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Abstract
This paper presents a Fast Covariance Intersection-based Adaptive Extended Kalman Filter (FCI-AEKF) framework
for PPP-RTK and 5G integrated positioning. The framework addresses key challenges in GNSS-5G fusion, including
limited use of PPP-RTK’s high precision, slow error convergence from simple motion models, and distance-
dependent 5G measurement noise. It enables multi-rate fusion of PPP-RTK and 5G data, combining high-rate 5G
updates with PPP-RTK corrections. A dynamic motion model switching strategy is proposed to adaptively select
between constant velocity (CV) and constant acceleration (CA) models based on real-time vehicle dynamics.
Additionally, a distance-based noise model is introduced to adjust measurement noise covariance, enhancing
robustness under varying conditions. Experimental results on open-source GNSS data from The Hong Kong
Polytechnic University demonstrate that the proposed method outperforms existing GNSS-5G fusion approaches
in accuracy, robustness, and resistance to interference.
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1. Introduction

GNSS generally offers accurate positioning but faces severe challenges in dense urban areas and highway
interchanges due to signal blockage, multipath, and poor satellite geometry. While fusion with INS,
LiDAR, or vision systems can improve performance, these methods often suffer from accumulated drift,
high costs, or increased complexity.
Precise Point Positioning (PPP), with ambiguity resolution and atmospheric corrections, achieves

centimeter-level accuracy, and its real-time extension PPP-RTK reduces convergence time to approxi-
mately 30 seconds. However, PPP-RTK still struggles with limited satellite visibility and non-line-of-sight
(NLOS) issues. Meanwhile, 5G technology provides wide coverage, low latency, and dense network
infrastructure, enabling sub-meter positioning accuracy and serving as a promising complement to
GNSS, particularly in challenging environments [1].
Recent research increasingly focuses on GNSS/5G integrated positioning due to its potential for

low-cost, high-precision, and robust localization [2]. Existing methods mainly fall into three categories:
(i) theoretical analyses deriving position and velocity error bounds [3]; (ii) point positioning approaches
using clustering, particle filters, or tightly coupled nonlinear fusion [4, 5]; and (iii) time-based state
estimation via adaptive Kalman filtering [6].
However, several limitations remain. GNSS-based solutions still heavily rely on SPP, leading to

significant errors under dynamic conditions. Moreover, many studies restrict 5G measurement rates
to 1 Hz, despite the standard supporting much higher positioning rates, limiting their applicability in
fast-changing environments.
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To address these gaps, this paper introduces an adaptive model-switching strategy that dynamically
selects appropriate motion models based on vehicle dynamics. In addition, a distance-aware noise model
and a dynamic fusion weighting mechanism are designed to enable real-time covariance adaptation,
enhancing robustness and positioning accuracy under diverse signal conditions.
Fig. 1 illustrates our proposed hybrid positioning system integrating PPP-RTK, 5G PRS, and CORS

corrections for urban scenarios.

Figure 1: Illustration of the proposed GNSS-5G hybrid positioning framework integrating satellite signals, 5G
PRS, and CORS corrections in an urban environment.

To this end, we propose a Fast Covariance Intersection-based Adaptive Extended Kalman Filter
(FCI-AEKF) framework, with key contributions:

• First integration of PPP-RTK and 5G in a multi-rate fusion framework, leveraging precise correc-
tions for enhanced accuracy over SPP-based methods.

• An adaptive motion model switching strategy to improve tracking under varying dynamics.
• A distance-based noise model for real-time adjustment of measurement noise covariance, improv-
ing robustness.

• A dynamic localization mode-switching strategy to maintain positioning continuity under de-
graded GNSS/5G conditions.

2. System model

2.1. PPP-RTK Measurement Model

The linearized observation equations for pseudorange and carrier phase of the 𝑛th satellite on frequency
𝑓 are:

Δ𝑃𝑛𝑓 = 𝑒𝑛 ⋅ 𝛿𝑋𝑛 + 𝑐 ⋅ 𝛿𝑡𝑠𝑦𝑠 + 𝛼𝑛𝑇𝑍 + 𝛽𝑛𝐼 𝑛 − 𝛿𝑡𝑛𝑓 + 𝛿𝑡𝑟 ,𝑓 + 𝜀𝑝 (1)

ΔΦ𝑛
𝑓 = 𝑒𝑛 ⋅ 𝛿𝑋𝑛 + 𝛿𝑡𝑠𝑦𝑠 + 𝛼𝑛𝑇𝑍 − 𝛽𝑛𝐼 𝑛 + 𝛿𝑁 𝑛

𝑓 + 𝜀𝜙 (2)

Here, 𝑒𝑛 and 𝛿𝑋𝑛 represent the direction cosine and position correction, respectively. 𝑐 is the speed of
light, 𝛿𝑡𝑠𝑦𝑠 is the receiver clock bias, 𝛼𝑛 and 𝛽𝑛 are mapping functions, and 𝑇𝑍, 𝐼 𝑛 denote tropospheric
and ionospheric delays. 𝛿𝑁 𝑛

𝑓 is carrier phase ambiguity, and 𝜀𝑝, 𝜀𝜙 are Gaussian noise terms. Satellite
clock and relativistic effects are assumed corrected [7].
𝐼 𝑛 in (1) and (2) can be refined via the DESIGN model:

𝐼 𝑛 = 𝑎0 + 𝑎1𝛿𝑙 + 𝑎2𝛿𝑏 + 𝑎3𝛿𝑙2 + 𝑎4𝛿𝑏2 + 𝑟𝑛𝑟 + 𝜀𝐼 (3)



where 𝑎𝑖 model spatial ionospheric variations, 𝛿𝑙 and 𝛿𝑏 are longitudinal and latitudinal differences, 𝑟𝑛𝑟
captures temporal variations, and 𝜀𝐼 is noise.
The pseudorange and carrier phase differences are further expressed as:

Δ𝑃𝑛𝑓 = 𝑃𝑛𝑓 − √(𝑥𝑛 − 𝑥𝑟 ,𝑘−1)2 + (𝑦𝑛 − 𝑦𝑟 ,𝑘−1)2 + (𝑧𝑛 − 𝑧𝑟 ,𝑘−1)2 (4)

ΔΦ𝑛
𝑓 = 𝑃𝑛𝑓 − √(𝑥𝑛 − 𝑥𝑟 ,𝑘−1)2 + (𝑦𝑛 − 𝑦𝑟 ,𝑘−1)2 + (𝑧𝑛 − 𝑧𝑟 ,𝑘−1)2 (5)

where (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) and (𝑥𝑟 ,𝑘−1, 𝑦𝑟 ,𝑘−1, 𝑧𝑟 ,𝑘−1) are satellite and receiver positions.
The PPP-RTK state vector is then:

𝑥𝑃𝑃𝑃−𝑅𝑇𝐾 = (𝛿𝑋𝑛 𝑡𝑟 𝛿𝑡𝑠𝑦𝑠 𝛿𝑡𝑟 ,𝑓 𝑁 𝑛
𝑟 𝑎𝑖𝑟𝑛𝑟 )

𝑇
(6)

2.2. 5G Measurement Model

The 5G standard defines downlink Positioning Reference Signals (PRS) for DL-TDOA-based multilater-
ation. Base stations broadcast PRS after receiving assistance data, including their locations. The UE
cross-correlates the received PRS with a local sequence to estimate arrival times and compute DTDOA.
With MIMO antennas, DOA can be estimated using the LAMBDA method.

As signal acquisition is not the focus of this work, technical details are omitted. When the 5G receiver
detects 𝑘 signals at time 𝑚, the 5G measurement model is:

Z𝑘5𝐺[𝑚] = [𝛿𝜏𝑚, 𝜑𝑚, 𝜃𝑚]
𝑇
= h𝑘5𝐺(s𝑚) + n𝑘5𝐺[𝑚] (7)

Here, 𝛿𝜏𝑚 = 𝜏 𝑘𝑚 − 𝜏1𝑚 is the time-difference between base stations 𝑘 and 1. The angles 𝜑𝑚 and 𝜃𝑚 denote
azimuth and elevation, respectively. n𝑘5𝐺[𝑚] represents measurement noise.
The state vector at time 𝑚 is:

s𝑚 = [X𝑚,V𝑚,A𝑚, 𝜌𝑛, 𝜑𝑛]
T

(8)

where X𝑚, V𝑚, and A𝑚 are the 3D position, velocity, and acceleration, respectively; 𝜌𝑛 and 𝜑𝑛 denote
GNSS clock offset and skew.
The nonlinear 5G measurement function is:

h𝑘5𝐺(s𝑚) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑘𝑚 − 𝑑1𝑚
𝑐

+ 𝜌𝑛

arctan (
Δ𝑦𝑘𝑚
Δ𝑥𝑘𝑚

)

arctan (
Δ𝑧𝑘𝑚

√(Δ𝑥𝑘𝑚)2 + (Δ𝑦𝑘𝑚)2
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where 𝑑𝑘𝑚 is the distance to base station 𝑘:

𝑑𝑘𝑚 = √(Δ𝑥
𝑘
𝑚)2 + (Δ𝑦𝑘𝑚)2 + (Δ𝑧𝑘𝑚)2 (10)

Given low-cost 5G oscillators, clock drift relative to GNSS must be compensated. The clock offset
evolves as:

𝜌𝑚 = 𝜌𝑚−1 + 𝜑𝑚Δ𝑡 (11)

Clock skew follows a first-order autoregressive model:

𝜑𝑚 = 𝜂 ⋅ 𝜑𝑚−1 + 𝜀𝑚 (12)

where 𝜂 is set to 1, and 𝜀𝑚 ∼ 𝒩 (0, 𝜎2𝜀 ) is white Gaussian noise.



3. Proposed Approach

We propose a GNSS-5G hybrid positioning framework leveraging multi-rate fusion, designed to enhance
positioning accuracy and robustness. The framework integrates the following core components:

• Dynamic Motion Model Switching: An adaptive strategy that switches between constant
velocity (CV) and constant acceleration (CA)models based on real-time vehicle dynamics, ensuring
accurate state prediction in varying motion conditions.

• Distance-Dependent Noise Modeling: A noise adaptation mechanism that adjusts observation
noise covariance in the Kalman filter according to the varying distances between the user and 5G
base stations, improving the reliability of 5G-based measurements.

• Fast Covariance Intersection (FCI) Fusion: An efficient fusion algorithm that combines
GNSS and 5G positioning estimates without requiring iterative optimization, ensuring robust
performance even under partial observability.

Furthermore, we incorporate a multi-rate mode switching mechanism that dynamically selects the
optimal positioning strategy based on the availability and quality of GNSS and 5G signals. This design
ensures consistent, reliable performance across complex urban environments.

3.1. Dynamic Motion Model Switching

We propose a Dynamic Motion Model Switching (DMMS) framework that adaptively switches between
CV and CA models by analyzing velocity and acceleration. The selection rule is:

Model Selection =
⎧⎪
⎨⎪
⎩

CV Model,
|V𝑚 ⋅ A𝑚|
‖V𝑚‖2 + 𝜖

< 𝑟

CA Model,
|V𝑚 ⋅ A𝑚|
‖V𝑚‖2 + 𝜖

≥ 𝑟
(13)

The system state evolves according to:

s𝑚 = A ⋅ s𝑚−1 + B +W𝑚 (14)

whereA is selected as eitherACV orACA, depending on the switching rule, andW𝑚 is Gaussian process
noise.
The CV model uses a transition matrix ACV that accounts for position, velocity, and clock drift:

ACV =
⎡
⎢
⎢
⎢
⎣

I3×3 Δ𝑡 ⋅ I3×3 0 0
0 I3×3 0 0
0 Δ𝑡−1 ⋅ I3×3 0 0
0 0 0 A𝑘

⎤
⎥
⎥
⎥
⎦

, A𝑘 = [1 Δ𝑡
0 𝜂 ] (15)

Here, A𝑘 models clock bias as in (11), (12). Acceleration changes do not affect velocity or position
updates in this model.
The corresponding process noise covariance matrix QCV is:

QCV = [
Q𝑉 0 0
0 U 0
0 0 L

] (16)

where Q𝑉, U, and L are standard formulations capturing process noise.
Similarly, the CA model uses the transition matrix ACA:

ACA = [
I Δ𝑡 ⋅ I Δ𝑡2

2 ⋅ I
0 I Δ𝑡 ⋅ I
0 0 I

] (17)



with the process noise covariance matrix QCA defined as:

QCA = [GUG
T 0

0 L] (18)

where G models higher-order motion effects.
This simplified formulation retains key equations and modeling insights while reducing redundancy.

It ensures readability, clarity, and full LaTeX compatibility.

3.2. Dynamic Noise Covariance Modeling

Observation noise is a critical factor affecting positioning accuracy. Traditional EKF methods typically
assume fixed noise covariance, which neglects variations caused by changes in sensor-target geometry
and environmental conditions. To address this, we incorporate a distance-dependent noise model based
on the Cramér–Rao Lower Bound (CRLB), improving the robustness of 5G-based localization.
At time step 𝑚, the 5G measurement noise vector n𝑘5𝐺[𝑚] comprises TDOA and DOA noise compo-

nents, each modeled as independent zero-mean Gaussian variables:

𝑛𝜏 ,𝑘1 ∼ 𝒩 (0, 𝜎2𝜏 ,𝑘1), 𝑛𝜑,𝑘 ∼ 𝒩 (0, 𝜎2𝜑,𝑘), 𝑛𝜃,𝑘 ∼ 𝒩 (0, 𝜎2𝜃,𝑘) (19)

The CRLBs for TOA and DOA are given by [9, 10, 11, 12]:

𝜎2𝜏 = 𝑐2

4𝜋2 ⋅ 𝑡𝑠 ⋅ 𝐵3 ⋅ SNR𝑘
, 𝜎2𝜑,𝜃 =

𝜆2

8𝜋2 ⋅ 𝑁𝑠 ⋅ 𝐴𝑅 ⋅ SNR𝑘
(20)

Signal-to-noise ratio (SNR) is modeled using the path loss model [13]:

𝜁 =
16𝜋2 ⋅ 𝑑𝛼𝑃𝐿𝑘 ⋅ 10𝛽𝑆𝐹/10

𝜆2
(21)

By combining these relationships, we obtain the distance-dependent noise variances for TDOA and
DOA:

𝜎2𝜏𝑘 = 𝜎2𝜏 (
𝑑𝑘
𝑑𝑟
)
𝛼𝑃𝐿

, 𝜎2𝜑𝑘 = 𝜎2𝜑 (
𝑑𝑘
𝑑𝑟
)
𝛼𝑃𝐿

, 𝜎2𝜃𝑘 = 𝜎2𝜃 (
𝑑𝑘
𝑑𝑟
)
𝛼𝑃𝐿

(22)

where 𝑑𝑟 = 1 is the reference distance.
Thus, the observation noise covariance matrix R is constructed as:

R = [
R𝜏 0 0
0 R𝜑 0
0 0 R𝜃

] (23)

This distance-aware model dynamically adjusts measurement noise according to the relative geometry
between the user and 5G base stations, enhancing localization reliability and adaptability under varying
signal conditions.

3.3. FCI-AEKF-based filtering process

5G systems typically rely on GPS as the primary time synchronization source, with synchronization
errors generally within tens of nanoseconds [15]. In real vehicular environments, timing deviations
may be negligible, and thus, this work assumes perfect synchronization for simplicity. In our fusion
framework, the GNSS and 5G measurements are processed in two stages, each at different sampling
rates.
In the first stage of FCI-AEKF, the time index of 5G measurements is defined as:

𝑡 = 𝑇𝑚−1 + 𝑗, 𝑗 = 1 ∶ 𝐿𝑟 (24)

𝑇𝑚 = 𝑇𝑚−1 + 𝐿𝑟 (25)

where 𝑚 denotes the GNSS epoch index (starting from 0), and 𝐿𝑟 =
𝑓5𝐺
𝑓𝑠𝑎𝑡

represents the ratio of 5G and
GNSS sampling rates. This ratio must be an integer.



3.3.1. First Stage of FCI-AEKF

In the first stage, the FCI-AEKF predicts states using 5G TDOA and DOA measurements based on (1),
(3), and (4):

s−5𝐺[𝑡] = A ⋅ s+5𝐺[𝑡 − 1] + B (26)

P−5𝐺[𝑡] = AP+5𝐺[𝑡 − 1]AT + Q5𝐺[𝑡] (27)

Here, A and Q depend on the selected motion model. The posterior update follows:

K5𝐺[𝑡] = P−5𝐺[𝑡]H
⊤
5𝐺[𝑡] (H5𝐺[𝑡]P−5𝐺[𝑡]H

⊤
5𝐺[𝑡] + R[𝑡])−1 (28)

s+5𝐺[𝑡] = s−5𝐺[𝑡] + K5𝐺[𝑡] (Z5𝐺[𝑡] − h5𝐺 (s−5𝐺[𝑡])) (29)

P+5𝐺[𝑡] = (I − K5𝐺[𝑡]H5𝐺[𝑡])P−5𝐺[𝑡] (30)

where H5𝐺[𝑡] is the Jacobian matrix of h5𝐺.

3.3.2. Second Step of FCI-AEKF

The second stage uses s+5𝐺[𝑡] as the reference position X𝑚 and solves the PPP-RTK state via weighted
least squares:

sppp-rtk[𝑚] = (H𝑇
satR−1

satHsat)
−1

H𝑇
satR−1

satysat[𝑚] (31)

Pppp-rtk[𝑚] = (H𝑇
satR−1

satHsat)
−1

(32)

To fuse results, FCI combines the 5G and satellite solutions:

P[𝑚] = (𝑤5𝐺[𝑚]P−15𝐺[𝑚] + 𝑤sat[𝑚]P−1sat[𝑚])
−1

(33)

𝜔5𝐺[𝑚] =
‖P−15𝐺[𝑚] + P−1sat[𝑚]‖ − ‖P−1sat[𝑚]‖ + ‖P−15𝐺[𝑚]‖

2‖P−15𝐺[𝑚] + P−1sat[𝑚]‖
, 𝜔sat[𝑚] = 1 − 𝜔5𝐺[𝑚] (34)

The final fused estimate is:

ŝ[𝑚] = 𝜔5𝐺P[𝑚]P−15𝐺[𝑚]s5𝐺[𝑚] + 𝜔satP[𝑚]P−1sat[𝑚]ssat[𝑚] (35)

Here, ssat[𝑚] = X𝑚 + 𝛿X𝑛. The fused estimate ŝ[𝑚] is updated at the satellite sampling rate 𝑓sat.

3.4. Positioning Mode Switching Strategy

To enhance multi-rate GNSS/5G positioning, we propose a dynamic mode switching strategy that
leverages high-rate 5G TDOA/DOA measurements and adapts to variations in GNSS and 5G signal
conditions. The system operates in three modes according to signal availability: (i) GNSS/5G fusion
mode, where 5G predictions are fused with GNSS updates using FCI-AEKF; (ii) 5G-only mode, activated
when fewer than six GNSS satellites are visible; and (iii) PPP-RTK mode, used when fewer than
two line-of-sight (LOS) 5G base stations are available. This adaptive mechanism ensures robust and
continuous positioning across diverse and challenging environments, maintaining high accuracy even
under degraded signal conditions.

The multi-rate switchover scheme for GNSS and 5G hybrid positioning is detailed in Algorithm 1.

Algorithm 1Multi-rate switchover algorithm for GNSS/5G hybrid positioning

Input: Initial state 𝑠[0], GNSS observations, 5G measurements
Output: Fused positioning state ̂𝑠+𝑠𝑎𝑡[𝑛]
1: for each GNSS epoch 𝑛 = 1 to 𝑁 do
2: Compute RSRP of all base stations



3: Estimate path loss from RSRP and transmit power
4: Identify the two smallest values 𝑃𝐿1, 𝑃𝐿2
5: Compare 𝑃𝐿1, 𝑃𝐿2 with threshold 𝑇ℎ𝑃𝐿 to determine 𝑁𝐿𝑂𝑆
6: if 𝑁𝐿𝑂𝑆 = 2 then
7: Switch to high-rate MRAKF scheme
8: for 𝑖 = 1 to 𝑅𝑎 do
9: 𝑡 ← (𝑛 − 1)𝑅𝑎 + 𝑖
10: Δ𝑡 ← 1/𝜇𝐵𝑆
11: Output posterior estimate ̂𝑠+𝐵𝑆[𝑡]
12: end for
13: Output ̂𝑠+𝐵𝑆[𝑛𝑅𝑎]
14: Compute fused state ̂𝑠+𝑠𝑎𝑡[𝑛] via Eq. (19)–(21)
15: else if 𝑁𝐿𝑂𝑆 = 1 then
16: Switch to centralized EKF
17: else
18: Switch to GNSS SPP
19: end if
20: end for
21: return ̂𝑠+𝑠𝑎𝑡[𝑛] =0

3.5. Results and Discussion

3.5.1. Experiment Setup

To evaluate the proposed FCI-AEKF algorithm, a vehicle-based field experiment was conducted around
the Haidian campus of Beijing Normal University. A GNSS-5G receiver was mounted on a car, and
GNSS measurements were collected at 1 Hz during driving. Distances and angles from simulated 5G
base stations to the user equipment (UE) were computed based on ground-truth positions. Synthetic
noise was then added to emulate realistic 5G measurement errors. Hybrid positioning was performed
by fusing actual GNSS observations with simulated 5G data.

Figure 2: GNSS-5G receiver setup and driving trajectories around the Haidian campus.

3.5.2. Performance Comparison

Fig. 3 shows the positioning error over time for different methods. The proposed FCI-AEKF consistently
maintains low error, demonstrating strong stability. In contrast, tcWLS and PPP-RTK exhibit larger
error fluctuations and occasional peaks, indicating less robustness under challenging conditions.
Fig. 4 presents the cumulative distribution function (CDF) of positioning errors. The FCI-AEKF

achieves the best overall performance, with its CDF curve positioned farthest to the left. TcWLS and
PPP-RTK methods yield higher errors, while RAE and AEKF-R provide intermediate performance.

Table 1 summarizes quantitative results. The FCI-AEKF yields the lowest average error (0.31 m) and
highest probability of 3D error below 1 m (96.47%). In contrast, PPP-RTK exhibits the largest error and
lowest reliability. Other methods, such as RAE and AEKF-R, perform moderately but less consistently
than FCI-AEKF.



Figure 3: Positioning error over time for FCI-AEKF, RAE, AEKF-R, tcWLS, and PPP-RTK.

Figure 4: CDF comparison of positioning errors for FCI-AEKF, tcWLS, PPP-RTK, RAE, and AEKF-R.

Table 1
Positioning errors of different methods

Method 5G Rate Average Error Probability Maximum Error
(samples/s) (m) (3D error < 1m) (m)

Proposed FCI-AEKF 10 0.31 96.47% 1.74
tcWLS - 1.21 36.15% 2.52
PPP-RTK - 1.75 12.36% 3.75
RAE 10 0.51 89.97% 2.33
AEKF-R 10 0.84 69.08% 3.56

3.6. Conclusions

This paper presents the FCI-AEKF framework for GNSS/5G hybrid positioning. By fusing high-rate
5G and GNSS data, the algorithm effectively improves positioning accuracy while maintaining low
computational complexity. It also integrates an adaptive motion model switching mechanism and a
distance-based noise model to enhance robustness.
Field experiments confirm that FCI-AEKF outperforms conventional GNSS-5G methods, providing

lower errors and higher reliability, particularly in challenging environments with limited GNSS visibility.
Overall, the proposed FCI-AEKF demonstrates strong potential for improving positioning performance

and system stability in complex real-world scenarios, offering a promising solution for precise GNSS/5G
integration.

Acknowledgments

This work was supported by the National Key Research and Development Program of China underGrant
No.2022YFB3904700.



Declaration on Generative AI

The authors declare that AI tool was used to assist in improving the language fluency of this paper. All
contents, ideas, and conclusions are the authors’ own, and the AI tool did not contribute to the scientific
results or analysis.

References

[1] H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson, “5G mmWave Position-
ing for Vehicular Networks,” IEEE Wireless Communications, vol. 24, no. 6, pp. 80–86, Dec. 2017. doi:
10.1109/MWC.2017.1600374.

[2] F. Campolo, A. Blaga, M. Rea, A. Lozano, and X. Costa-Pérez, “5GNSS: Fusion of 5G-NR and GNSS
Localization for Enhanced Positioning Accuracy and Reliability,” IEEE Transactions on Vehicular
Technology, vol. 73, no. 9, pp. 13558–13568, Sept. 2024. doi: 10.1109/TVT.2024.3396991.

[3] G. Destino, J. Saloranta, G. Seco-Granados, and H. Wymeersch, “Performance Analysis of Hybrid
5G-GNSS Localization,” 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 2018, pp. 8–12. doi: 10.1109/ACSSC.2018.8645207.

[4] W. Zhang, et al., “A GNSS/5G Integrated Three-Dimensional Positioning Scheme Based on D2D
Communication,” Remote Sensing, vol. 14, no. 6, p. 1517, 2022.

[5] J. A. del Peral-Rosado, et al., “Methodology for Simulating 5G and GNSS High-Accuracy Positioning,”
Sensors, vol. 18, no. 10, p. 3220, 2018.

[6] G. Guo, X. Sun, and J. Liu, “5G/GNSS Integrated Vehicle Localization With Adaptive Step Size
Kalman Filter,” IEEE Transactions on Vehicular Technology, vol. 73, no. 11, pp. 16531–16542, Nov. 2024,
doi: 10.1109/TVT.2024.3421383.

[7] Q. Zhao, et al., “Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS
Data Processing,” Journal of Geodesy, vol. 93, pp. 545–560, 2019.

[8] M. Goodarzi, D. Cvetkovski, N. Maletic, J. Gutiérrez, and E. Grass, “A Hybrid Bayesian Approach
Towards Clock Offset and Skew Estimation in 5G Networks,” in Proc. 2020 IEEE 31st Annual Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 2020,
pp. 1–7, doi: 10.1109/PIMRC48278.2020.9217175.

[9] S. M. Lanzisera and K. Pister, “RF Ranging for Location Awareness,” Ph.D. dissertation, University of
California, Berkeley, 2009.

[10] S. Lanzisera, D. Zats, and K. S. J. Pister, “Radio frequency time-of-flight distance measurement for
low-cost wireless sensor localization,” IEEE Sensors Journal, vol. 11, no. 3, pp. 837–845, Mar. 2011.

[11] I. Peshkov and Y. Nechaev, “Estimation and Minimization of the Cramer-Rao lower bound for radio
direction-finding on the azimuth and elevation of planar antenna arrays,” Journal of Communications
Software and Systems, vol. 15, no. 4, pp. 317–328, Dec. 2019.

[12] M. A. Richards, Fundamentals of Radar Signal Processing, vol. 1, New York, NY, USA: McGraw-Hill,
2005.

[13] N. T. T. Docomo, “5G Channel Model for Bands up to 100 GHz,” Technical Report, 2016.
[14] Committee on Evolution of Untethered Communications, “The Evolution of Untethered Commu-

nications,” National Academies Press, Washington, DC, USA, 1997.
[15] Z. Wang, et al., “Time Synchronization for 5G and TSN Integrated Networking,” IEEE Journal on

Selected Areas in Communications, 2025.
[16] D. Franken and A. Hupper, “Improved Fast Covariance Intersection for Distributed Data Fusion,”

Proc. 7th Int. Conf. on Information Fusion (FUSION), vol. 1, pp. 1–8, IEEE, 2005.

https://doi.org/10.1109/MWC.2017.1600374
https://doi.org/10.1109/TVT.2024.3396991
https://doi.org/10.1109/ACSSC.2018.8645207
https://doi.org/10.1109/TVT.2024.3421383
https://doi.org/10.1109/PIMRC48278.2020.9217175

	1 Introduction
	2 System model
	2.1 PPP-RTK Measurement Model
	2.2 5G Measurement Model

	3 Proposed Approach
	3.1 Dynamic Motion Model Switching
	3.2 Dynamic Noise Covariance Modeling
	3.3 FCI-AEKF-based filtering process
	3.3.1 First Stage of FCI-AEKF
	3.3.2 Second Step of FCI-AEKF

	3.4 Positioning Mode Switching Strategy
	3.5 Results and Discussion
	3.5.1 Experiment Setup
	3.5.2 Performance Comparison

	3.6 Conclusions


