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Abstract

Indoor localization is an ever-growing area of research, driven by applications such as autonomous robot
navigation, cultural and commercial venue guidance, logistics, emergency response, and health monitoring in
older adults. This paper presents a two-stage hybrid method for the full six degrees-of-freedom (6-DoF) pose
estimation in optical indoor localization systems using a quadrant photodiode (QP) sensor. First, a geometric
Angle-of-Arrival (AoA) algorithm estimates the receiver’s 3D position and yaw rotation using normalized energy
ratios. Then, a Harmony Search (HS) algorithm expands this partial estimation to full 6-DoF by also estimating the
roll and pitch angles, while simultaneously refining all pose parameters through reprojection error minimization.
The method is validated through simulations over a 2 x 2 x 1 m ® volume. Results show that the proposed
approach significantly outperforms the AoA-only baseline. In scenarios with different orientations, the 90-th
percentile position error drops from 0.61 m to 0.38 m in the = and y coordinates, and from 0.24 m to 0.20 m in
the z one. Orientation errors in roll, pitch, and yaw are below 6.56°, 6.48°, and 1.03°, respectively.
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1. Introduction

Indoor localization is an ever-growing area of research, driven by the need to locate mobile objects
or people in a variety of contexts, such as autonomous robot navigation, localization in museums or
shopping centres, logistics and emergency management, and physical activity monitoring in older adults
to promote healthy ageing [1, 2]. To address these needs, several technologies, such as radio frequency,
ultrasound, and optical signals, can be used. The choice of a specific approach usually depends on
factors like accuracy, coverage, infrastructure deployment, or cost [3]. Among these technologies,
optical systems stand out due to their ability to achieve centimetric accuracies at a reduced cost.
Optical positioning systems use CCD sensors or photodiodes (PD) as receivers, with quadrant
photodiodes (QP) among the latter [4]. The most typically used positioning techniques in optical systems
are triangulation, trilateration and multilateration, with measurements of received signal strength (RSS)
[5] or angle of arrival (AoA) [6]. Among these, AoA-based techniques provide a compromise between
complexity and accuracy, especially in systems with constrained infrastructure and computation. By
analysing the distribution of received light energy across segments of a sensor such as a QP, it is possible
to infer incident angles of incoming rays and estimate spatial location using geometric models [7].
However, recovering the full six degrees-of-freedom (6-DoF) pose remains a challenge. A common
approach is Perspective-n-Point (PnP) algorithms, which estimate the 6-DoF pose of a camera by
solving a geometric optimization problem based on a set of known 3D points and their corresponding
2D projections [8]. These methods offer various trade-offs between computational efficiency and
robustness to noise. However, their performance tends to degrade when a minimal set of 2D observations
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is available, which is the case in optical systems using QP sensor outputs rather than a full image
data. Recently, machine learning techniques have been explored for 6-DoF pose estimation [9]. These
methods can deliver strong accuracy and generalization performance, but they typically require large
labelled datasets for training. Acquiring such large datasets [10] covering a wide range of poses, sensor
configurations and environmental conditions is time-consuming, labour-intensive and often impractical.
To enhance pose estimation under these limitations, this work proposes a hybrid approach for full
pose estimation in optical positioning systems that combines geometric and optimization-based methods
without requiring large datasets or dense image information. First, the AoA algorithm estimates the
receiver’s 3D position (z,y, z) from normalized energy ratios (p;, p,) measured by the QP sensor.
Then, the full 6-DoF pose (x, y, z, «, 3, ) is obtained via Harmony Search (HS) by minimizing the error
between modeled and observed projections on the sensor plane. The rest of the manuscript is structured
as follows: Section II outlines the proposed system, including the sensing configuration and the main
processing stages; Section III details the optimization algorithm used for pose estimation; Section IV
presents the simulated results; and, finally, Section V summarizes the main conclusions of this work.

2. General Overview of the Proposal

The proposed optical positioning system is based on a set of four fixed LED emitters placed at known
locations on the ceiling and a mobile QP receiver. Fig. 1 shows a general overview of the proposed
architecture. The system can be modeled as a pinhole configuration, where the light emitted by the LEDs
passes through the aperture of the QP receiver and impacts on the photodiode surface. We consider
three independent coordinate systems: 1) the global coordinate system is defined by the cartesian axes
(X, Y, Z), with its origin located at the corner of the room; 2) the camera coordinate system, defined by
(Xecams Yeams Zeam), has its origin at the center of the square aperture in the receiver; and 3) the local
2D coordinate system of the photoreceiver is given by (X, Y;), with its origin placed at the center of
the QP. The complete pose of the receiver in the global coordinate system is denoted as (x, y, 2, o, 3, 7).
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Figure 1: Global overview of the proposed 6-DoF localization system. A mobile receiver with a quadrant
photodiode (QP) estimates its pose from optical signals emitted by ceiling-mounted LEDs. The diagram shows
the global, image, and camera coordinate systems used for pose estimation.

Each LED emitter i = {1,2, 3,4} transmits a distinct Binary Phase-Shift Keying (BPSK) modulated
signal based on a Loosely Synchronous (LS) code, selected for its robustness against noise and multipath
interference [11]. A Code-Division Multiple Access (CDMA) technique is employed, where each LED ¢



transmits a unique code c;. The receiver identifies these codes by applying the corresponding matched
filters and thereby determines its own location.

The receiver consists of a quadrant photodiode sensor (QP), specifically the QP50-6-TO8 model [12],
with a mechanical aperture of side length [ positioned above the QP surface at a distance h,,. This
aperture restricts the angular field of view of the sensor and defines the projection geometry of the
incoming light, ensuring that the incident signal passes through the aperture and irradiates part of the
sensitive region of the QP. The illuminated area depends on the angle of incidence of the incoming light.
The resulting distribution of light energy among the four quadrants produces a set of four electrical
currents, one per quadrant. These currents are first conditioned using analog circuitry [13] and then
digitized by a System-on-Chip (SoC) platform using the ZC706 evaluation board [14], which integrates
a Zyng-7000 XC7Z7045 Field Programmable Gate Array (FPGA) device. The results from the hardware
processing are later sent via a serial link to a computer, where they are further processed [15].

During the conditioning stage, the signals from the four quadrants are combined to compute three
key signals: the total energy across all quadrants, vsym; the left-right differential signal, v;,.; and the
bottom-top differential signal, vy;. These signals are then processed through digital correlation blocks,
allowing the system to isolate the contribution of each emitter ¢. The resulting correlation signals are
used to determine their peak values My, i, M;,; and My, ; for signals vsym, v and vy, respectively.
These peak values M, ; and My ; are then normalized with respect to My, ;, yielding the ratios

s = () i =
between the bottom and top quacirants (pz,;) and the left and right quadrants (p, ;) of the QP sensor,
with respect to the total received energy. The ratios p, ; and p, ; are sensitive to the geometry of the
light path, the relative orientation of the receiver, and the position of each LED emitter. In a first
approximation, considering that the image coordinate system is aligned with the global coordinate

system, they are used to estimate the image point (x,, y,) for each transmitter ¢ (1).

T =l +4- x
N AR »
where § is the aperture misalignment, (., y.) is the central point of the aperture projected on the
QP sensor, ideally (0,0), [ is the aperture side length, and the ratio between the expected focal length
hap, and the actual focal length hgp is defined as A = Ziz [16].
The image points in (1) are also geometrically related with the transmitter’s 3D coordinates as follows:

for every LED emitter 7. These ratios represent the relative energy

Leam
Ty = hap -
Zcam (2)
—h Yeam
Yr = Nap -
Zcam

where (Zcam, Yeams Zcam) are the transmitter’s position in the camera coordinates, obtained as:

Lcam Tt
Yeam | = [R’t] Yt (3)
Zcam Zt

where [R|t] concatenates the rotation matrix R = R(«, 3,7), defined as R = R,(7) - Ry(f) -
R (), and the translation matrix t = (x,y,z) ', defined by the receiver’s coordinates (x, 3, z), and
(¢, Yt 2¢) is the transmitter’s position in the global coordinate system.

3. Pose Estimation

This section describes the two-stage methodology developed to estimate the 6-DoF pose of the receiver,
defined by its position (x,y, z) and orientation angles («, /3, 7). First, an initial position is computed
using an analytical method based on angles of arrival; then, this estimate is refined and extended to all
orientation angles by using a global optimization strategy based on the Harmony Search algorithm.



3.1. Stage 1: AoA-based Initial Position Estimation

Firstly, we suppose that the plane of the sensor is parallel to the plane containing the four emitters. In
this case, the pose is determined with (z¢,%0,20,70). After the coordinates of the image points (z, y,);
for each emitter ¢ are estimated (1), the algorithm continues to determine the rotation ~q of the receiver
around the Z axis by means of trigonometric equations [17]. The rotation angle ~y is used to rotate
the image points —~( degrees to obtain the non-rotated image points (x/, y,.);. This is a necessary step
since the positioning algorithm requires the receiver to be aligned with the reference frame. Then, the
positioning method proceeds to estimate the receiver’s coordinates (g, Yo, 20) by using a Least Squares
Estimator (LSE) and some trigonometric considerations, detailed in (4) and (5) [7]. Note that coordinate
2o is obtained as the weighted average considering the distances d; between the estimated receiver’s
position (xg, yo) and the projection of each transmitter ¢ in the plane where the receiver is placed.

T -1 T
(zo,90) = (A" -A)" -A" Db (4)
where
/ / / /
“Yr1 Tra Y1 - Tpp — L1 " Y
/ / / /
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3.2. Stage 2: Harmony Search for Pose Optimization

In the second stage, the full pose of the receiver (z,y, z, a, 3,7) is estimated using a Harmony Search
(HS) algorithm [18]. The HS begins by initializing the Harmony Memory (HM) with HMS (Harmony
Memory Size) candidate solutions. One of them is set to be the initial estimate of the pose vector
x0 = [0, Yo, 20, @0, Bo, Yo, where tog = [z, Yo, z0] and 7 are obtained from the AoA method, while
oy and 3y are set to 0°. The rest of the HMS are randomly sampled within predefined upper and lower
bounds. The objective function to be minimized is the median reprojection error of the image points:

Imeasured
T, . T,

K
expected
7,1

f(X) = mediani:ly---,‘l measured

T,

[ expected

‘ (6)

where the expected image points are computed by using the pinhole projection model described in
(2). The HS algorithm adapts the pitch adjustment rate PAR(k) and the bandwidth parameter BW (k)
dynamically as defined in (7).

k
PAR(K) = PARuin + (PARmux — PARuin) - ©
k max (7)
BW (k) = BW, - (1 - >
At each iteration k, with k£ € {1,..., kmax}, a new candidate solution Xpew = (21, 22,...,2) is

generated according to (8) [19].

a:?M + BW(k)-e, ifuy < HMCRanduy < PAR(k)
Tnew,j = w?M, ifuy < HMCR and ug > PAR(k) (8)
Z/l(lbj,ubj), ifu1 ZHMCR



where 2t is the j-th component of a randomly selected vector coming from the current harmony

memory, € ~ N(0,1) is a standard Gaussian noise, and (lb;, ub;) are the lower and upper bounds,
respectively. The variables u;, ua ~ U(0, 1) are random values used to decide whether the component is
drawn from memory or the pitch adjustment is applied. The parameter Harmony Memory Considering
Rate, HMCR € [0, 1], controls the probability of choosing values from the harmony memory, instead
of generating a new value randomly.

Once a new candidate X,y is generated, its cost is calculated using (6). If it improves the worst
memory solution, it replaces it. The iterative process continues until either a maximum number of
iterations kpax is reached, or the standard deviation of the cost values across the memory, Cy, falls
below a predefined threshold €, o (Cym) < €.

Finally, once the HS algorithm converges, a gradient-based local non-linear optimization algorithm
is applied to refine all six pose parameters using the same projection-based cost function. This step
uses HS to locate a promising region and then fine-tunes the solution to improve accuracy beyond the
HS stopping threshold. A summary of the complete algorithm is presented in Algorithm 1.

Algorithm 1 AoA + Harmony Search + Gradient-Based Refinement

/] Stage 1: Initial Estimate (AoA)
Estimate initial position t( and rotation 7y estimation using (4) and (5)
/] Stage 2: Global Optimization (Harmony Search)
Define variable bounds for z,y, z, o, 5,7y
Initialize Harmony Memory (HM) with HMS vectors. One vector is the initial estimate xg
for k = 1 to kpax do
Compute PAR(k) and BW (k) using (7)
Generate a new candidate solution xyey using (8)
Evaluate the cost function f(Zpew) in (6)
Update HM if the candidate improves the worst harmony
if 0(Cum) < € then break
end if
: end for
x* = arg minge gar f(x) > Global optimum from HS
: // Local Refinement (Gradient-Based)
: X* = arg miny f(x) initialized at x* > Refined solution after local optimization
: return x**
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4. Results

4.1. Experimental Setup

The simulated tests have been carried out in a 2 X 2 x 1 m3 volume, which was divided into a grid of
points spaced every 20 cm along the XY plane and every 50 cm along the Z axis. Each point in the grid
is evaluated over 10 iterations, and all points lie within the coverage area of at least three transmitters.
To simulate a realistic scenario, zero-mean Gaussian white noise with a standard deviation ¢ = 0.001
was added to the ratios p, and p, [10].

The coordinates of the four transmitters are (4.55, 2.98, 3.39) m, (3.23, 2.98, 3.39) m,
(3.23, 4.06, 3.39) m, and (4.54, 4.06, 3.39) m for transmitters 1 to 4, respectively. The system
was calibrated using the experimentally obtained parameters A = 1, z, = 0.05 mm, y, = 0.02 mm,
0 = 0°, 1 = 2.65 mm, and h,p, = 2.61 mm. The parameters used for the Harmony Search algorithm
are: HMS = 200, HMCR = 0.7, PAR,in, = 0.1, PAR 14 = 0.5, BWy = 0.01, ke = 2000,
¢ = 10~* and [Ib, ub] = [[z0, ¥o, z0] = 1 m, [0, Bo, Vo] & 10°].



4.2. Results

The system was first validated by only applying rotations around the Z axis () while keeping
a = [ = 0° The angle v was varied from 0° to 350° in steps of 10°. The Cumulative Distri-
bution Function (CDF) of the positioning errors for coordinates x, y, z and rotation angles «, 3, 7y is
shown in Fig. 2. Results are presented both for the initial AoA-based estimation and after refinement
with the pose estimation algorithm. For the initial AoA estimation, the 90-th percentile (p90) of the
absolute error is 3.6 mm in x and y, and 1.9 mm in z. After applying the pose estimation algorithm, the
error in z was reduced to 0.05 mm, while the errors in  and y remained unchanged. Regarding the
rotation angles, 90% of the cases yielded errors below 0.003° in «, (3, and 7.
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Figure 2: CDF of the positioning errors when « = = 0° and v € {0°,10°,...,350°}: (a) translation
coordinates x, y, z; (b) rotation angles «, 3, 7.

In practical applications such as mobile robots, drones, or wearable systems, the orientation of
the receiver is rarely perfectly aligned with the reference frame. In particular, small tilts around
the x and y axes are common and often unavoidable due to movement, mounting constraints, or
vibrations. To evaluate the robustness of the proposed method under these more realistic conditions,
the analysis was extended to include rotations in o, 5 € [—10°,10°] in steps of 2°, combined with
v € {0°,10°,...,350°}. Figure 3 shows the heatmaps of the mean 3D Euclidean positioning error over
the grid for both the initial AoA estimation and for the proposed pose estimation algorithm.
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Figure 3: Positioning error heatmaps using (a) the initial AoA estimation and (b) the pose estimation algorithm.



The results confirm that the use of the AoA algorithm alone is highly sensitive to orientation changes.
In contrast, the proposed pose estimation algorithm significantly improves accuracy, as detailed in the
CDFs of Fig. 4. Specifically, the p90 error for the initial AoA estimation is 0.61 m in x and y, and 0.24 m
in z. After the pose estimation algorithm, these errors are reduced to 0.38 m in = and y, and 0.20 m in
z. The p90 error for the rotation angles «, 8 and v is below 6.56°, 6.48°, and 1.03°, respectively.
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Figure 4: CDF of the positioning errors for the full grid with variable orientations: (a) translation coordinates z,
¥y, 2; (b) rotation angles a, f3, 7.

To further validate the proposal, a trajectory was simulated in Fig. 5a. The trajectory consists of
50 points distributed within a 2.5 x 2.5 x 1 m® volume with orientations in & = 8 = +10° and
~v = £80°. The ground-truth trajectory is represented with a black line, the estimated positions using
the AoA algorithm are shown with a red line, and the results from the proposed pose estimation method
(AoA+HS) are shown as a blue line. The obtained results for angles «, 3, and +y are presented in Fig. 5b.

80

60 - —— —a

40 i

20

E PR
E. @ b
> 2
<<
-20 [
-40 -
-60 [
80 I I I I I I I I I |
0 5 10 15 20 25 30 35 40 45 50
X [m] Points of the trajectory
(@) (b)

Figure 5: Simulated trajectory results: (a) estimated positions of AoA (red), AoA+HS (blue) and ground-truth
(black); (b) estimated (solid lines) and ground-truth (dashed lines) rotation angles a: (red), 8 (blue), v (green).

Additionally, the absolute errors in position and orientation for the trajectory are presented in the
CDFs of Fig. 6. In the 90% of cases, the absolute error for the AoA-only estimation are 0.34 m, 0.37 m,
and 0.22 m in z, y and z, respectively. After applying the AoA+HS approach, the p90 errors are reduced
t0 0.17 m, 0.15 m, and 0.14 m in x, y and z, respectively. Similarly, the p90 is 6° in «, 5 and 0.6° in ~.

The algorithms are implemented in MATLAB® on an Intel i7-8750H CPU (2.20 GHz, 8 GB RAM). The
average processing time per full pose estimation is 2.6 s for the Harmony Search refinement step with
0.86 ms for the initial AoA estimation.
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Figure 6: CDF of the positioning errors for the trajectory: (a) translation coordinates; (b) rotation angles.

4.3. Discussion

The proposed AoA+HS approach significantly improves pose estimation accuracy compared to the
initial AoA estimation, particularly in scenarios involving rotations along multiple axes. Specifically,
the hybrid method reduces the p90 positioning error by 38% on both the x and y coordinates, and by
16% on z, while keeping the p90 below 6.6° for all rotation angles. The trajectory simulation further
support these findings, with the p90 error dropped by 50%, 60% and 36% for z, y, and z, respectively,
demonstrating the algorithm’s robustness to changes in receiver rotations. This robustness is essential
in real-world applications, where sensor alignment cannot be guaranteed, such as mobile robotics or
wearable devices. Although the HS refinement step increases computational time compared to the initial
AoA estimation, it remains feasible for applications tolerant to moderate latency or offline processing.
Future work will focus on reducing runtime through GPU acceleration and adaptive stopping criteria.

5. Conclusions

This work presents a hybrid approach for 6-DoF pose estimation in optical indoor localization systems
based on a quadrant photodiode receiver. The proposal combines an initial geometric AoA-based
estimation with a global Harmony Search optimization followed by local gradient-based refinement.
While the AoA stage provides a partial estimation of the pose—specifically, the 3D position and the
yaw angle—, the Harmony Search stage extends this to full 6-DoF by improving the initial estimate and
also estimating the roll and pitch angles. Moreover, the optimization process significantly improves
the overall accuracy. Simulation results demonstrate that the 90-th percentile position error is reduced
from 0.61 m to 0.38 m after the HS optimization in z and y, and from 0.24 m to 0.20 m in 2 in a volume
of 2 x 2 x 1 m3. Orientation errors in a, B, and 7y are below 6.6° in 90% of the test cases.
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