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Abstract
Visible light positioning (VLP) technology has attracted widespread research interest owing to its high-precision
positioning, immunity to electromagnetic interference, abundant spectral resources, and cost-effectiveness. How-
ever, the region of interest (ROI) in existing camera-enabled VLP systems is highly susceptible to environmental
noise, which degrades LED beacon recognition accuracy and complicates the simultaneous realization of precise
positioning and stable lighting. To tackle the challenges, a novel indoor camera-enabled VLP systems is proposed.
Specifically, a superglue-based tracking detection and dynamic positioning algorithm is proposed to replace the
traditional LED area detection method relying on pixel intensity, thereby significantly enhancing the robustness
of the VLP system while ensuring real-time performance and high accuracy. Moreover, a VLP testbench is
developed to evaluate the positioning performance. Experimental results demonstrate that within a test area
of 4× 4× 3m3, 80% of the positioning errors are within 8.2cm. It indicates that the proposed system exhibits
superior positioning accuracy compared to existing positioning methods.
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1. Introduction

With the rapid advancement of the Internet of Things (IoT) and the proliferation of smart devices,
coupled with the fact that a significant proportion of human activities occur indoors, indoor positioning
has emerged as one of the core enabling technologies, attracting increasing attention from both academia
and industry [1]. In response to the growing demand for accurate and reliable indoor positioning, a
variety of technologies have been developed. In this context, traditional positioning systems, including
Bluetooth, Wireless Fidelity (Wi-Fi), and ultra-wideband (UWB) have exhibited considerable potential
and broad applicability [2]. Nevertheless, these radio frequency (RF)-based positioning systems face
challenges in balancing positioning accuracy with hardware cost and are susceptible to electromagnetic
interference, particularly in scenarios involving dense terminal deployments in indoor environments
[3]. Therefore, it is imperative to explore complementary technologies to address the growing demand
for wide-area and high-precision positioning in complex indoor environments.

Visible light positioning has emerged as a promising solution by harnessing existing light emitting
diode (LED) infrastructure and abundant visible light spectrum to support wide-area positioning
services with cost-effective deployment, while its short wavelength enables centimeter-level positioning
accuracy [4, 5]. Moreover, VLP is suitable for environments with severe RF interference or sensitive
to electromagnetic interference due to the inherent electromagnetic interference immunity of visible
light[6].

IPIN-WCAL 2025: Workshop for Computing & Advanced Localization at the Fifteenth International Conference on Indoor
Positioning and Indoor Navigation, September 15–18, 2025, Tampere, Finland
*Corresponding author.
$ liubugao@email.ncu.edu.cn (B. Liu); Gedingyv@email.ncu.edu.cn (D. Ge); mazhigang@ncu.edu.cn (Z. Ma);
xiaodongliu@ncu.edu.cn (X. Liu); zhenghai.wang@ncu.edu.cn (Z. Wang); xun.zhang@isep.fr (X. Zhang)
� https://github.com/fskdnlkdsf (B. Liu); https://ieeexplore.ieee.org/author/837364500966238 (D. Ge);
https://teacher.ncu.edu.cn/publish/mazhigang/ (Z. Ma); https://ieeexplore.ieee.org/author/37086532699 (X. Liu);
https://ieeexplore.ieee.org/author/37088444786 (Z. Wang); https://perso.isep.fr/xzhang/ (X. Zhang)
� 0009-0005-6387-7517 (B. Liu); 0009-0000-7035-4443 (D. Ge); 0009-0007-8038-6298 (Z. Ma); 0000-0003-4112-9604 (X. Liu);
0009-0008-4507-5758 (Z. Wang); 0000-0002-8501-1969 (X. Zhang)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:liubugao@email.ncu.edu.cn
mailto:Gedingyv@email.ncu.edu.cn
mailto:mazhigang@ncu.edu.cn
mailto:xiaodongliu@ncu.edu.cn
mailto:zhenghai.wang@ncu.edu.cn
mailto:xun.zhang@isep.fr
https://github.com/fskdnlkdsf
https://ieeexplore.ieee.org/author/837364500966238
https://teacher.ncu.edu.cn/publish/mazhigang/
https://ieeexplore.ieee.org/author/37086532699
https://ieeexplore.ieee.org/author/37088444786
https://perso.isep.fr/xzhang/
https://orcid.org/0009-0005-6387-7517
https://orcid.org/0009-0000-7035-4443
https://orcid.org/0009-0007-8038-6298
https://orcid.org/0000-0003-4112-9604
https://orcid.org/0009-0008-4507-5758
https://orcid.org/0000-0002-8501-1969
https://creativecommons.org/licenses/by/4.0/deed.en


Compared to photodiode (PD)-based VLP systems, camera-based VLP systems offer several dis-
tinct advantages, including higher spatial resolution through detailed image capture, the ability to
simultaneously track multiple targets without requiring array deployment, and the integration of rich
environmental data for enhanced accuracy and robustness[7]. Although the camera-based positioning
method demonstrates greater adaptability to ambient light interference compared to PD-based systems,
it still exhibits significant limitations in dynamic environments, particularly in terms of insufficient
robustness and suboptimal real-time positioning performance [8]. Considering this facts, the authors in
[9] designed and implemented a robust and flexible indoor VLP system based on collaborative LEDs
and edge computing, which addressed the failure of existing collaborative LED positioning algorithms
under smartphone receiver rotation or tilt and achieved an effective balance between bandwidth and
computing resources. Moreover, a loosely coupled fusion method integrating rolling shutter camera-
enabled VLP with inertial data from an inertial measurement unit (IMU) was proposed to significantly
enhance the localization robustness of VLP systems under adverse operational conditions, such as
insufficiency LED transmission power, dynamic LED state switching, and ambient light interference
[10]. Besides addressing the positioning errors induced by terminal angle rotation and noise interfer-
ence in the aforementioned works, the recognition of regions of interest and the extraction of LED
beacon identifiers (IDs) present another significant technical challenge. The authors proposed an image
tracking algorithm based on threshold segmentation and geometric feature analysis of LED arrays. By
constructing candidate ROIs and selecting the near-rectangular structure closest to the image center as
the optimal ROI, the algorithm effectively mitigates natural light interference and achieves real-time and
accurate tracking and positioning of LED arrays [11]. It should be noted that this approach requires the
LED array to be deployed in a rectangular form. However, in many practical scenarios, the deployment
of LEDs is irregular, which poses a significant challenge to the applicability of the method.

To address the aforementioned challenges, this paper proposes a superglue-based positioning method
aimed at enhancing the anti-interference capability of indoor CMOS cameras-enabled VLP systems.
The performance of the proposed system is validated through a VLP testbench. The main contributions
of this paper are summarized as follows.

1) A novel dual-LED VLP method is proposed in this paper. Specifically, the camera-based receiver
simultaneously captures the IDs of two LED beacons and estimates its own location information
based on the LED location information embedded in the IDs. To accurately detect the ROI of
LED, an improved superglue graph neural network (GNN) algorithm is introduced, replacing
the conventional threshold-based ROI detection method to enhance LED recognition accuracy.
Meanwhile, an adaptive threshold mechanism is designed to filter out high-intensity pixel clusters
in the binary image. Moreover, ambient light interference is mitigated through bidirectional row
and column edge detection combined with inter-row pixel difference analysis.

2) A semi-physical VLP experimental testbed is constructed. Specifically, the LED beacon employs
Manchester coding and on-off keying (OOK) modulation to transmit ID information, while the
CMOS-based receiver is mounted on a two-dimensional mobile platform. Experimental results
demonstrate that the detection performance of the proposed modified superglue detection method
is significantly better than the baseline solution. Based on this, the positioning performance of
the VLP system proposed in this paper can reach the centimeter level, 80% of the positioning
errors are within 8.2cm in a 4× 4× 3m3 test area.

The remainder of this paper is organized as follows. Section II presents the VLP system framework.
The superglue-based positioning method is proposed in Section III. Section IV details the implementa-
tion of FPGA-based VLP testbench and provides comprehensive analysis of positioning performance
evaluation. Finally, Section V concludes the paper.
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Figure 1: The considered VLP system model.

2. System Model and Positioning Principle

2.1. System Model

In a typical indoor environment, VLP systems must ensure uniform lighting while providing high-
precision positioning services . To achieve this, an even number of lamps are often deployed uniformly
indoors. As shown in Fig. 1, two LED lamps, serving as positioning transmitting beacons, are evenly
distributed in the considered VLP system. It is important to note that the three-dimensional (3D)
coordinates of the LED beacon corresponding to each ID are unique. At the receiving end, a common
CMOS image sensor is employed to capture beacon information. This system requires only two
LED beacons for 3D positioning. By simultaneously capturing their signals, the receiver’s location is
estimated based on the known beacon positions (c.f. ID) and the tranceiver distance.

2.2. Positioning principle

Different from conventional positioning methods that rely on three or more LED beacons for position
estimation, the proposed VLP system achieves accurate positioning using only two LED beacons. The
principle of the proposed VLP system is elucidated through geometric analysis.

As illustrated in Fig. 2, the world coordinates of the two LED beacons in the proposed VLP system
are defined as (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2). Their projected coordinates 𝑃𝑘(𝑖𝑘, 𝑗𝑘), 𝑘 = 1, 2 on the
CMOS-based receiver plane are obtained through the perspective projection of the LED optical centers
via the imaging lens. For deployment cost and aesthetic considerations, the LED beacons are typically
installed at the same horizontal height. In other words, the 𝑍-axis coordinate of the LED beacons in the
world coordinate system is same, i.e., (𝑧1 = 𝑧2). Therefore, the Euclidean distance 𝑑LED between two
LED beacons in the world coordinate system can be determined as follows.

𝑑LED =

√︁
(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2. (1)

It is assumed that the center point of the camera lens, denoted (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) and referred to as ‘lens’ in
Fig. 2, serves as the receiver end location. Moreover, the projection coordinates of the ‘lens’ on the LED
beacon plane and the imaging plane are defined as 𝐴(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) and 𝐴

′
(0, 0), respectively. Note that

the coordinates 𝐴′ is the the pixel coordinates and is set to (0, 0) for simplicity. Thus, the distances 𝑑𝑘𝑝
from point 𝐴 to the two LED beacons are expressed as

𝑑𝐴,𝑘 =

√︁
(𝑥𝑝 − 𝑥𝑘)

2 + (𝑦𝑝 − 𝑦𝑘)
2, (2)
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Figure 2: The principle of the proposed VLP method.

where 𝑘 = 1, 2 is the 𝑘-th LED beacon. Moreover, the distance from the projection point of the LED
beacon to the centroid 𝐴

′ of the LED pixel area can be calculated as

𝑝𝐴′ ,𝑘 =
√︁
𝑖2𝑘 + 𝑗2𝑘 . (3)

Then, the Euclidean distance between the two LED beacons projected in the imaging plane is given as

𝑝12 =

√︁
(𝑖1 − 𝑖2)

2 + (𝑗1 − 𝑗2)
2. (4)

Since the plane between the image sensor and the LED beacon is parallel, the vertical height 𝐻
between the image sensor and the LED beacon can be derived using the principle of similar triangles as

𝐻 = 𝑓 × 𝑑LED
𝑝12

, (5)

Thus, the 𝑧𝑝 of the receiver terminal coordinate can be determined as 𝑧𝑝 = 𝑧1 − 𝐻 . Given that
the imaging plane and the world coordinate system are parallel with coincident axis orientations, the
following relationship can be derived based on the geometric similarity of triangles

𝑑𝐴,𝑘

𝐻
=

𝑝𝐴′ ,𝑘

𝑓
. (6)

The values 𝑥𝑝 and 𝑦𝑝 of can be solved based on the aforementioned geometric relationships (2) .

3. Superglue-enabled ROI Detection Method

Based on the positioning principle described in the previous section, the proposed VLP method lies in
accurately finding the projection points 𝑃1 and 𝑃2 of the LED on the imaging plane. However, since
the signal power attenuation is inversely proportional to the fourth power of distance, the presence
of ambient light and noise further degrades the beacon detection performance in the imaging system.



Therefore, it is essential to design an ROI detection algorithm for the LED beacons. Considering that the
illumination of the VLP system varies with environmental conditions, and some image frames captured
by the camera are blurred due to human movement or shadow effects, the superglue-based graph
neural network (GNN) is introduced to tackle these issue. It employs an attention mechanism to learn
illumination-invariant features and utilizes its global context modeling capacity to match LED with time
series or multi-view information to solve the problem of single-frame image blur[12]. In this context,
since superglue is fundamentally a general feature matching network, it requires specific modifications
to achieve efficient ROI detection of LEDs. Specifically, the LED beacons exhibit significantly higher
pixel intensity in camera-captured images, the algorithm can leverage these high-intensity pixels as
primary feature matching indicators. This approach enables targeted feature matching for LED detection
while maintaining real-time performance.
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Figure 3: Superglue-based LED’S ROI detection

The basic principle of the proposed method is that the key points within image typically represent
projections of salient 3D points, and the ROI detection of LEDs is achieved by partially matching local
features between the two images. In other words, a valid LED beacon is successfully detected if region
of interest (ROI) area matching degree between the two images is the highest. Therefore, ROI detection
can be formulated as an optimization problem, which involves predicting the matching matrix P from
two sets of local features using a GNN-based model. In this context, the structure of the modified
superglue-based GNN feature matching method is shown in Fig. 3.

The model inputs two consecutive images 𝐴 and 𝐵, and then outputs a set of key point positions
𝑝𝑖 and their associated visual descriptors 𝑑𝑖 through image preprocessing and CNN extraction, where
𝑝𝑖 ≜ (𝑥; 𝑦; 𝑐)𝑖 consists of image coordinates (𝑥, 𝑦) and detection confidence 𝑐. Images 𝐴 and 𝐵 can
obtain 𝑀 and 𝑁 sets of local features (𝑝𝑖; 𝑑𝑖), respectively. Then, a keypoint encoder sub-model is
employed to map keypoint positions 𝑝𝑖 and their visual descriptors 𝑑𝑖 into a single vector x𝑖. Moreover,
these vectors are input into the attention GNN network consisting of 𝐿 layers of self-attention and
cross-attention modules to simultaneously capture the spatial relationship and visual features of key
points and to obtain a more powerful matching descriptors 𝑓𝑖. Note that the matching process is
formulated as:

𝑓𝐴
𝑖 = 𝐹 (x𝑖) ,

𝑓𝐵
𝑗 = 𝐹 (x𝑗) ,

(7)

where 𝐹 (·) represents function of the attention GNN. Based on these 𝑓A
𝑖 and 𝑓B

𝑖 , a score matrix is
constructed and the relationship is described as follows.

S𝑖,𝑗 = ⟨𝑓𝐴
𝑖 , 𝑓𝐵

𝑗 ⟩, ∀(𝑖, 𝑗) ∈ 𝑀 ×𝑁, (8)



where ⟨·, ·⟩ is the inner product. Note that the magnitude of the matching descriptors varies based
on the features and is adjusted during training to reflect the prediction confidence. Then, the optimal
matching matrix P is obtained via differentiable optimal transport and is given as

P = argmin
P∈P

∑︁
𝑖,𝑗

𝑆𝑖,𝑗𝑝𝑖,𝑗 + 𝜆𝐻(P), (9a)

𝐻(P) = −
∑︁
𝑖,𝑗

𝑝𝑖,𝑗(log𝑃𝑖,𝑗 − 1), (9b)

where P represents the set of matching matrices. 𝜆𝐻(P) represents the entropy regularization term,
which smooths the optimization problem and mitigates overfitting to local optimal solutions. It is solved
by the Sinkhorn algorithm.

To address ambient lighting variations and improve the robustness of LED detection, a dynamic
adaptive threshold 𝛾auto is introduced to replace the fixed intensity threshold and it is given as

𝛾auto = max(𝜇𝑆 + 3𝜎𝑆 , 230) (10)

where 𝜇𝑆 represents mean intensity of 𝑆 and 𝜎𝑆 is standard deviation of 𝑆. Note that the 𝑆 =
𝐴(𝑝𝑖) ∪ 𝐵(𝑝𝑗) is the union of pixel intensities from consecutive images 𝐴 and 𝐵. Moreover, the
constant 230 serves as an empirical lower bound to ensure detectability in extreme low-light scenarios.
Then, the subset ℳ of features greater than the feature threshold 𝛾auto is given as

ℳ =

{︂
(𝑖, 𝑗) | 𝐴(p𝑖) +𝐵(p𝑗)

2
≥ 𝜏auto

}︂
(11)

Finally, the match results are obtained by

𝑃 *
ℳ = 𝑃 * ⊙𝑀, 𝑀𝑖,𝑗 =

{︃
1 (𝑖, 𝑗) ∈ ℳ
0 otherwise

(12)

where ⊙ resprents the Hadamard product.

4. Experimental Testbed and Result Analysis

4.1. Semi-physical experimental testbed

As shown in Fig. 4, a semi-physical experimental testbed is constructed in a typical indoor scenario
with a size of 4× 4× 3m3 scenario to validate the effectiveness of the proposed positioning method.
Specifically, two commercial LED emitters are installed on the ceiling with a 2.5m spacing centered in the
room. To ensure uniform lighting and stable signal transmission, the transmitter employs Manchester
coding and OOK modulation technology to encode and modulate the beacon ID. The signal operates
within the 1˘10kHz frequency range, and the LED beacon is driven by a constant-current source. The
modulated optical signal is captured by an OV5640 CMOS camera (operating at 60 fps with 640×480
resolution) mounted on a ground robotic platform, with the camera constrained to an unwavering
vertical orientation facing upward. The acquired data undergoes offline MATLAB processing for feature
extraction and precision position estimation.

4.2. Results analysis

In order to validate the effectiveness and superiority of the proposed ROI detection method, the
receiver is located directly below one LED beacon and the performance of ROI detection methods
is firstly compared. Specifically, Fig. 5 illustrates the detection accuracy of the proposed scheme,
Gaussian enhanced (GE) detection, and conventional regional pixel threshold segmentation (RPTS)
detection scheme at varying transceiver heights. It is apparent from Fig. 5 that the ROI detection
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Figure 4: The structure of the semi-physical experimental testbed.

accuracy decreases as the transceiver distance increases. This is attributed to the more severe distance
attenuation at greater distances, which degrades the image quality. Moreover, it can be seen that the
proposed scheme significantly outperforms the two baseline schemes, achieving a detection accuracy
exceeding 80% at a distance of 2.5m, which is a more common indoor positioning distance. It is worth
noting that the proposed method could support longer distances if a higher-performance camera is
utilized.
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Figure 5: The ROI detection accuracy versus different detection distance via different methods

Secondly, beacon signals are collected at 256 evenly distributed grid points within the indoor area. To
ensure reliability of the result, each location is measured 20 times(400ms per trial) and the average value
is calculated, resulting in a total of 5120 measurement instances for analysis. As shown in Fig. 5, the
positioning results of 256 discrete measurement points under the aforementioned setup are compared
with the real position, and a two-dimensional positioning error density map smoothed by a Gaussian
kernel is utilized to quantify the spatial error characteristics. It is evident from Fig. 5 that the positioning
results near the center of the area closely match the real position, while those in the edge regions exhibit
certain deviations, and the worst-case error reaching approximately 0.08 meters. This is due to the
limited field of view of the transceiver device, which results in partial image distortion captured by
the camera at the edge point. However, the overall positioning performance achieves centimeter-level



0 0.5 1 1.5 2 2.5 3 3.5 4
x (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

y
(m

)
Real position
Estimated position

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
x(m)

0

0.5

1

1.5

2

2.5

3

3.5

4

y
(m

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b)
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accuracy.
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Finally, the cumulative distribution function (CDF) of positioning errors at two different LED beacon
heights are compared and analyzed to accurately evaluate the positioning performance of the proposed
VLP system. Fig. 7 illustrates the CDF curves of positioning errors at vertical heights of 2.0m and 2.5m.
As depicted in the figure, the positioning error of the VLP system increases with height. Specifically,
the proposed system achieves a positioning error of 5.2cm at an 80% confidence level for a height of
2.0m outperforming the 8.2cm error observed at a height of 2.5m. Notably, the proposed positioning
method achieves centimeter-level positioning accuracy using only two LED beacons.

5. Conclusion

This study proposes a high-precision indoor positioning method based on SuperGlue. The method
requires the camera to capture only two LED beacons and performs positioning estimation using an
ID-geolocation database and geometric relationships. To address the challenge of LED detection and
recognition being susceptible to ambient light interference, a GNN-based modified superglue method is
designed to accurately detect the ROI of LED beacons in the image. Moreover, an adaptive threshold



detection module is introduced to enhance the robustness of the method. A semi-physical VLP testbed is
constructed to evaluate the effectiveness of the proposed approach. Experimental evaluations conducted
in a typical indoor scenario area demonstrate that the proposed method achieves significantly more
accurate ROI detection compared to the baseline solution. Furthermore, 80% of the positioning errors
of the proposed VLP system are within 8.2cm.
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