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Abstract
Automated skill extraction from job postings is crucial for understanding labour market dynamics, but current approaches struggle to
balance retrieval efficiency with ranking accuracy. Most existing methods focus on either dense retrieval for candidate generation or
multi-label classification, failing to leverage the complementary strengths of both paradigms. While recent work has begun exploring
retrieve-and-rank pipelines for skill extraction using Large Language Models (LLMs) for ranking, we propose training dedicated neural
models for both retrieval and ranking stages. In our two-stage approach, the bi-encoder efficiently retrieves skill candidates, while
the cross-encoder provides precise ranking using focal loss optimisation. We evaluate both stages separately on publicly available
datasets. Our bi-encoder achieves up to 4.78 percentage points improvement in RP@5 over existing baselines, while our cross-encoder
demonstrates up to 30.54 percentage points improvement in micro-F1 compared to LLM-based ranking methods. Additionally, our
bi-encoder shows strong zero-shot performance on held-out skills. The framework leverages public datasets and freely available skill
taxonomies like ESCO, promoting scalable and reproducible skill extraction. We release our code and configurations to encourage
further research, available at https://github.com/AleksanderB-hub/Multi-Stage-Pipeline-Skill-Extraction.
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1. Introduction
Fuelled by technological developments and societal changes,
today’s labour market transforms dynamically, making the
assessment of job market demand an increasingly challeng-
ing task [1]. With the European Skills, Competences, Quali-
fications and Occupations (ESCO) taxonomy alone contain-
ing nearly 14,000 distinct skills, and millions of job postings
published daily across various platforms, the need for au-
tomated skill extraction has never been more critical. Skill
extraction plays a pivotal role in this task as it allows for
the extraction of competencies from available data (e.g., re-
sumes, job postings) and mapping them to a standardised
taxonomy. This enables HR professionals and policymak-
ers to better understand current market trends and support
workforce planning, ensuring the efficient functioning of
labour markets. The growing importance of such systems
is evidenced by the recent surge in research on automated
skill extraction [2, 3].

The task of skill extraction from job postings presents
unique challenges that distinguish it from traditional text
classification. First, skills are often mentioned implicitly
rather than explicitly [4]. This implicit nature renders sim-
ple keyword matching approaches ineffective. Second, the
diverse vocabulary used across industries and regionsmeans
that even accurately extracted skills must be normalised to
a standardised taxonomy like ESCO to enable meaningful
analysis and comparison across markets and time periods.

The main problem with developing skill extraction sys-
tems is the scarcity of real-life annotation data [5]. This was
partially addressed by the creation of artificially generated
job posting data, which is later used to train the models
for automated skill extraction. However, these artificial
datasets often fail to capture the full complexity and linguis-
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tic variety of real-world job postings. With this creating a
potential gap between training and deployment scenarios,
it is necessary to carefully balance the use of synthetic train-
ing data with limited real-world resources.

Beyond data availability, existing approaches to skill ex-
traction face architectural limitations that constrain their
effectiveness. Current approaches either prioritise the di-
rect skill classification or relevant candidate retrieval (dense
retrieval), where each query (job description sentence) is
provided with a list of relevant documents (matching skills).
The issue with the standard classification is that it is lim-
ited to the data it was trained on, consequently impairing
the generalisability of such solutions. This is particularly
problematic due to the constantly evolving skill space. Con-
versely, dense retrieval approaches frame skill extraction as
a similarity search problem. By searching for similar skills
from the entire taxonomy, they often return numerous irrel-
evant candidates, making accurate skill profile extraction
challenging.

Recent advances in Information Retrieval (IR) suggest
that combining dense retrieval with ranking capability of-
fers significant improvements over single-stage systems
[6, 7]. These architectures combine a dense retriever (e.g.,
bi-encoder) with a ranking model (e.g., cross-encoder), lever-
aging the complementary strengths of these two methods.
Given that skill extraction requires the retrieval of relevant
skills from large taxonomies, these two-stage architectures
present a natural fit. However, while Clavié and Soulié [8]
and D’Oosterlinck et al. [9] recently showed that Large Lan-
guage Models (LLMs) rankers could improve skill extraction,
the potential of training dedicated neural architectures for
both stages remains unexplored. This represents a signifi-
cant gap, as purpose-built rankers can offer better perfor-
mance and efficiency than general-purpose LLMs.

We propose a novel two-stage neural architecture that
adapts successful IR practices to the unique requirements
of skill extraction. Our approach combines a bi-encoder for
efficient candidate retrieval from large skill taxonomies with
a cross-encoder for precise skill identification. In the first
stage, we fine-tune a bi-encoder using a curriculum learning
strategy that leverages freely available ESCO skill defini-
tions. The model first learns to associate skills with their
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canonical definitions before training on synthetic job post-
ing data. This approach not only improves performance on
seen skills but also enables strong zero-shot generalisation
to skills excluded from training. The bi-encoder retrieves
the top-K most relevant skills for each job description sen-
tence based on embedding similarity.

In the second stage, we employ a cross-encoder that ranks
the retrieved candidates using a binary classification objec-
tive. Unlike traditional ranking approaches that reorder can-
didates, our cross-encoder makes explicit decisions about
whether each skill is truly relevant to the job description.
Such a design choice aligns with the multi-label nature of
skill extraction, where a given querymight describemultiple
or no skills at all. This approach leverages a cross-encoder’s
ability to jointly process query and documents, allowing the
capture of subtle semantic relationships that independent
encoding might miss. Our multi-stage approach is visu-
alised in Figure 1.

Figure 1: General overview of the proposed retrieve-and-rank
method for skill extraction. In Stage 1, a dense bi-encoder is
trained on annotated job description data following the pre-
training using the ESCO taxonomy; this forms our curriculum
strategy. Stage 2 uses the candidate skill labels retrieved in Stage
1 to train the model for binary ranking of skills. At inference, the
candidate predictions from Stage 1 are provided to the Stage 2
model (ranker) to predict skill labels.

Comprehensive evaluation across established skill ex-
traction benchmarks demonstrates the effectiveness of this
two-stage approach. The bi-encoder achieves up to 4.78
percentage points improvement in R-Precision@5 (RP@5)
compared to existing dense retrieval baselines while main-
taining strong retrieval performance on held-out skills in
zero-shot settings. When combined with the cross-encoder,
our complete pipeline achieves F1 scores up to 30.54 per-
centage points higher than LLM-based ranking methods.
These results validate that carefully designed two-stage neu-
ral architectures can significantly improve skill extraction
while maintaining the efficiency required for practical de-
ployment.

Contributions. In summary, our main contributions are:

• A curriculum‑trained dense retriever over taxonomy
labels for candidate skill generation, showcasing
strong zero-shot retrieval capabilities.

• A task‑specific, supervised cross‑encoder ranker for
multi‑label skill extraction, delivering strong classi-
fication performance across public benchmarks.

2. Relevant Work

2.1. Skill Extraction
Early approaches to skill extraction were mostly limited
to span-level extraction. The task consisted of retrieval of
relevant fragments from the sentences (job descriptions or
resumes) to train Named Entity Recognition (NER) models
[10, 11]. Seeing the rapid advances in LLMs, researchers
demonstrated how generative AI can be leveraged for a
span-level skill extraction [12, 13]. Some notable work also
exists using the graph neural networks for context-aware
skill extraction [14, 15]. Despite their strong performance,
the main issue with such approaches is the lack of skill la-
bel normalisation. The retrieved spans are not linked to
the standardised taxonomy (e.g., ESCO), making these tech-
niques less applicable in real-world scenarios. To address
that, authors in [16] demonstrate how the identification of
relevant skill spans can aid downstream classification of
competencies, highlighting the complementary nature of
such approaches. Similar techniques were later expanded in
[17], where job descriptions are directly matched with skills
in a taxonomy. Another issue lies in reliance on high-quality
annotation data, which is costly to obtain, especially when
considering the necessary involvement of human resource
domain experts [12, 2].

Large-scale skill and occupation taxonomies offer a
breadth of potentially useful information for skill extraction
tasks, such as co-dependency of competencies, hierarchi-
cal classification, etc. Building on this, researchers in [18]
explored the use of ESCO skill labels as weak supervision
signals. Furthermore, work by Decorte et al. [19] showcased
that taxonomy-based weak supervision signals can be com-
bined with classification models to satisfy skill normalisa-
tion of extracted competencies. The role of such taxonomies
in supporting the performance on downstream tasks has
been further highlighted in [20], where information from
ESCO was used as pre-training signals for a skill extraction
model.

Understanding the importance of skill normalisation
and challenges around sourcing annotation data, research
shifted towards the generation of artificial job description
data [2, 3]. Partially fuelled by the wealth of information
offered by ESCO, these works showcased how incorporating
definition (skill description) information into the generating
pipeline increases the quality of the examples. In addition,
[2] also shows that definitions can serve as a training signal
on their own. Most recently, Decorte et al. [21] introduced
a novel end-to-end skill extraction architecture, achieving
strong results on skill retrieval benchmarks. Their work
utilises the skill definitions as training signals, further con-
firming the benefits of incorporating taxonomy information
into skill extraction pipelines.

In light of this evidence, our work introduces a novel
pre-training phase utilising the skill descriptions and la-
bels provided by the ESCO taxonomy. This builds on the
reported success of curriculum learning in information re-
trieval (IR), where models benefit from training on progres-
sively complex examples [22]. Such approaches have shown
promise in dense retrieval tasks [23], where domain-specific
pre-training improves downstream performance. However,
unlike prior work that requires specialised architectures or
training procedures, our curriculum learning strategy main-
tains the standard bi-encoder architecture while leveraging
freely available taxonomy data.



2.2. Two-Stage Retrieval Architectures
Modern information retrieval has undergone a fundamental
shift from sparse keyword matching to dense neural repre-
sentations, revolutionising how systems retrieve and rank
information. While traditional methods like BM25 remain
competitive baselines, neural approaches, particularly bi-
and cross-encoder architectures, have demonstrated supe-
rior performance across diverse IR tasks [24]. Nonetheless,
these methods face an inherent trade-off. Bi-encoders en-
able efficient retrieval through pre-computed representa-
tions but sacrifice fine-grained query-document interaction,
while cross-encoders that jointly process query-document
pairs provide superior relevance modelling but cannot scale
to large collections.

This challenge has given rise to two-stage retrieval ar-
chitectures that combine dense retrievers with dedicated
rankers to achieve superior retrieval quality. Early work
utilised the BM25 for the retrieval stage and combined it
with a BERT-based ranker in a question answering task
[25]. However, modern systems increasingly employ neural
methods in both stages. Such methods often use bi-encoders
for efficient candidate retrieval followed by cross-encoders
for precise ranking [26, 27]. While such neural two-stage
systems have shown strong results, recent work has ex-
plored the use of LLM-based rankers across various domains
[28, 29], including skill extraction [8, 9]. Despite recent in-
terest in LLM-based rankers, bi-encoder/cross-encoder ar-
chitectures remain widely deployed due to their predictable
computational costs and proven effectiveness.

Building on the success of two-stage retrieval systems
in IR, we adapt this paradigm to skill extraction. To the
best of our knowledge, we propose the first architecture
combining bi-encoder retrieval and cross-encoder ranking
models specifically designed for this task. In contrast to
LLM‑based ranking for skills [8, 9], we train dedicated neu-
ral models for both stages, offering better efficiency and
performance while leveraging the complementary strengths
of both encoder types.

3. Methodology
We present a two-stage neural architecture for skill extrac-
tion that frames the task as dense retrieval followed by
binary ranking. Our approach leverages curriculum learn-
ing to maximise the utility of limited training data, com-
bining synthetic datasets with freely available ESCO skill
definitions. This section details our problem formulation,
data configuration strategy, and the design of both pipeline
stages.

3.1. Problem Statement
In our case, we aim to extract all relevant skills for a given
job description fragment. For example, given the sentence:

”Be able to lead and motivate people and have
good communication skills.”

The goal is to extract skills such as communication, lead oth-
ers, and motivate others from a larger taxonomy of possible
skills (e.g., ESCO). We approach this problem in two stages.

Stage 1: Dense Skill Retriever (bi-encoder retriever).
We first retrieve a small subset of relevant skills from a

large skill taxonomy. This is done by encoding the job
sentence and each skill into dense vectors using a trained bi-
encoder, and computing their cosine similarity. The top-K
most similar skills are returned as candidates.

Stage 2: Binary Skill Ranker (cross-encoder ranker).
Next, we refine this list using a trained cross-encoder model
that jointly reads the sentence and each candidate skill,
and assigns a relevance score. Skills above a tuned rele-
vance threshold are predicted as relevant (see Section 3.5
for threshold tuning details).

Assumption. At inference, the ranker sees only retrieved
candidates; thus, its effectiveness depends on Stage 1 re-
trieval quality. To create a representative training sample,
we inject the missing gold labels into the training data (no
injection at test time; see Section 3.5 for details).

Evaluation. Retrieval is assessed using RP@K and MRR.
Ranking performance is measured using micro-F1 across all
sentence-skill pairs. The use of each metric is justified in
Section 4.1.

3.2. Overview of Available Datasets
Our experiments leverage both synthetic and real-world
datasets to address the data scarcity challenge in skill ex-
traction. For synthetic data, we utilise two complemen-
tary resources. First, the DECORTE dataset [2], which con-
tains 138,240 artificially generated examples covering nearly
the entire ESCO taxonomy. Secondly, we use SKILLSKAPE
dataset [3], comprising 8,940 multi-skill examples divided
into train, val and test sets, where each sentence can describe
up to nine different skills. While DECORTE provides broad
coverage of the ESCO taxonomy with clear single-skill asso-
ciations, SKILLSKAPE better reflects real-world complexity
where multiple skills co-occur within job requirements.

When it comes to real-world data, we employ three man-
ually annotated datasets: HOUSE, containing 663 job de-
scription sentences annotated with ESCO labels, split into
val and test sets; TECH, featuring 796 fully annotated job ad
sentences (val + test); and TECHWOLF with 588 annotated
examples (test). All these datasets were originally sourced
from [10] and later annotated in [19] (HOUSE, TECH ) and
in [2] (TECHWOLF ) using ESCO labels. Additionally, we
incorporate the skill labels, alongside their synonyms and
definitions from ESCO v1.1.0 [30], serving as a valuable
knowledge source for our curriculum learning approach
(ESCO-D).

3.3. Stage-Specific Data Configuration
Given the limited availability of real-world annotated data
and the different requirements of our two-stage architec-
ture, we strategically partition the datasets described above
to serve distinct roles in training and evaluation. Table 1
presents the complete data allocation, which we designed
following three key principles: (1) maintaining strict sep-
aration between training and test data for fair evaluation,
(2) maximising the use of real-world examples where they
provide the most benefit and (3) balancing the use of syn-
thetically generated data to ensure efficient learning.

For Stage 1, we use only one example per skill from
DECORTE despite the availability of ten. This decision is



based on preliminary experiments showing no significant
performance improvement when using additional examples,
provided the augmentation strategy from [2] is employed
(see Section 5). However, as highlighted in [3], real-life job
descriptions often describe multiple skills within a single
sentence. Consequently, SKILLSKAPE provides job ad frag-
ments which are both longer and more complex than those
of DECORTE, albeit offering inferior taxonomy coverage.
Therefore, we decided to combine these two datasets in our
training data. We hypothesise that such a configuration
satisfies both taxonomy coverage (i.e., each skill in ESCO
has at least one example) and provides a more informative
learning signal for our model. To take advantage of exist-
ing taxonomies, we further expand our training data with
definitions from ESCO-D, which were shown to provide a
strong training signal in skill extraction tasks [2]. The main
training phase is preceded by pre-training, where both defi-
nitions and skill labels from ESCO-D are used, forming our
curriculum learning strategy (see Section 3.4.1 for details).

For Stage 2, the objective is to ensure a representative
training sample for the ranker. Since SKILLSKAPE consists
of artificially generated data, we decided to incorporate
both validation sets of TECH and HOUSE datasets into train-
ing. Given their relatively small size, we further expand the
training data for Stage 2 by the TECHWOLF dataset. We
acknowledge that such a decision prevents assessing the
performance of the ranking stage on this dataset. However,
such a step was crucial due to the unique nature of real-life
data, where job description fragments can consist of both
single phrases (e.g., ”Python”) as well as longer texts describ-
ing one or multiple competencies. Section 3.5 describes the
exact process of forming training data for this stage.

Table 1
Characteristics of training and testing data used in our method.
Synth. refers to artificially created datasets whereas Tax. indi-
cates Taxonomy origin. S1 and S2 describe Dense Skill Retriever
(bi-encoder) and Binary Skill Ranker (cross-encoder) stages, re-
spectively. The 3 and 7 specify at what stage data was used.

Dataset Type Size S1
Train

S1
Test

S2
Train

S2
Test

DECORTE Synth. ∼138K
3 (1
per
skill)

7 7 7

SKILLSKAPE
(train)

Synth. 6352 3 7 3 7

SKILLSKAPE
(val)

Synth. 1316 7 7 3 7

SKILLSKAPE
(test)

Synth. 1272 7 3 7 3

ESCO-D Tax. ∼112k 3 7 7 7

HOUSE (val) Real 131 7 7 3 7

HOUSE (test) Real 532 7 3 7 3

TECH (val) Real 152 7 7 3 7

TECH (test) Real 644 7 3 7 3

TECHWOLF Real 588 7 3 3 7

3.4. Stage 1: Bi-encoder for Skill Retrieval
Our bi-encoder is based on all-mpnet-base-v21, a sentence
transformer model pre-trained for semantic similarity tasks.
The model has previously demonstrated its effectiveness
in the job domain for job recommendation [31] and skill
extraction [2] problems.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2

The bi-encoder processes inputs independently, encoding
job description sentences and skill labels into a shared em-
bedding space. During inference, we pre-compute embed-
dings for all 13,890 ESCO skills, enabling real-time retrieval
via similarity search. For each query sentence, the model
retrieves the top-K skills based on cosine similarity scores.

The data is organised into pairs of job description frag-
ments and their assigned skill labels. For multi-label sen-
tences, we create one query–skill pair per gold label. We em-
ploy the augmentation strategy from [2], where sentences
are randomly concatenated during training. To prevent aug-
mented sentence pairs from serving as negatives to each
other, we maintain a mask that excludes these pairs (and
associated skill labels) from the negative set. As examined
in [2], this augmentation strategy forces the model to learn
robust representations. The model must identify relevant
skills even when unrelated content is present. This mirrors
real job descriptions, where target skills are often embedded
among other skills and irrelevant text. The augmentation
strategy is only applied to job description sentences and not
skill labels at this stage.

We employ NT-Xent loss from [32] as a learning objective.
Following the approach used in CLIP [33], we compute the
loss symmetrically. The loss for a single direction is defined
as:

𝐿𝑞→𝑠 = − 1
𝑁

𝑁
∑
𝑖=1

log
exp(𝑠𝑖,𝑝𝑖/𝜏)

∑𝑁
𝑗=1𝑀𝑖,𝑗 exp(𝑠𝑖,𝑗/𝜏)

, (1)

where 𝑁 is the batch size, 𝑠𝑖,𝑗 = cos(𝑞𝑖, 𝑠𝑗) represents the
cosine similarity between the 𝑖-th query embedding 𝑞𝑖 and
the 𝑗-th skill embedding 𝑠𝑗, and 𝑝𝑖 denotes the index of the
positive skill for query 𝑖. The mask 𝑀𝑖,𝑗 = 0 when skill 𝑗
should be excluded (i.e., 𝑗 = 𝑝𝑖 or 𝑗 comes from an augmented
version of query 𝑖), and𝑀𝑖,𝑗 = 1 otherwise. The temperature
parameter 𝜏 controls the sharpness of the distribution. Total
loss is:

𝐿 = 1
2
(𝐿𝑞→𝑠 + 𝐿𝑠→𝑞), (2)

where 𝐿𝑠→𝑞 is computed identically as in (1) but with skill
labels as anchors and queries as positives/negatives. This
bidirectional formulation ensures that both job descriptions
and skills are equally optimised within the shared embed-
ding space.

Experimental Configuration. The AdamW optimiser is
used with a cosine learning rate schedule and a base learning
rate of 2e-5, with 5% of training steps for warmup. We adopt
cosine decay as it provided smoother convergence than a
linear schedule in preliminary runs. The model is trained for
a single epoch, with a batch size of 64 (the largest fitting on
a 16GB GPU), and gradients clipped at 1.0 to stabilise train-
ing against large updates. Training is performed in mixed
precision to improve efficiency. The temperature parameter
is set to 0.05, selected via grid search on the SKILLSKAPE
validation set in increments of 0.01 within [0.01, 0.07]. For
tokenization, we set the maximum token length to 128 and
32 for sentences and skill labels, respectively. With the
average example length in SKILLSKAPE validation set of
27.8 words and ESCO skill labels no longer than 13 words,
this ensures complete context coverage while maintaining
computational efficiency.

3.4.1. Curriculum Learning with Skill Definitions

Prior to the training procedure described above, we em-
ploy a pre-training phase that leverages definitions and

https://huggingface.co/sentence-transformers/all-mpnet-base-v2


all available skill labels from ESCO (ESCO-D). Together,
these form our curriculum training strategy, where the
model first learns from simpler skill-definition alignments
before progressing to more complex job description-skill
mappings. During pre-training, we train the bi-encoder on
skill-definition pairs using the same symmetric NT-Xent
loss and augmentation strategy (applied to definitions) as
in the main phase. This ensures consistency between pre-
training and fine-tuning phases while teaching the model to
align skill names with their semantic meanings. Notably, we
reuse ESCO definitions in the main training phase, where
they serve as high-quality reference examples alongside
job descriptions, contributing to improved performance as
shown in our ablation studies (see Section 5).

Experimental Configuration. Apart from temperature
and learning rate, all of the hyperparameters from the main
training phase are retained. We apply a higher learning rate
of 3e-5 to accelerate learning of skill semantics during the
pre-training phase. The temperature is set to 0.03, deter-
mined through validation experiments similar to the main
training phase.

3.5. Stage 2: Cross-encoder for Skill
Ranking

At the base of the cross-encoder, we adopt the ms-marco-
MiniLM-L6-v2 model2. It was tuned for the ranking and
displays a strong efficiency–effectiveness trade-off via self-
attention distillation [34].

The training data used for this stage is directly sourced
from the previous dense retrieval stage. Specifically, for
each job description sentence in training data, we retrieve
the top-100 skill candidates. To ensure positives are present,
we inject any missing gold skills by replacing the lowest-
scoring retrieved items. This is unique to the training data,
as at inference, the test sets contain only the originally
retrieved skills. Such a configuration represents a more real-
istic setting where a dedicated ranker might not have access
to a complete set of true labels.

For each sentence, we pair it with all candidate skills
and assign a binary label (1 if the skill appears in the gold
set, 0 otherwise). To improve generalisation, we apply two
lightweight augmentations with probability 0.2: (i) partial
label masking, where one token of a multi-word skill is
replaced by a [MASK] placeholder to discourage memorisa-
tion of exact surface forms; and (ii) sentence word dropout,
where one random token is removed from longer sentences
to add noise.

During training, each job description sentence is paired
with 100 candidate skills, of which at most 10 are relevant,
yielding a highly imbalanced label distribution. To miti-
gate the dominance of easy negatives, we replace standard
binary cross-entropy with the focal loss [35]. Focal loss
down-weights well-classified examples, forcing the model
to focus on hard positives and hard negatives. Let 𝑧𝑖 be the
logit and 𝑦𝑖 ∈ {0, 1} the label. The focal loss is:

ℒfocal =
1
𝑁

𝑁
∑
𝑖=1

𝛼𝑡(1 − 𝑝𝑡)𝛾 [− log 𝑝𝑡],

with

𝑝𝑡 = {
𝜎(𝑧𝑖) if 𝑦𝑖 = 1,

1 − 𝜎(𝑧𝑖) if 𝑦𝑖 = 0,
𝛼𝑡 = {

𝛼 if 𝑦𝑖 = 1,

1 − 𝛼 if 𝑦𝑖 = 0,
2https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2

where 𝛾 controls the degree of focussing and 𝛼 balances posi-
tive vs. negative classes. To further address class imbalance
during training, we employ a balanced batch sampler that
maintains approximately 30% positive examples per batch.
This prevents the model from simply learning to predict all
negatives.

Experimental Configuration. We split the constructed
dataset 80:20 into training and validation and train themodel
for 5 epochs with AdamW (learning rate 2e-5) and a linear
warm-up of 10% of total steps. Validation tests showed no
consistent benefits beyond 5 epochs. Gradients are clipped
at 1.0 with batch size set to 64.

At inference, the model outputs a relevance score per
sentence-skill pair for each test set. While training uses top-
100 candidates, we evaluate on top-20 across all methods
for practical reasons: managing API costs for LLM baselines
and maintaining reasonable inference speed. The decision
threshold is selected on a held-out split of the constructed
Stage 2 training pool, tested in increments of 0.05 in the
range [0.1, 0.7]. Based on this tuning, a fixed threshold of
0.2 is used for all reported results. Similarly, we fix 𝛼 and 𝛾
at 0.8 and 3.0, respectively, testing multiple configurations
[0.5, 0.6, 0.8, 0.9] (𝛼) and [2.0, 2.5, 3.0] (𝛾). The maximum
tokenization length is set to 128 for each sentence-skill pair.

4. Results and Discussion
While our pipeline can operate as an integrated system,
we evaluate the bi-encoder and cross-encoder components
separately on the datasets described in Section 3.3. This
is done to understand their individual contributions and
identify potential bottlenecks.

4.1. Evaluation Metrics and Benchmarks
We evaluate each pipeline component with task-appropriate
metrics and baselines.

Bi-encoder Evaluation. Following established practice
in skill extraction tasks [19, 2, 8], we employ R-Precision@K
(RP@K) and Mean Reciprocal Rank (MRR). Since job de-
scription sentences typically contain at most 10 relevant
skills, we report RP@5 and RP@10. For 𝑁 job description
sentences, where 𝑅𝑛 is the number of gold ESCO skills for
sentence n, and Rel(𝑛, 𝑘) ∈ {0, 1} indicates whether the k-
th predicted skill is relevant (binary indicator), RP@K is
defined as:

RP@𝐾 = 1
𝑁

𝑁
∑
𝑛=1

1
min(𝐾, 𝑅𝑛)

𝐾
∑
𝑘=1

Rel(𝑛, 𝑘).

As baselines, we compare against: (1) the base all-mpnet-
base-v2 model without fine-tuning (BASE), and (2) a similar
skill extraction method from Decorte et al. [2].

Cross-encoder Evaluation. Our cross-encoder performs
binary classification on retrieved candidates, predicting
whether each ESCO skill is relevant to the given job de-
scription sentence. We evaluate using the micro-F1 score
as it captures both the identification of relevant skills and
the rejection of irrelevant ones [3]. For baselines, we imple-
ment LLM-based ranking using GPT-4o-mini and GPT-4.1,
building on similar approaches [8]. Each model receives

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2


Table 2
Retrieval performance (RP@5 / RP@10 / MRR, %) of the bi-encoder retriever. BASE = all-mpnet-base-v2 (no fine-tuning).
Numbers for Decorte et al. [2] are taken from the original paper; “–” denotes not reported. Our results are mean ± standard
deviation over 3 random seeds. Best results per dataset are highlighted in bold.

HOUSE TECH TECHWOLF SKILLSKAPE
RP@5 RP@10 MRR RP@5 RP@10 MRR RP@5 RP@10 MRR RP@5 RP@10 MRR

BASE (all-mpnet-
base-v2)

26.17 36.76 26.19 39.3 49.97 38.69 33.17 41.82 29.22 29.39 39.5 36.47

Decorte et al. [2] 45.74 - 42.75 54.62 - 52.85 54.57 - 52.55 - - -
Ours (curriculum
bi-encoder)

49.14±
0.46

59.61±
1.34

48.39±
0.59

59.40±
1.30

69.93±
1.35

57.26±
0.39

56.52±
0.84

64.91±
0.65

53.61±
0.13

62.02±
0.21

73.15±
0.11

72.46±
0.51

the query and top-20 retrieved candidates with instructions
to classify each as relevant or irrelevant using single-shot
prompting with temperature set to 0 for deterministic out-
puts. The demonstrations for LLM baselines are drawn
from training data, selected to maximise overlap with the
candidate set (see Appendix A for exact configuration).

4.2. Bi-encoder Performance
Table 2 presents our bi-encoder results across four skill
extraction datasets. Our curriculum-based approach con-
sistently outperforms both baselines, achieving the highest
scores on all metrics.

Compared to Decorte et al. [2], we observe improvements
ranging from 1.95 percentage points (pp) (TECHWOLF ) to
4.78 pp (TECH ) in RP@5. The gains are even more substan-
tial against the non-fine-tuned baseline, with SKILLSKAPE
experiencing a 32.63 pp improvement in RP@5. The consis-
tent gains from RP@5 to RP@10 indicate that additional rel-
evant skills are retrieved when expanding the candidate set.
However, the gap between MRR scores (48.39-72.46%) and
perfect ranking indicates that while most relevant skills are
retrieved, they are not always optimally ordered. This moti-
vates our cross-encoder stage, which can take advantage of
seeing more closely associated candidates in determining
the relevance of the skills.

Our curriculum bi-encoder achieves consistent improve-
ments across all datasets, showcasing the coverage of var-
ious job domains present in evaluation data. The small
standard deviations (typically <1.5 pp) across three random
seeds indicate stable training despite the additional com-
plexity of our curriculum setup. The specific contribution
of the pre-training phase is analysed in Section 5.

4.2.1. Zero-shot Performance

To evaluate our model’s ability to handle emerging skills
not present in training data, we conduct zero-shot exper-
iments on held-out skills. We fix a held-out skill set 𝐻 of
100 ESCO skills and exclude 𝐻 from all training data (both
pre-training and fine-tuning). Specifically, we exclude the
50 most frequent and 50 least frequent skills based on the
SKILLSKAPE test set. This selection ensures we test on
both common skills (that the model might implicitly learn
through co-occurrences) and rarer ones. At inference, the
retriever still searches the full ESCO taxonomy. For each
test set we filter to queries 𝑞 whose gold labels intersect 𝐻,
and treat only held-out labels as relevant.

Table 3 shows that our model successfully retrieves held-
out skills despite no direct training exposure. Improvements
over the non-fine-tuned all-mpnet-base-v2 range from 11.02
pp (TECH ) to 25.88 pp (HOUSE) in RP@5. A similar pattern

can be observed for MRR scores with our model providing
up to 19.33 pp (HOUSE) improvement. These results demon-
strate that our approach creates skill representations that
generalise beyond the training vocabulary.

Notably, zero-shot performance shows higher variance
across seeds (up to 3.29 pp standard deviation) compared
to the complete model (<1.5 pp). This aligns with prior
work showing increased instability in low-data regimes [36],
where different initialisations lead to different representa-
tion geometries for unseen classes, especially with a low
amount of training iterations.

Table 3
Zero-shot retrieval performance (RP@5 / RP@10 /MRR, %). BASE
= all-mpnet-base-v2 (no fine-tuning). ”OURS” is a zero-shot
trained bi-encoder and reports mean ± standard deviation over 3
random seeds. Evaluation is restricted to queries associated with
the 100 held-out ESCO skills (see text). Best results per dataset
are highlighted in bold.

BASE OURS
RP@5 RP@10 MRR RP@5 RP@10 MRR

HOUSE 24.34 36.18 16.95
50.22±
2.49

62.94±
2.31

36.28±
1.09

TECH 42.91 51.88 34.64
53.93±
2.58

62.86±
2.17

41.14±
1.48

TECHWOLF 35.9 38.46 24.16
51.95±
3.29

62.39±
1.48

33.73±
1.45

SKILLSKAPE 18.12 29.27 17.31
32.54±
1.47

45.18±
0.72

30.02±
0.12

4.3. Cross-Encoder Performance
Building on our bi-encoder’s strong retrieval performance,
we now evaluate the cross-encoder stage that refines these
candidates through binary relevance classification. As ex-
plained in Section 3.5, we train on top-100 retrieved candi-
dates to ensure broad coverage and evaluate on top-20 for
practical inference and fair comparison to our LLM base-
lines. The results are provided in Table 4.

Our fine-tuned cross-encoder delivers the best perfor-
mance across all three selected benchmarks. These benefits
are more pronounced when compared to a simpler GPT-
4o-mini model, ranging from 6.39 pp (HOUSE) to 30.54 pp
(SKILLSKAPE) increase in F1 scores. However, even when
paired with a much more capable GPT-4.1 model, our ranker
provides improvements for TECH (+8.03 pp) and SKILL-
SKAPE (+22.54 pp), with only marginal gains in HOUSE (+
0.53 pp).

Beyond performance advantages, our cross-encoder of-
fers significant practical benefits for large-scale deployment.
In our setup, GPT-4o-mini costs ≈$0.0001/example and GPT-



Table 4
Performance of the cross-encoder ranker (micro-F1, %). All meth-
ods rank the same top-20 candidates from Stage 1. We report
mean ± standard deviation over 3 random seeds. Best results per
dataset are highlighted in bold.

HOUSE TECH
SKILL-
SKAPE

GPT-4o-mini
26.60 ±
0.46

27.91 ±
0.45

35.11 ±
0.09

GPT-4.1
32.46 ±
0.39

35.80 ±
0.15

43.11 ±
0.13

Ours (cross-
encoder)

32.99 ±
1.18

43.83 ±
0.63

65.65 ±
0.58

4.1 ≈$0.001/example3, while our cross-encoder has a one-
time training cost and near-zero per-example inference cost.
For labour-market pipelines processing millions of post-
ings, this difference is material. Furthermore, our dedicated
ranker achieves approximately 0.021s per example inference
time, compared to 1.07s average for LLM-based solutions,
a ≈50x speed improvement (see Appendix B for full break-
down of run-times). While open-source alternatives like
Llama exist [37], models matching GPT-4’s ranking per-
formance require high-end GPUs (e.g., A100), whereas our
ranker runs efficiently on RTX-4070Ti SUPER with 16GB of
available memory.

Our results demonstrate the value of dedicated ranking
with our current bi-encoder. Notably, concurrent work [21]
has achieved even stronger retrieval performance, which
presents an exciting opportunity: combining state-of-the-
art retrieval with our cross-encoder could yield substantially
better results. At inference (top-20 skill candidates), the re-
trieved list contains, on average, about 78%4 of the gold
skills per sentence across the Stage 2 evaluation sets. There-
fore, roughly 22% of gold skills are absent from the ranker’s
candidate set. Improved retrieval would provide our ranker
with more complete candidate sets, likely amplifying its
performance.

5. Ablation Studies
Table 5 presents ablations on three key design choices: (1)
number ofDECORTE examples, (2) inclusion of SKILLSKAPE,
and (3) use of ESCO definitions with vs. without pre-training
phase.

Using more DECORTE examples provides no benefit (and
sometimes hurts performance), validating our decision to
use only one example per skill from this dataset. The aug-
mentation strategy from [2] appears to provide sufficient
diversity without needing multiple examples.

Furthermore, we observe that the addition of SKILLSKAPE
not only offers improvements in its corresponding test set
(+11.8 pp) but also boosts the performance in HOUSE (+3.59
pp) and TECH (+3.94 pp) when compared to the model using
a single example from DECORTE. Even with limited taxon-
omy coverage, exposure to sentences describing more than
one skill benefits the training.

Interestingly, our ablations reveal an interplay between
ESCO definitions and the pre-training phase within the cur-

3Based on June 2025 prices, averaged over all evaluation data and runs.
Total replication costs for our full evaluation are $0.61 (GPT-4o-mini)
$5.88 (GPT-4.1).

4Measured as Recall@20, macro-averaged.

riculum training regimen. Adding definitions to the training
data without a pre-training phase provides inconsistent re-
sults, even decreasing performance in TECH by 1.22 pp.
However, when pre-training is applied to this data with
definitions, we observe consistent improvements across all
datasets, most notably in TECHWOLF (+3.13 pp) and TECH
(+2.22 pp). Comparing our full system to the model without
definitions or pre-training, we achieve gains ranging from
1.02 pp (SKILLSKAPE) to 3.70 pp (TECHWOLF ). This demon-
strates that the introduced pre-training phase is essential for
leveraging taxonomic knowledge, as without it, definitions
can have a detrimental effect on retrieval performance. The
modest but consistent gains justify using the full curricu-
lum training and ESCO definitions as additional reference
examples in our final architecture.

Table 5
Ablations on the bi-encoder retriever (RP@5, %). We report the
mean ± standard deviation over 3 seeds and focus on RP@5 for
brevity. Best results per dataset are highlighted in bold.

HOUSE TECH
TECH-
WOLF

SKILL-
SKAPE

Ours (curriculum
bi-encoder)

49.14 ±
0.46

59.40 ±
1.30

56.52 ±
0.84

62.02 ±
0.21

Ablation Configurations

DECORTE (1 example)
44.70 ±
0.17

54.46 ±
0.46

52.83 ±
0.46

49.20 ±
0.53

DECORTE (10 examples)
42.87 ±
0.44

54.47 ±
0.32

52.57 ±
0.44

49.46 ±
0.62

DECORTE (1 example) +
SKILLSKAPE

48.29 ±
0.39

58.40 ±
0.48

52.82 ±
0.57

61.00 ±
0.38

DECORTE (1 example) +
SKILLSKAPE + Definitions
(no pre-training)

48.29 ±
1.15

57.18 ±
0.76

53.39 ±
0.29

61.99 ±
0.30

6. Limitations and Future Work
Our two-stage architecture requires training separate mod-
els. This increases computational requirements compared
to single-stage retrieval. While the cross-encoder processes
queries slower than bi-encoder retrieval due to joint encod-
ing, it remains efficient at 0.021s per example. Combined
with its more concise outputs (specific skills vs a list of rele-
vant candidates) and the fact that real-time skill extraction
is rarely critical in labour market analysis, the architecture
is well-suited for practical deployment.

Data scarcity remains a key challenge. Limited availabil-
ity of high-quality annotated job descriptions necessitated
using validation sets for cross-encoder training. While we
maintained evaluation integrity by using separate test sets,
larger training corpora would likely improve performance.

Our current evaluation is limited to English-language job
postings. Generalisation to other languages and industries
requires further investigation. ESCO’s availability in 28 lan-
guages presents an opportunity for multilingual extension,
following recent work in multilingual job recommendation
[31].

Finally, our cross-encoder uses direct label encoding
rather than one-hot representations. In theory, this en-
ables handling of new skills, though cross-encoder gener-
alisation capability to previously unseen skill taxonomies
requires further empirical validation. Future work should
explore cross-taxonomy transfer and the framework’s abil-
ity to adapt to evolving skill landscapes.



7. Conclusions
This paper introduced the two-stage neural architecture for
skill extraction, adapting successful information retrieval
practices to address the unique challenges of matching job
descriptions to large skill taxonomies. By combining bi-
encoder retrieval with cross-encoder ranking, our approach
bridges the gap between efficient candidate generation and
precise skill identification.

Our experiments validate the effectiveness of the two-
stage approach across multiple dimensions. The bi-encoder
achieves up to 62.02% RP@5 through curriculum learning
with ESCO definitions, while maintaining strong zero-shot
capability compared to the vanilla model on held-out skills.
More importantly, our cross-encoder ranker amplifies these
gains, delivering F1 scores up to 30.54 percentage points
higher than LLM-based alternatives. Notably, our ablations
revealed that in most cases, taxonomic definitions provide
value only through structured pre-training, highlighting
the importance of curriculum design in leveraging existing
resources. Together, these components create a system that
balances practical deployability with strong skill extraction
performance.

These results showcase how two-stage recommender
architectures can effectively address skill extraction chal-
lenges in HR systems. While previous work has explored
retrieval-based approaches or LLM-based ranking for skill
extraction, ours is the first to train purpose-built neural
architectures for both retrieval and ranking stages within
a unified framework. This modular design can leverage
advances in either component, with better retrievers yield-
ing richer candidate sets, and stronger rankers delivering
more precise relevance judgments. HR applications increas-
ingly rely on recommender techniques across recruitment
(job-candidate matching), development (skill gap identifi-
cation), and retention (career path recommendations). Our
two-stage approach offers a flexible foundation that can
be integrated into these diverse recommendation pipelines,
where extracted skills often serve as essential features for
downstream tasks.
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A. Prompt Configuration for
LLM-based ranker baselines

The created LLM-based rankers are deployed using the Ope-
nAI API platform5, implemented in Python. In total, two
models: GPT-4o-mini and GPT-4.1 are tested. Each model
is provided with the following system prompt:

System Prompt: You are an expert
skill classifier. Given a sentence and
a list of possible skills, your task
is to select only the skills that are
explicitly or implicitly required. Be
precise and avoid including unrelated or
weakly related skills. Return a JSON {
"relevant_skills": ["skill_1", "skill_2",
...] }. If no skills are relevant, return
{ "relevant_skills": [] }. Do not add any
other keys or text.

This prompt defines the task and ensures that the output is
constrained to a dictionary format, enabling efficient pars-
ing and evaluation.

5https://openai.com/api/

At inference time, we provide a single-shot demonstration
example using a designated get_demonstration function.
This improves model performance and ensures fair compa-
rability with the cross-encoder ranker, which also utilises
training data. The function selects a demonstration example
from a pool of annotated instances based on maximal skill
overlap with the input (see (A)). The candidate lists used
for demonstration are restricted to the top-20 labels prior to
the injection of missing gold labels. This is done to control
API cost and retain consistency with test examples.

Algorithm 1 Get Demonstration Based on Skill Overlap
Require: List of skills 𝑆, reference data 𝐷
Ensure: A selected demonstration example
1: if 𝐷 is empty then
2: return None
3: end if
4: 𝑅 ← set of skills 𝑆
5: 𝐵 ← empty list {Best examples}
6: 𝑀 ← −1 {Max overlap}
7: for all 𝑒 ∈ 𝐷 do
8: 𝑂 ← |𝑅 ∩ set(𝑒.candidate_labels)|
9: if 𝑂 > 𝑀 then

10: 𝐵 ← [𝑒]
11: 𝑀 ← 𝑂
12: else if 𝑂 = 𝑀 then
13: append 𝑒 to 𝐵
14: end if
15: end for
16: if 𝑀 = 0 then
17: return random choice from 𝐷
18: else
19: return random choice from 𝐵
20: end if

Given the original job description, a set of candidate skills,
and the retrieved demonstration, the model predicts a list
of truly relevant skills. These are then compared against
gold labels using the same evaluation protocol as the cross-
encoder ranker.

B. Runtime Statistics
All experiments were run on a single RTX 4070Ti SUPER
GPU with 16GB VRAM. Table 6 reports training time (total)
and average per-example inference time. Times are averaged
over 3 random seeds.

Table 6
Runtimes for the proposed two-stage pipeline. Training times
are wall-clock totals; inference times are per-example averages
over all evaluation sets at top-20 candidates. Stage 1 also incurs
a one-time cost to encode all ESCO labels (≈2s).

Train Test (inference)

Stage 1
Bi-encoder (pre-train
phase)

8.6 minutes
<0.002 seconds per

example
Bi-encoder (fine-tuning
phase)

7 minutes
<0.002 seconds per

example

Stage 2

Cross-encoder 55 minutes
0.021 seconds per

example

LLM (GPT-4o-mini) -
1.11 seconds per

example

LLM (GPT-4.1) -
1.07 seconds per

example

http://dx.doi.org/10.2767/934956
http://dx.doi.org/10.2767/934956
https://openai.com/api/
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