
Range-Angle Likelihood Maps for Indoor Positioning
Using Deep Neural Networks
Muhammad Ammad1, Paul Schwarzbach1, Michael Schultz2 and Oliver Michler1

1Chair of Transport Systems Information Technology, Institute of Traffic Telematics, Technische Universität Dresden
2Chair of Air Traffic Concepts, University of the Bundeswehr Munich

Abstract
Accurate and high precision of the indoor positioning is as important as ensuring reliable navigation in outdoor
environments. Using the state-of-the-art deep learning models provides better reliability and accuracy to navigate
and monitor the accurate positions in the aircraft cabin environment. We utilize the simulated aircraft cabin
environment measurements and propose a residual neural network (ResNet) model to predict the accurate
positions inside the cabin. The measurements include the ranges and angles between a tag and the anchors points
which are then mapped onto a grid as range and angle residuals. These residual maps are then transformed into
the likelihood grid maps where each cell of the grid shows the likelihood of being a true location. These grid maps
along with the true positions are then passed as inputs to train the ResNet model. Since any deep learning model
involve numerous parameter settings, hyperparameter optimization is performed to get the optimal parameters
for training the model effectively with the highest accuracy. Once we get the best hyperparameters settings of the
model, it is then trained to predict the positions which provides a centimeter-level accuracy of the localization.
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1. Introduction

Indoor positioning systems (IPS) have become increasingly important in recent advancements, par-
ticularly due to the limited availability of satellite positioning systems in indoor environments [1].
Technologies such as Wi-Fi, Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), and ZigBee have
gained attention as viable solutions for high-precision applications [2, 3]. Recently, the integration of
these systems with artificial intelligence (AI) has gathered significant attention, primarily due to the
increased precision and higher accuracy of their positioning outcomes [4]. Recent work has explored
radio propagation simulations to improve AI-enabled localization systems by addressing conventional
tool-chain bottlenecks and advancing simulation techniques [5, 6]. Building on these developments
in aircraft cabin positioning systems, this study investigates simulation-based evaluation of IPS for
connected aircraft cabins using state-of-the-art deep learning techniques.

As illustrated in Fig. 1, we use the data-driven localization methods utilizing the simulated range
and angle of arrival (AoA) measurements based on observability from different anchor points. These
measures are then used to construct the likelihood grid maps using the residuals, which serve as spatial
representations of the passenger’s possible location. Then the ResNet [7] model is trained on these grid
maps to analyze the spatial data thus predicting the passenger’s location.

The remainder of the paper is structured as follows: Section 2 reviews related work and background
of different technologies. Section 3 describes the data simulation methodology, aircraft environment
setup, and error modeling. Section 4 shows how range and angle residuals are calculated to generate the
likelihood grid maps. Section 5 explores in-depth details of the ResNet architecture layers along with
the input and loss function. Section 6 discusses the hyperparameter tuning impacts on the accuracy
and finally provides a comprehensive evaluation of the model’s accuracy on the dataset.
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Figure 1: Graphical abstract and outline of the paper.

2. Related Work

The application of AI and machine learning (ML) technologies in indoor positioning has attracted
considerable interest in recent research due to their ability to enhance accuracy, reliability and accuracy
[8]. Indoor positioning methods can be categorized into two key paradigms: (1) direct AI/ML positioning,
and (2) AI/ML-assisted positioning [9]. The first method estimates the location using raw sensor data
(Wi-Fi, bluetooth etc.), employing ML algorithms such as neural networks, decision trees, and support
vector machines to detect complex patterns without traditional signal processing [10]. This approach
streamlines localization but relies on extensive training data to avoid overfitting issues which may arise
during training process [4], but obtaining a robust training dataset remains a challenge.

In contrast, AI/ML-assisted positioning enhances traditional methods for localization by integrating
ML for error correction and adaptive learning. This hybrid approach strengthens the reliability of
conventional triangulation or fingerprint-based localization [9]. It is particularly effective for dynamic
environments, where reinforcement learning and real-time adjustments enhance accuracy, optimizing
wireless indoor positioning systems for reliable localization even in variable conditions [11].

The feature extraction capabilities of deep neural networks (DNNs) plays a critical role in enhancing
the performance for indoor localization tasks. For instance, [12] presented a scalable DNN architecture
by processing the Wi-Fi signal data to classify the multi-building and multi-floor locations, thereby
reducing the localization errors typically encountered in the traditional algorithms. Furthermore, long
short-term memory (LSTM) - another type of DNN - is utilized for tracking the temporal dependencies
within the received signal strength (RSS) data to better meet the demands of IoT-driven localization
systems [13]. Moreover, deep learning frameworks indicate that employing CNNs alongside UWB
signals enhances feature extraction capabilities typically in indoor environments [14].

3. Data Simulation

The development of deep learning models for indoor positioning systems requires comprehensive
training datasets that accurately reflect the complexities of real-world environments. This section
details the methodology used for simulating range and angle measurements, which form the foundation
for constructing the likelihood grid maps used in training the ResNet model.

In previous works the challenges for radio propagation and radio-based localization associated with
the aircraft cabin environment have been studied [15, 16, 17]. To further elaborate on these challenges, we
address operational simulation representing a boarding process in an A320 combined with a ray tracing
and stochastical error modeling for radio propagation. The applied simulation framework for radio
propagation builds upon two foundational works. Schwarzbach et al. [18] conducted an extensive survey



of UWB ranging measurements in challenging environments, resulting in a statistical model. This model
enables probabilistic generation of UWB range measurements with realistic characteristics, accounting
for Line-of-Sight (LOS), Non-Line-of-Sight (NLOS), outlier reception scenarios, and measurement
failures. The statistical distributions derived from their empirical data capture the error patterns
typically encountered in real-world deployments. In addition, [6] applied this statistical model in
conjunction with ray tracing to determine anchor visibility within aircraft cabin environments. This
approach accounts for the complex geometry and material properties of the aircraft, providing a dataset
published in [19]. Building on these works, our simulation consists of several key components: A detailed
3D model of the aircraft cabin, including geometric dimensions and material properties. Across this
mode, multiple anchors are positioned throughout the cabin space based on optimal coverage analysis
and practical installation constraints. Based on this, ray tracing algorithms simulate signal propagation
between anchors and potential tag positions, accounting propagation phenomena introduced by cabin
structures. The deterministic rays are augmented with statistical error models derived from [18],
introducing realistic measurement uncertainties.

3.1. Overview of aircraft setup

The aircraft cabin environment presents unique challenges for IPS due to its elongated geometry,
densely packed seating arrangement, and various obstructing elements. Our simulation recreates a
standard single-aisle commercial aircraft cabin (dimensions: 30×3.5×2.4m representing an A320. The
simulation incorporates 8 anchor nodes spread throughout the plane. The configuration is visualized in
Fig. 1. The reference input data for the localization system is derived from an operational simulation
that models the aircraft boarding process. This simulation incorporates 148 passengers boarding the
aircraft according to the methodological framework established by Schultz et al. [20]. Each passenger is
assumed to carry a wireless tag, constituting the mobile nodes to be localized.

3.2. Measurement simulation and error modeling

For each passenger at each time step during the boarding process a potential tag position is derived.
For this task, we use the reference positions of the boarding simulation. Based on the reference states, a
true Euclidean distance 𝑑𝑖 and a true azimuth angle 𝜃𝑖 between the tag positions x𝑖 = (𝑥𝑖, 𝑦𝑖)

⊺ and
each anchor x𝑎 = (𝑥𝑎, 𝑦𝑎)⊺ is calculated with:

𝑑𝑎𝑖 =
√︀

(𝑥𝑖 − 𝑥𝑎)2 + (𝑦𝑖 − 𝑦𝑎)2 𝜃𝑎𝑖 = arctan 2

(︂
𝑦𝑖 − 𝑦𝑎

𝑥𝑖 − 𝑥𝑎

)︂
. (1)

The additive error components 𝜀𝑟 for range measurements, are implemented based on the statistical
error characterization framework established in [18]. Furthermore, the statistical properties of the
AoA errors are derived from the work presented by Yu et al. in [21]. The measurement simulation
follows a structured decision tree process: Beginning with the true relation (distance 𝑑, angle 𝜃), we
first determine if a measurement failure occurred. In case of failure, a null value is recorded (𝑟 = None,
𝑎 = None). For valid measurements, the simulation classifies the error type based on the ray tracing
simulation into three categories: Line-of-Sight (LOS), Non-Line-of-Sight (NLOS), or outlier conditions.
Each category then applies the corresponding stochastic model from Table 1.

4. Likelihood grid maps

We implement a discrete, grid-based state space representation. The spatial domain of interest is
discretized into a uniform grid 𝐺 with dimensions 𝑀×𝑁 , where each cell g𝑦(𝑚,𝑛) represents a position
hypothesis. The fundamental advantage of using these grids come from the fully convolutional nature
of the ResNet model which can innately leverage spatial representations. It can train effectively on
image grids allowing the model to capture localized features and exploit spatial patterns much better
than the other DNN models due to the skip connections and the residual blocks feature [22].



Table 1
Stochastic Error Models for ranging and angle measurements.

Condition Range Angle

LOS 𝜀𝑟 ← 𝒩 (0, 𝜎2
𝑟)

𝜎𝑟 = 0.3 m
𝜀𝑎 ← 𝒩 (0, 𝜎2

𝜃)
𝜎𝜃 = 3∘

NLOS 𝜀𝑟 ← ℒ𝒩 (𝜇, 𝜎)
𝜇 = 0.8; 𝜎 = 1.07

𝜀𝑎 ← 𝒰(−𝜋, 𝜋)

Outlier 𝜀𝑟 ← 𝒰(−𝑑, 𝑑) 𝜀𝑎 ← 𝒰(−𝜋, 𝜋)
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Figure 2: Histograms of residuals for (a) angle measurements in radians and (b) range measurements in meters.

At first, for each grid cell g(𝑔,ℎ) and each anchor point x𝑎, we compute the known term values
based on the given geometric relationships given in Eq. (1). These values constitute the expected
measurements under ideal conditions, derived directly from the geometric configuration. The residuals
are then computed by comparing the known terms with the given observations (𝑑̂ and 𝜃̂):

1. Range residual: 𝑟(𝑔,ℎ) = 𝑑(𝑔,ℎ,𝑘) − 𝑑̂𝑘

2. Angle residual: 𝑟𝜃,(𝑔,ℎ) = 𝜃(𝑔,ℎ,𝑘) − 𝜃̂𝑘

These residuals quantify the discrepancy between expected and observed measurements for each
potential position, forming the basis for likelihood evaluation.

The residuals are transformed into likelihood values through the application of an observation model
that characterizes the probability of obtaining the observed measurement given a hypothesized position.
While various models can be employed, a common approach utilizes a Gaussian model:

1. Range likelihood: 𝐿(𝑟)
(𝑔,ℎ,𝑘) = exp

(︁
− (𝑟(𝑔,ℎ,𝑘))

2

2𝜎2
𝑟

)︁
2. Angle likelihood: 𝐿(𝜃)

(𝑔,ℎ,𝑘) = exp
(︁
− (𝑟𝜃,(𝑔,ℎ,𝑘))

2

2𝜎2
𝜃

)︁
where 𝜎2

𝑟 and 𝜎2
𝜃 represent the variance parameters of the observation model for range and angle

measurements, respectively.
The resulting likelihood maps 𝐿

(𝑟)
(𝑔,ℎ,𝑘) and 𝐿

(𝜃)
(𝑔,ℎ,𝑘) provide a spatially-resolved representation of

the measurement, with higher values indicating greater likelihoods of the tag being located at the
corresponding position. For anchor measurements, the individual likelihood maps can be combined
through multiplication (assuming conditional independence) to obtain an overall likelihood field:

𝐿(𝑔,ℎ) =
𝐾∏︁
𝑘=1

𝐿
(𝑟)
(𝑔,ℎ,𝑘) · 𝐿

(𝜃)
(𝑔,ℎ,𝑘) (2)

This integrated likelihood map serves as a comprehensive spatial representation of position probability
based on the complete set of available measurements, forming the foundation for subsequent position



estimation through maximum likelihood or Bayesian inference methods. An exemplary output for the
derived likelihood grid maps for both measurement types is given in the graphical abstract in Fig. 1.

5. Positioning using DNNs

In this section, we explore how the deep neural networks has been implemented to estimate the location
of the passengers in the simulated indoor cabin environments using the ResNet. The focus is on the
model’s architecture along with the inputs and loss function used for the model.

Figure 3: ResNet model architecture used for indoor localization

5.1. ResNet architecture

ResNet model has been trained on the grid maps to predict the location coordinates. The deep layering
inside the ResNet model allows it to learn the complex spatial features in the likelihood grid maps. The
residual blocks in the ResNet model allows the input residual maps to train more effectively with better
generalization despite having a complex and deeper architecture [3]. The model’s architecture shown
in Fig. 3 consists of multiple residual blocks each including convolutional layers along with the batch
normalization (BN) [23], rectified linear unit (ReLU) [24], and Dropout[25] layers. The addition of the
dropout layers helps to mitigate overfitting enabling a better generalization for unseen data [25].

Although the original ResNet model does not include a dropout layer, we incorporate it into our
architecture to further stabilize the training, as also implemented in [26]. The output of the convolutional
layers inside the residual block is added back to the original input using a shortcut connection. This
establishes an identity mapping [27] thus enhancing the gradient flow during back-propagation. To
enable the model to predict continuous 𝑥, 𝑦 position coordinates, the output layer is implemented as a
Dense layer with a linear activation function.

5.2. Input and loss function

The likelihood grid maps have been used as inputs for the ResNet model as shown in Fig. 1. Each
measurement have the range and AoA grid maps for all anchors but whenever there is a measurement



failure, an array of zeros with the same input shape is used. This issue is commonly present in real-world
scenarios due to signal blockage or measurement limitations. Handling the invalid measurement is very
important to ensure consistent input dimensions for the ResNet model.

Since both grid maps share the same dimensions, these are combined by stacking them along the
channel dimensions. For N anchor points, we have a total of 2 × 𝑁 channels. In our dataset, each
measurement have ranges and angles from 8 anchors points leading to a total of 16 channels - 8 channels
for each measurement’s likelihood maps. Consequently, the input array has a dimension of 16×16×62
as illustrated in Fig. 3, where 62× 62 represents the spatial grid shape.

ResNet being a supervised algorithm, it gets the ground truth labels for training. The ground truth
labels consists of the true locations represented as a (𝑥, 𝑦) coordinates in 2D plane. Each training
epoch pairs the grid maps true locations, training the model to minimize prediction error. The mean
squared error (MSE) is a regression loss function which is used for our model to minimize the error.
This function guides the model optimizing towards getting accurate position predictions. It calculates
the average squared difference between predicted and actual coordinates [28]. It is expressed as

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦_𝑝𝑟𝑒𝑑− 𝑦_𝑡𝑟𝑢𝑒)2, (3)

where y_pred represents the (𝑥, 𝑦) coordinates predicted by the model and y_true represents the
actual (𝑥, 𝑦) coordinates.

6. Performance evaluation

To evaluate the performance of any deep learning model, it is crucial to ascertain the optimal hyperpa-
rameter settings that would enhance the model performance significantly. Hyperparameter tuning is
carried out to avoid overfitting as well as optimizing the performance and generalization of machine
learning models [29]. The choice of hyperparameters significantly influences the efficiency of training
and accuracy of predictions. Before training the model, we implemented a systematic hyperparameter
search to identify the best configurations and then train the ResNet model on those settings.

6.1. Impact of hyperparameter selection on accuracy

The hyperparameters selected include learning rate, dropout rate, batch size, and optimizer ( cf. Ta-
ble 2). The hyperparameter space from which these were drawn is also included, alongside the best
hyperparameter settings concluded from trials based on performance outcomes shown in Table 3.

Table 2
Hyperparameter search space and selected hyperparameters for the ResNet model

Hyperparameter Search Space Selected Values

Optimizer [’Adam’[30], ’Adamax’[30], ’Adagrad’[31], ’RMSprop’[32]] Adam
Learning Rate [0.01, 0.001, 0.0005, 0.0001] 0.001
Batch Size [8, 16, 32, 64] 32
Dropout Rate [0.2, 0.3, 0.4, 0.5] 0.2

We have applied 12 iterations on different combinations of hyperparameters and evaluated the loss
to track the model’s performance based on Bayesian Optimization technique [33]. The validation loss
(𝑣𝑎𝑙_𝑙𝑜𝑠𝑠) (in meters) serves as an indicator of the model’s capacity to generalize on unseen data.

As shown in Table 3, the model reaches its optimal performance in trial number 10 with the least
𝑣𝑎𝑙_𝑙𝑜𝑠𝑠, utilizing Adam as the optimizer, a learning rate of 0.001, a batch size of 32, and a dropout
rate of 0.2. Using Adam an optimizer has been favorable in many deep learning applications since it
adaptively adjusts the learning rate, facilitating more efficient convergence rates compared to traditional



Table 3
Hyperparameter search trials based on Bayesian Optimization with the validation loss in meters

Trial No. Optimizer Learning Rate Batch Size Dropout Rate Val_loss

1 Adagrad 0.0001 32 0.2 3.724
2 Adagrad 0.0005 8 0.3 15.149
3 Adagrad 0.0001 8 0.5 26.267
4 RMSProp 0.0005 16 0.4 0.105
5 Adamax 0.0001 64 0.3 0.448
6 RMSProp 0.01 8 0.2 0.096
7 Adam 0.0001 16 0.3 0.116
8 Adam 0.01 16 0.5 0.153
9 Adagrad 0.01 64 0.5 0.329

10 Adam 0.001 32 0.2 0.084
11 Adam 0.001 8 0.3 0.095
12 Adamax 0.001 16 0.3 0.106

optimizers [34]. Additionally, trial 1 to 3 show that the model performance is declined significantly
with the utilization of Adagrad optimizer with smaller batch sizes.

6.2. Results

The output of our ResNet model provides the 𝑥, 𝑦 coordinates of the predicted location based on the
input grid maps. An example output of predicted position is shown in graphical abstract in Fig. 1. The
model’s performance has been assessed using test dataset comprising 25% of the total dataset, while
the remaining 75% is allocated for training the ResNet model. The model is trained over 50 epochs, as
illustrated in Fig. 4a, which also displays both the training and validation loss (in meters) throughout
the epochs. It is observed that the loss significantly decreases as the epoch count increases; however, it
begins to flatten out after approximately 30th epoch.

During the training process, we defined a custom checkpoint using Keras functionality to save the
trained model if the accuracy of the subsequent epoch improves. The last saved model with the best
accuracy came out to be at 46th epoch with the validation loss equal to 7.28 cm on test dataset. This
accuracy is consistent with, and in many cases exceeds, existing positioning accuracies for indoor
localization that employs technologies such as Wi-Fi, UWB, or BLE for positioning.
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Figure 4: (a) Training and validation losses over 50 training epochs. (b) ECDF of positioning error.

Fig. 4b illustrates the positioning errors as empirical cumulative distribution function (ECDF). It
shows an error of 0.147m for the 50th percentile, meaning half of the predictions fall within 14.7 cm.
Beyond 0.613m (95th percentile), the curve plateaus, showing only a few high-error outliers.



7. Conclusion

Recent advancements in artificial intelligence have established a new potential in indoor localization by
providing a reliable and accurate positioning in indoor environments. In this study, we train ResNet
model to learn the underlying spatial patterns in the likelihood grid maps generated based on the
simulated range and AoA measurements. The likelihood grid maps, which are used as model inputs,
represent the pixel-level position hypothesis. Before training the model, hyperparameter tuning is
performed to get the best training parameters since DNNs always involve multiple parameter settings
which can tweak the positioning performance. The attainment of a model’s accuracy of 7.28 cm signifies
a potential for advanced positioning in indoor environments. The trained model is then used to predict
positions on test dataset and the results showed that 95% of the predictions have a positioning error less
than 0.613m, with a median error of only 0.147m. This level of precision underscores the effectiveness
of our approach and lays a robust groundwork for future enhancement in indoor localization systems.
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