8827 0.8661 0.8578 0.8591
95% CI [0.8377, 0.9277] [0.8103, 0.9219] [0.8051, 0.9105] [0.8102, 0.9080]

0 vs. 1 vs. 2 discrimination
Mean 0.7096 0.6887 0.6829 0.6757
95% CI [0.6395, 0.7796] [0.6132, 0.7642] [0.6125, 0.7533] [0.5991, 0.7523]

Table 4
Results for the sequential domain recommendation task.

Method Hit@1 Hit@5 Hit@10 MRR@5 MRR@10 NDCG@5 NDCG@10

SASRec 0.0864 0.2629 0.3585 0.1378 0.1512 0.1681 0.1997
BERT4Rec 0.0772 0.3474 0.5055 0.1839 0.2060 0.2250 0.2771
GRU4Rec 0.0901 0.2739 0.3805 0.1439 0.1566 0.1756 0.2086
FPMC 0.1213 0.3511 0.5257 0.1867 0.2106 0.2264 0.2835
NextItNet 0.1783 0.4191 0.5570 0.2575 0.2767 0.2972 0.3425
NARM 0.1544 0.4393 0.5496 0.2536 0.2685 0.2995 0.3353

ance across folds and highlight the need for larger-scale
datasets. Future work should extend evaluations to cross-
user splits, where the full data of certain participants is
held out, to better assess the generalization capability of
predictive models.

6. Conclusion
This study presents a practical approach to building a bench-
mark suite designed to support knowledge work. Leverag-
ing RLKWiC’s rich semantics and multilayered structure,
we defined the following six benchmark tasks: (1) In-context
prediction, (2) KWA label classification, (3) Relevance esti-
mation with DBpedia entities, (4) Web domain prediction,
(5) Event title prediction, and (6) Application prediction.
For each task, we proposed appropriate baseline models:
event/session-level embedding-based classifiers, a relevance
estimation model for entity matching, and sequential rec-

ommendation models.
The results indicate that Transformer-based models op-

erating on event sequences achieved strong performance
for in-context detection and KWA classification. Sentence
embedding-based similarity scoring proved effective for rel-
evance estimation. Sequential models such as NextItNet
and NARM achieved high accuracy in predicting domains,
events, and applications.

These benchmark tasks and their results provide a solid
foundation for future research in knowledge work support
and behavioral prediction systems. We hope that this work
serves as a standard reference point.
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Appendix

A. Details of RLKWiC Database
The RLKWiC dataset is a highly valuable resource that
captures diverse knowledge-work behaviors in real-world
knowledge-work environments with rich semantic annota-
tions. The dataset was collected over approximately two
months, from the end of May to early July 2023, from eight
students (aged 23 to 35) at the University of Kaiserslautern-
Landau in Germany. Data collection was carried out us-
ing two tools: cSpaces, which allows participants to ex-
plicitly manage their work contexts, and the User Activity
Tracker, which automatically records user interaction logs.
As a result, a wide range of information was recorded in
detail, including active window titles, applications used,
clipboard contents, file operations, browsing history, and
context switches. For privacy protection, participants had
full control over recording, deleting collected data, and ap-
plying anonymization.

Table 7 provides aggregated statistics for the RLKWiC
dataset, showing the number of contexts, sessions, events,
total durations, and in-context ratios per participant. These
figures illustrate the variation in working styles and context-
tracking practices. For example, participant p6 has a signifi-
cantly lower in-context ratio (25.2%), suggesting frequent
interruptions or less precise context labeling, while others
such as p5 and p7 show very high in-context ratios above
95%. The table also highlights that all but two participants
recorded more than 10,000 minutes of events, ensuring suf-
ficient data volume for analysis.

RLKWiC employs a three-layered hierarchical structure
to model user behavior: contexts, sessions, and events. In the
highest-level layer, a context refers to a user-defined unit of
work, such as “lectures,” “thesis writing,” or “trip planning.”
Through cSpaces, users could flexibly create new contexts
or switch between existing ones depending on their current
task. This explicit management enables analysis of con-
text switches and multitasking. Next, a session represents
a coherent block of events within a context. Each session
is labeled as “in-context” or “out-of-context”. In-context
sessions are defined as sessions are semantically aligned
with the user’s self-declared current task or objective. In
contrast, out-of-context sessions include unrelated or in-
terruptive sessions, such as administrative operations or
personal browsing, that are not directly tied to the ongoing
work context.

In-context sessions are further annotated with one or
more Knowledge Work Activity (KWA) labels. Table 8 lists
the 12 KWA categories (e.g., “Information search,” “Learn-
ing,” “Authoring”) and their frequency across the dataset.
This annotation enables task-level analysis such as focus
distribution and label co-occurrence across sessions. It also
serves as the target for the KWA label classification tasks in
Section 3.2.
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Table 7
Statistics of the RLKWiC dataset: context-aware and total sessions, events, and durations per participant.

ID context session event minutes (day) in-context
in-context total in-context total in-context total ratio (%)

p1 11 106 152 14,441 16,506 15,115 (10.5) 17,207 (12.0) 87.9
p2 4 11 15 385 414 483 (0.3) 518 (0.4) 93.2
p3 4 75 121 8,310 11,869 23,742 (16.5) 29,252 (20.3) 81.2
p4 4 51 60 4,878 5,404 5,265 (3.7) 5,973 (4.1) 88.2
p5 3 13 18 1,132 1,428 14,088 (9.8) 14,450 (10.0) 97.5
p6 10 55 142 7,492 14,280 8,310 (5.8) 32,919 (22.9) 25.2
p7 8 40 55 1,613 2,181 14,931 (10.4) 15,592 (10.8) 95.8
p8 11 74 90 7,610 8,765 9,439 (6.6) 9,887 (6.9) 95.5

Total 55 425 653 45,761 61,247 91,373 (63.5) 125,798 (87.4) 72.6

Table 8
Knowledge Work Activity (KWA) labels and their number of appearances in the RLKWiC dataset.

Label # Label # Label # Label #

Acquisition 213 Information organization 173 Authoring 94 Dissemination 44
Information search 212 Analyze 142 Expert search 88 Service search 44
Learning 195 Networking 110 Feedback 58 Monitoring 44

In the lowest-level layer, an event corresponds to a user in-
teraction with timestamp, such as application launches, win-
dow switches, file operations, or clipboard actions. These
fine-grained logs are crucial for mining behavior patterns,
estimating user focus, and building predictive interaction
models. Each event is associated with the following features.

1. Event (window) title and URL: These are concate-
nated into a single text string.

2. Active application: The name of the active applica-
tion used in the session (80 applications in total).

3. Event cause labels: Categorical labels indicating the
trigger for event transitions (17 types in total), as
detailed in Table 9.

Table 9 summarizes all cause labels recorded in the dataset
and their frequency. The most frequent cause is “active
window changed” with more than 42,000 occurrences, re-
flecting the application or window switch behavior. Other
notable causes include web visits (focused or visible), con-
text switches, file drops, and tagging operations. These
categorical labels provide rich signals to understand user
intent and trigger conditions in multi-tasking environments.

In addition to the hierarchical structure, RLKWiC in-
cludes metadata on the documents accessed by users. For
local files and web pages, metadata such as filenames, file
paths, visited URLs, page titles, and access timestamps are
recorded and linked to the corresponding context. This
enables a comprehensive analysis of information-seeking
behavior and reference history. Furthermore, the dataset
is enriched with lexical and semantic features. It includes
bag-of-words and stemmed tokens extracted from docu-
ments and webpages, as well as entity links to DBpedia.
This allows documents to be associated with concepts such
as organizations, locations, or academic topics, facilitat-
ing semantic search, knowledge graph construction, and
entity-based recommendations [16]. In summary, RLKWiC
is a uniquely comprehensive dataset that integrates layered
information on work contexts, behavior logs, reference ma-
terials, and semantic structures, offering a solid foundation
for analysis and support of knowledge work.

Table 9
Event cause labels and their number of appearances in the RLKWiC dataset. These labels represent the cause of event
transitions.

Label # Label # Label #

active window changed 42,701 an item was removed from the
context’s activity history

407 new context was created 58

a webpage was visited (window
focus changed)

8,682 a folder was rebirthed to a context
(by adding tags)

281 more context’s activity history
was browsed

57

a webpage was visited (visibil-
ity changed)

7,545 new item was added to the con-
text

281 an item from the context’s activ-
ity history was opened

55

search keywords were entered 855 new tag was added 226 an item was removed from the
context

53

the selected context was
switched

664 a file was dropped on the cSpaces
sidebar

113 tag was removed from the con-
text

14

observation switched on/off 464 an item from the context was
opened

95



Table 10
Sequential recommendation models used in the experiment.

Model Architecture Type Key Characteristics

SASRec [26] Transformer Dynamically attends to important items in the history using
self-attention, with a strong focus on recent behaviors.

BERT4Rec [27] Transformer Leverages bidirectional learning based on masked language mod-
eling to effectively capture long-range dependencies.

GRU4Rec [28] RNN Lightweight and fast, a widely adopted session-based recurrent
model.

FPMC [29] MF + Markov Chain An early personalized recommendation model combining matrix
factorization with Markov chains.

NextItNet [30] CNN Efficiently captures long-range patterns in sequences using di-
lated convolutions.

NARM [31] RNN + Attention Integrates attention into GRU to model both short-term and
long-term user intents simultaneously.

Table 11
Five-fold cross-validation results for in-context prediction (event-based model).

Fold Accuracy Precision Recall F1-Score

fold1 0.8015 0.7769 0.7427 0.7552
fold2 0.7481 0.7287 0.7221 0.7249
fold3 0.8231 0.8236 0.7935 0.8035
fold4 0.7710 0.7558 0.7514 0.7534
fold5 0.7923 0.7621 0.7431 0.7509

Mean 0.7872 0.7694 0.7506 0.7576
95% CI [0.7606, 0.8137] [0.7379, 0.8008] [0.7280, 0.7732] [0.7352, 0.7800]

B. Supplemental information of
experiments

B.1. Brief description of sequential
recommendation models

Table 10 lists the six sequential recommendation models em-
ployed in our benchmark experiments. These models span
a diverse range of architectural paradigms: Transformer-
based (SASRec, BERT4Rec), RNN-based (GRU4Rec, NARM),
CNN-based (NextItNet) and hybrid methods (FPMC) - allow-
ing for a broad comparison of sequence modeling strategies.
By including this variety, we aim to evaluate how different
temporal modeling mechanisms (e.g., self-attention, recur-
rent updates, dilated convolutions, or Markov transitions)
impact prediction performance across multiple behavioral
targets (web domains, event titles, and applications). This
diversity also helps identify which model families are best
suited for different aspects of knowledge work prediction.

B.2. Details of five-fold cross-validation
results

Tables 11 and 12 detail the fold-wise performance of the two
models used in the in-context prediction task: the event-
based and session-based classifiers, respectively. Inspecting
these fold-level results, we observe that the event-based
model exhibits relatively stable performance across all folds,
with an accuracy ranging between 0.7481 and 0.8231, and
the F1 score staying within a narrow band of 0.7249 to 0.8035.
This consistency across partitions suggests that the model
generalizes well and is not overly sensitive to variations
in the training/test splits. In contrast, the session-based

model shows a greater degree of variability. For example,
fold2 yields substantially lower accuracy (0.6794) and F1
score (0.6272), whereas fold5 shows much stronger perfor-
mance (Accuracy = 0.7538, F1 = 0.7252). This implies that the
session-based model is more affected by the distribution of
features across folds, probably due to its reliance on coarse
aggregate features rather than sequential structure. The
fold-level breakdown provides insight into the robustness
and sensitivity of each model under different data partitions,
complementing the averaged results presented in the main
text.

Tables 13 and 14 present the fold-wise performance re-
sults for the KWA label prediction task using the event-based
and session-based models, respectively. In the case of the
event-based model, the performance remains relatively sta-
ble across folds, with F1 scores ranging from 0.5093 (fold3)
to 0.5961 (fold2). This modest variation suggests that the
model consistently captures key patterns in event sequences
for multilabel classification, although some folds (e.g., fold3)
may suffer from limited label diversity or skewed distribu-
tions. The session-based model, while achieving a slightly
higher mean F1 score overall, shows much larger variability
between folds. In particular, fold4 achieves an F1 score of
0.6041 with a very high recall (0.9162), whereas fold1 drops
significantly to 0.4865. This discrepancy indicates that the
session-based model is more sensitive to the distribution
of co-occurring labels across folds. Its reliance on aggre-
gated bag-of-words representations may lead to overfitting
or undergeneralization depending on the composition of
the validation set. These fold-level differences highlight the
challenges of multilabel prediction under label imbalance
and interlabel dependencies, and point to the need for strat-
ified or label-aware data partitioning in future experiments.



Table 12
Five-fold cross-validation results for in-context prediction (session-based model).

Fold Accuracy Precision Recall F1-Score

fold1 0.7634 0.7253 0.7282 0.7267
fold2 0.6794 0.6498 0.6240 0.6272
fold3 0.7077 0.6880 0.6848 0.6862
fold4 0.6870 0.6641 0.6597 0.6615
fold5 0.7538 0.7196 0.7347 0.7252

Mean 0.7183 0.6894 0.6863 0.6854
95% CI [0.6706, 0.7659] [0.6481, 0.7306] [0.6284, 0.7442] [0.6325, 0.7382]

Table 13
Five-fold cross-validation results for KWA label prediction (event-based model).

Fold Jaccard Score Precision Recall F1-Score

fold1 0.4079 0.5843 0.5390 0.5335
fold2 0.4591 0.5770 0.6983 0.5961
fold3 0.3961 0.5359 0.5794 0.5093
fold4 0.4393 0.5445 0.6051 0.5485
fold5 0.4522 0.5468 0.6916 0.5798

Mean 0.4309 0.5577 0.6227 0.5534
95% CI [0.3993, 0.4625] [0.5221, 0.5933] [0.5642, 0.6813] [0.5161, 0.5906]

Table 15 summarizes the fold-wise evaluation results for
the DBpedia entity relevance prediction task under three
classification settings: binary (0 vs. (1,2)), binary ((0,1) vs.
2) and three-class (0 vs. 1 vs. 2). Across all settings, the
fold-level breakdown reveals meaningful differences in task
difficulty and model consistency.

• In the setting 0 vs. (1,2), the F1 scores are relatively
stable across folds (ranging from 0.7571 to 0.8737),
indicating that the model can reliably distinguish
irrelevant entities from those with some relevance.
The highest fold4 score suggests that this partition
had particularly clean or separable training exam-
ples.

• In the setting more challenging (0,1) vs. 2, the F1
score varies more widely, from 0.7812 (fold3) to
0.9203 (fold4), which implies that identifying “repre-
sentative” entities is more sensitive to the composi-
tion of the fold. Folds with fewer strongly represen-
tative entities may hinder classifier calibration.

• The three-class classification setting exhibits the
largest performance fluctuation between folds,
with F1 scores ranging from 0.5579 (fold3) to
0.8101 (fold4). This variability reflects the in-
creased ambiguity in distinguishing relevant but
non-representative entities (class 1) from the other
two classes, especially when user annotations are

subjective or unevenly distributed.

These fold-wise results emphasize the inherent difficulty of
fine-grained entity relevance classification and suggest that
future work may benefit from fold stratification with respect
to entity-type distributions or additional regularization to
reduce variability.

Table 14
Five-fold cross-validation results for KWA label prediction (session-based model).

Fold Accuracy Precision Recall F1-Score

fold1 0.3376 0.5143 0.6254 0.4865
fold2 0.4451 0.5960 0.7656 0.5898
fold3 0.4676 0.6228 0.8000 0.6123
fold4 0.4666 0.4894 0.9162 0.6041
fold5 0.3619 0.4175 0.8553 0.5132

Mean 0.4158 0.5280 0.7925 0.5612
95% CI [0.3394, 0.4922] [0.4250, 0.6310] [0.6566, 0.9284] [0.4900, 0.6324]



Table 15
Five-fold cross-validation results for the DBpedia entity relevance prediction task.

Recommendation Task Fold Accuracy Precision Recall F1-Score

0 vs. (1,2) discrimination

fold1 0.7814 0.7548 0.7598 0.7571
fold2 0.7966 0.7906 0.7950 0.7923
fold3 0.8244 0.8457 0.8225 0.8210
fold4 0.8776 0.8890 0.8687 0.8737
fold5 0.8667 0.8582 0.8462 0.8516
Mean 0.8293 0.8277 0.8184 0.8191
95% CI [0.7886, 0.8701] [0.7885, 0.8669] [0.7791, 0.8578] [0.7804, 0.8577]

(0,1) vs. 2 discrimination

fold1 0.9023 0.9340 0.8636 0.8857
fold2 0.9237 0.8952 0.9040 0.8994
fold3 0.8473 0.7749 0.7884 0.7812
fold4 0.9306 0.9163 0.9248 0.9203
fold5 0.8095 0.8101 0.8082 0.8087
Mean 0.8827 0.8661 0.8578 0.8591
95% CI [0.8377, 0.9277] [0.8103, 0.9219] [0.8051, 0.9105] [0.8102, 0.9080]

0 vs. 1 vs. 2 discrimination

fold1 0.7256 0.7456 0.7245 0.7261
fold2 0.7076 0.7063 0.7244 0.7100
fold3 0.6221 0.5881 0.5693 0.5579
fold4 0.8163 0.8051 0.8205 0.8101
fold5 0.6762 0.5983 0.5759 0.5746
Mean 0.7096 0.6887 0.6829 0.6757
95% CI [0.6395, 0.7796] [0.6132, 0.7642] [0.6125, 0.7533] [0.5991, 0.7523]
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