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Abstract
Mobile crowdsourcing enables large-scale construction and updating of fingerprint databases for indoor position-
ing (e.g., Wi-Fi, geomagnetic). Accurate trajectory recovery from such data, however, remains challenging due
to cumulative dead-reckoning (DR) errors, susceptibility to local optima, and rapid drift in vehicular scenarios.
This paper presents a graph optimization framework that refines crowdsourced trajectories by integrating three
types of constraints: (1) adjacent-pose constraints from a smartphone GNSS/MEMS DR filter enhanced with an
empirical velocity model to mitigate indoor drift; (2) relative loop closures detected via geomagnetic sequence
matching, exploiting the spatial stability of indoor geomagnetic fields; and (3) absolute loop closures obtained
from OpenStreetMap (OSM) map matching to enforce global consistency. A joint graph optimization using
these constraints produces globally refined trajectories. Experiments in two underground parking garages with
multiple smartphones show that, compared with single-constraint approaches, the proposed method achieves
clear improvements in trajectory accuracy.
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1. Introduction

Mobile crowdsourcing is a key technology for dynamic mapping and updating in fingerprint-based
indoor positioning systems, enabling large-scale applications such as Wi-Fi and geomagnetic matching.
The core challenge is obtaining fine-grained and accurate fingerprint location annotations, which
directly determine the positioning accuracy of the fingerprint database [1]. Precise recovery of indoor
trajectories from crowdsourced data is central to building indoor fingerprint maps.

Previous research has explored various approaches. Wi-Fi-based crowdsourced mapping [2] is limited
in areas with poor Wi-Fi coverage. Pedestrian dead reckoning (PDR) combined with clustering [3] suffers
from cumulative drift due to lack of absolute positional information. Geomagnetic-based methods [4]
leverage inherent indoor magnetic features for trajectory correction. Integration of geomagnetic fields
with extended Kalman filter (EKF)-based dead reckoning [5] improves accuracy but relies on epoch-
by-epoch estimation, risking local optima. Recent work combines geomagnetic SLAM loop closure
with graph optimization (G2O) [6] or frequency-domain geomagnetic features [7] to enhance global
trajectory consistency.

Analysis suggests that exploiting the spatial stability of indoor geomagnetic fields to construct loop
closure points, in combination with optimizing crowdsourced DR trajectories, can effectively enhance
the accuracy of indoor trajectory recovery. However, two challenges remain:
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1. DR-based pose constraints and geomagnetic loop closures are relative spatial constraints, risking
local optima in graph optimization.

2. Initial DR trajectories are critical. Pedestrian DR can leverage zero-velocity or step-length
constraints, but vehicle-based crowdsourced DR rapidly diverges due to high speeds and lack of
effective velocity constraints, undermining pose reliability between consecutive timestamps.

To address these challenges, this paper proposes a crowdsourced trajectory graph optimization
framework integrating three constraints. First, a smartphone GNSS/MEMS integrated navigation and
DR filter with an empirical velocity model extrapolates outdoor trajectories indoors, producing coarse
indoor trajectories and adjacent-pose constraints. Second, an improved dynamic time warping (DTW)
algorithm detects geomagnetic loop closures within and between trajectories, establishing relative
loop constraints. Third, outdoor map constraints are extracted from OpenStreetMap (OSM) via an
HMM-based map-matching algorithm, providing absolute loop closures to enhance global consistency
during G2O optimization.

Finally, the joint graph optimization is solved using the Levenberg–Marquardt (LM) algorithm.
By incorporating absolute loop closure constraints alongside relative constraints and introducing an
empirical vehicle speed model in the DR filter, the method prevents convergence to local optima
and mitigates rapid divergence in indoor DR, improving the reliability of pose constraints between
consecutive timestamps.

2. Algorithm Framework

The proposed method constructs a G2O-based graph optimization model with three types of constraints
to refine indoor crowdsourced trajectories. The overall workflow, illustrated in Figure 1, comprises the
following steps:

1. Adjacent Pose Constraints: A smartphone’s GNSS and MEMS sensors (accelerometer, gyro-
scope) are integrated in a navigation and DR filter to extrapolate trajectories from outdoor to
indoor environments, producing coarse indoor trajectories. Adjacent pose constraints are derived
from these trajectories.

2. Geomagnetic Loop Closure Constraints: Geomagnetic measurements are corrected for hard/-
soft iron interference using quasi-static azimuth compensation. An improved dynamic time
warping (DTW) algorithm detects loop closures within and across trajectories, forming geomag-
netic loop closure constraints.

3. Map-Matching Constraints: Key points of indoor DR trajectories (e.g., entrances/exits) are
aligned with outdoor trajectories and OSM road lines via map matching, providing absolute
positional constraints.

4. Backend Graph Optimization: All constraints are integrated into a unified graph. The
Levenberg-Marquardt (LM) algorithm iteratively solves for the globally optimal trajectory, yield-
ing refined indoor coordinates.

This framework leverages smartphone sensor data and open-source maps, ensuring wide applicability.

3. Algorithm Description

3.1. Adjacent Pose Constraints

This study extends the smartphone GNSS/MEMS/OBD integrated filtering method [8] by proposing a
hybrid odometry model that replaces OBD-derived speed constraints in non-cooperative crowdsourcing.
A segmented velocity framework uses GNSS outdoors and empirical velocity indoors, enabling seamless
trajectory extrapolation without OBD hardware.



Figure 1: Framework of crowdsourced trajectory optimization algorithms.

The filter state vector includes attitude, velocity, position errors, and sensor biases:

𝑋 =
[︀
𝛿𝜑, 𝛿𝑣, 𝛿𝑃 ,∇𝑎, 𝜀𝑔

]︀T
, (1)

where 𝛿𝜑, 𝛿𝑣, and 𝛿𝑃 are attitude, velocity, and position errors, respectively, and ∇𝑎, 𝜀𝑔 denote
accelerometer and gyroscope biases.

Observation equations incorporate multiple sources: GNSS when available, otherwise MEMS-based
motion constraints. Indoors, empirical velocity 𝑣est guides state updates through motion constraints.
The state vector is sequentially updated via Kalman filtering.

Adjacent position and attitude constraints are derived from the indoor dead reckoning trajectory to
ensure local continuity and overall trajectory consistency in subsequent optimization.

3.2. Geomagnetic Loop Closure Constraints

3.2.1. Magnetometer Bias Correction

In vehicle-mounted scenarios, smartphone magnetometers are affected by non-orthogonal errors, scale
factor errors, zero-bias errors, and vehicle-induced magnetic interference. Calibration is thus essential
prior to geomagnetic loop closure detection. A simplified linear model is adopted, and ellipsoid fitting
tests indicate that zero-bias errors dominate. The model is expressed as

𝐵e = 𝐵m − 𝑑, (2)

where 𝐵m is the raw measurement, 𝑑 is the zero-bias vector, and 𝐵e is the calibrated measurement.
Using the vehicle heading from GNSS and the horizontal geomagnetic components, the zero-bias

parameters are estimated under a quasi-static geomagnetic field and known local declination [9]. Three-
axis measurements are projected onto the body frame, and the bias is solved via least-squares, ensuring
consistency across smartphones and improving geomagnetic loop closure accuracy.

3.2.2. Geomagnetic Sequence Loop Closure Matching

To solve the problem of non-uniform geomagnetic field sequence matching caused by changes in
vehicle speed, this paper uses an improved head-tail unconstrained DTW algorithm [6] to perform loop



matching of geomagnetic sequences within and between trajectories:{︃
T(𝑝,𝑞) = (T𝑝, . . . ,T𝑞),

𝐷𝑂𝐵𝐸(T𝑤,T) = min𝐷(T𝑤,T
(𝑝,𝑞)) subject to 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑀

, (3)

where T𝑤 denotes the sliding window of the geomagnetic sequence to be matched from the current
trajectory, and T represents the reference geomagnetic sequence from historical or other trajectories.
T(𝑝,𝑞) refers to an arbitrary subsequence of T, spanning from the 𝑝-th to the 𝑞-th geomagnetic vector,
and 𝐷𝑂𝐵𝐸 is the optimal head-tail unconstrained DTW distance.

The head-tail unconstrained DTW algorithm compensates for nonlinear temporal variations and
speed-induced scale deviations, enabling flexible subsegment matching.

For crowdsourced trajectories, geomagnetic sequence loop closure matching uses this method, with
final points obtained via distance-weighted averaging.

3.3. Map Matching Constraints

The first two types of constraints provide only relative positional information, which can reduce relative
trajectory error but may still allow overall drift. To improve absolute spatial accuracy, OpenStreetMap
(OSM) is introduced to supply absolute positional references. Map-matched points from outdoor
trajectory segments form a third type of constraint, jointly optimized with relative constraints to ensure
global consistency.

OSM road segments are represented as straight-line polylines, while real vehicle trajectories may
include curved turns. Straight segments are identified via curve detection, and an improved HMM-based
map-matching algorithm [10] aligns trajectory points with OSM features. Transition points where
GNSS signals reappear (e.g., indoor-to-outdoor) are also used as positional constraints.

The vehicle trajectory is denoted as 𝑋 = {𝑥1, . . . ,𝑥𝑡}, with each 𝑥𝑖 containing 2D coordinates
and heading. Reference points 𝑆 = {𝑠1, . . . , 𝑠𝑛} are interpolated from OSM segments, each with
geographic coordinates and a road segment ID.

The observation probability between a trajectory point 𝑥𝑖 and reference point 𝑠𝑗 is modeled as

𝑃 (𝑜𝑡 | 𝑠𝑗) = exp
(︁
−

𝑑2𝑖𝑗
2𝜎2

)︁
, (4)

where 𝑜𝑡 is the observation at time 𝑡, 𝑑𝑖𝑗 is the Euclidean distance, and 𝜎 reflects expected positioning
error.

The state transition probability between consecutive reference points 𝑠𝑗 and 𝑠𝑘 is

𝑃 (𝑠𝑗 | 𝑠𝑘) =

⎧⎪⎨⎪⎩exp

(︂
− 𝑑2𝑗𝑘

2𝜎2

)︂
, if on the same road

exp
(︁
−𝑑𝑗𝑘

𝜎

)︁
, otherwise

, (5)

assigning higher probability to transitions along the same road.
Finally, the Viterbi algorithm computes the most likely sequence of matched points:

𝑑𝑝[𝑗, 𝑡] = max
𝑘

(︀
𝑑𝑝[𝑘, 𝑡− 1] · 𝑃 (𝑠𝑗 | 𝑠𝑘)

)︀
· 𝑃 (𝑜𝑡 | 𝑠𝑗), (6)

where 𝑑𝑝[𝑗, 𝑡] denotes the maximum likelihood at reference point 𝑠𝑗 at time 𝑡. The resulting matched
points are then used as constraints in the graph-based optimization framework.

3.4. Backend Graph Optimization

The backend graph optimization refines trajectory estimates by jointly incorporating multiple con-
straints. A trajectory 𝑝 with 𝑙 poses at the 𝑘-th iteration is denoted as

𝑋𝑘
𝑝 =

{︁
𝑥𝑘
𝑝1 ,𝑥

𝑘
𝑝2 , . . . ,𝑥

𝑘
𝑝𝑙

}︁
, (7)



where each pose 𝑥𝑘
𝑝𝑖 =

[︀
𝑥𝑘𝑝𝑖 , 𝑦

𝑘
𝑝𝑖 , 𝜃

𝑘
𝑝𝑖

]︀⊤ consists of 2D coordinates and a heading angle.
The global nonlinear least-squares objective over all trajectories is formulated as

𝐹 (𝑋) =
∑︁

(𝑖,𝑗)∈𝐶

𝑒⊤𝑖,𝑗Ω𝑖𝑗𝑒𝑖,𝑗 , (8)

where 𝑋 denotes the set of all poses, 𝑒𝑖,𝑗 the residual between vertices 𝑖 and 𝑗, Ω𝑖𝑗 the information
matrix weighting constraint confidence, and 𝐶 the set of adjacent-pose, geomagnetic loop-closure, and
map-matching constraints.

The adjacent-pose constraint enforces smooth motion between consecutive poses, with residual

𝑒
adj
𝑖,𝑖+1 =

⎡⎢⎣∆𝑥0𝑝𝑖,𝑝𝑖+1
−∆𝑥̂𝑘𝑝𝑖,𝑝𝑖+1

∆𝑦0𝑝𝑖,𝑝𝑖+1
−∆𝑦𝑘𝑝𝑖,𝑝𝑖+1

∆𝜃0𝑝𝑖,𝑝𝑖+1
−∆𝜃̂

𝑘

𝑝𝑖,𝑝𝑖+1

⎤⎥⎦ , (9)

where the superscript 0 denotes observations and ·̂ denotes estimates at iteration 𝑘.
Geomagnetic loop-closure constraints include intra-trajectory loops,

𝑒
loop
𝑖,𝑗 =

⎡⎣−∆𝑥̂𝑝𝑖,𝑗
−∆𝑦𝑝𝑖,𝑗
−∆𝜃̂

𝑝

𝑖,𝑗

⎤⎦ , (10)

and inter-trajectory loops between trajectories 𝑝 and 𝑞,

𝑒
mag
𝑖 =

[︃
−∆𝑥̂𝑘𝑝𝑖,𝑝𝑗
−∆𝑦𝑘𝑝𝑖,𝑝𝑗

]︃
. (11)

For map-matching, residuals are defined with respect to OSM reference points as

𝑒osm
𝑖 =

[︃
−∆𝑥̂𝑘𝑝𝑖,osm𝑗

−∆𝑦𝑘𝑝𝑖,osm𝑗

]︃
. (12)

The complete objective function for 𝑛 ≥ 2 trajectories is

𝐹 (𝑋𝑛) =
∑︁

𝑒
adj
𝑖,𝑗Ω𝑖𝑗𝑒

adj
𝑖,𝑗 +

∑︁
𝑒

loop
𝑖,𝑗 Ω

loop
𝑖𝑗 𝑒

loop
𝑖,𝑗 +

∑︁
𝑒

mag
𝑖 Ω

mag
𝑖𝑗 𝑒

mag
𝑖 +

∑︁
𝑒osm
𝑖 Ωosm

𝑖𝑗 𝑒osm
𝑖 . (13)

For single-trajectory cases (𝑛 = 1), the inter-trajectory geomagnetic term is omitted.
The optimal trajectory is obtained by minimizing 𝐹 (𝑋𝑛) with the Levenberg–Marquardt algorithm

[11]:
𝑋*

𝑛 = argmin
𝑋𝑛

𝐹 (𝑋𝑛). (14)

This optimization yields globally consistent trajectories by jointly balancing all constraint types.

4. Experiments and Evaluation

4.1. Experimental Setup

The experiments were conducted in two underground parking structures and adjacent urban-canyon
roadways in Haidian District, Beijing. Figure 2(a) shows the street view at the entrance of Scenario 1,
flanked by high-rise buildings that create a typical urban-canyon environment with severe multipath
and non-line-of-sight (NLOS) GNSS effects. Figure 2(b) presents a remote-sensing image of Scenario 2,
highlighting the underground parking structure and its surrounding roadways where the experiments
were carried out.



(a) Scenario 1: urban canyon at parking entrance
Source: Baidu Map (https://map.baidu.com/)

(b) Scenario 2: underground parking and roadways
Source: Baidu Map (https://map.baidu.com/)

(c) Data acquisition interface and mounting setup (d) Crowdsourced smartphone models

Figure 2: Experimental scenarios and equipment. (a) Scenario 1; (b) Scenario 2; (c) Data interface and mounting;
(d) Crowdsourced smartphones.

Test data were collected using two smartphones vivo X100 and iQOO Z9, both supporting dual-
frequency L1/L5 GNSS and tri-axial MEMS IMUs. Figure 2(c) shows the multi-sensor data acquisition
software interface and the mounting configuration of the devices. Each device was rigidly mounted in a
strapdown setup on the front interior of the vehicle, below the windshield, with the Y-axis aligned to
the forward direction, the X-axis to the vehicle right-hand side, and the Z-axis upward, thereby fixing
the relation between the phone body frame and the vehicle frame.

Before each test, the vehicles remained stationary for 30 s to collect static IMU data, enabling offline
estimation of gyroscope and accelerometer biases as well as magnetometer calibration.

In addition to these test devices, the crowdsourced database was constructed from nine different
smartphones, including Huawei Mate60Pro, Huawei Mate20, Xiaomi14, and Honor Magic6, providing
diverse sensor data for trajectory optimization (Figure 2(d)).

https://map.baidu.com/
https://map.baidu.com/


4.2. Experimental Results

Figure 3 illustrates integrated navigation trajectories from crowdsourced smartphone data under
different optimization strategies. Scenario 1 (left column) and Scenario 2 (right column) correspond to
two representative locations within urban canyon and underground parking environments.

In each scenario, the gray lines represent the GNSS/MEMS baseline trajectory. The first row of
subfigures (a, b) shows OSM map matching results, the second row (c, d) presents geomagnetic sequence
matching results, and the third row (e, f) depicts the joint G2O optimization combining both constraints
(G2O(Mag & Map)). In the visualizations, red lines correspond to G2O with geomagnetic-only constraints
(G2O(Mag)), green lines denote G2O with map-only constraints (G2O(Map)), and blue lines indicate the
proposed joint optimization. Black lines show the OpenStreetMap (OSM) reference.

The results demonstrate that G2O(Mag & Map) yields the most consistent trajectories across indoor
and outdoor areas. In the indoor parking lot (yellow box), where GNSS is severely degraded, G2O(Map)
reduces drift but exhibits misalignments, whereas G2O(Mag) improves indoor loop closures but under-
performs outdoors due to weak geomagnetic features. By integrating both constraints, G2O(Mag &
Map) minimizes indoor errors relative to G2O(Map) and outdoor errors relative to G2O(Mag), producing
trajectories closely aligned with the OSM map.

These results confirm that the joint optimization effectively balances the strengths of individual
constraints, resulting in more accurate and reliable navigation in complex urban environments.

5. Conclusion

This paper addresses the challenge of precise indoor trajectory recovery from mobile crowdsourced
data by proposing a graph optimization framework leveraging geomagnetic and map-based loop closure
constraints. The methodology proceeds as follows:

1. A smartphone GNSS/MEMS integrated navigation and dead-reckoning (DR) filter, enhanced with
an empirical velocity model, extrapolates trajectories from outdoor to indoor environments. This
generates coarse indoor trajectories and establishes adjacent-pose constraints.

2. Exploiting the spatial stability of indoor geomagnetic fields, an improved dynamic time warping
(DTW) algorithm detects loop closures within and across trajectories, forming relative loop-
closure constraints.

3. Outdoor map constraints are obtained from OpenStreetMap (OSM) via a hidden Markov model
(HMM)-based map-matching algorithm. These absolute loop closures enhance global consistency
during G2O optimization.

4. A joint graph optimization model integrates adjacent-pose, geomagnetic loop, and map-matching
constraints, which is solved using the Levenberg-Marquardt (LM) algorithm to yield globally
optimized trajectories.

The main contributions are:

1. While existing geomagnetic loop closure-based methods rely solely on relative spatial constraints
and risk convergence to local optima, the proposed approach incorporates absolute spatial
references—such as entrance/exit points and OSM map-matching points—into the G2O loss
function, improving optimization robustness.

2. To mitigate rapid divergence of indoor DR trajectories due to lack of external velocity references,
the empirical velocity model in the GNSS/MEMS filter provides reliable extrapolation from
outdoor to indoor trajectories. This generates adjacent-pose constraints that preserve consistent
pose relationships between consecutive trajectory points, ensuring continuous indoor trajectory
recovery for crowdsourced data.



(a) Scenario 1: Map matching (b) Scenario 2: Map matching

(c) Scenario 1: Geomagnetic loop closure (d) Scenario 2: Geomagnetic loop closure

(e) Scenario 1: Joint graph optimization (f) Scenario 2: Joint graph optimization

Figure 3: Crowdsourced trajectory optimization results based on G2O. (a)(b) OSM map matching; (c)(d)
Geomagnetic sequence matching; (e)(f) G2O joint optimization.
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