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Abstract
Smartphone-based indoor positioning using Pedestrian Dead Reckoning (PDR) accumulates error over time
due to inaccurate sensor measurements and imperfect step length estimation. The position can be corrected
using Bayesian filtering combined with additional sources of information, such as maps or Wi-Fi signals. This
paper explores the use of door detection from camera images to correct position estimates. An off-the-shelf deep
learning-based method (Grounding DINO) is employed for door detection. Detected doors are compared with the
actual visible doors according to the map, and the position is corrected accordingly. An experiment conducted on
a 30-meter straight path demonstrates a reduction in positioning error from 3.75 m to 1.15 m. Additionally, the
paper discusses the anonymization of individuals captured in camera images to address privacy concerns.
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1. Introduction

Indoor positioning is not a unified discipline. It encompasses a wide range of use cases, solutions,
technologies, and techniques. Each use case comes with its own unique challenges. In the case of
smartphone-based indoor positioning, one major challenge is the freedom of movement of the device,
as opposed to the more constrained and predictable motion of robots or fixed-position sensors. Another
persistent issue lies in the precision of the smartphone sensors.

Smartphone-based positioning commonly relies on Pedestrian Dead Reckoning (PDR), which is a
technique that estimates the user relative position based on sensor measurements. Typically, it computes
displacement when a step is detected. However, inaccuracies in sensor readings, incorrect step length
estimation, and missed or false step detections result in the accumulation of positioning errors over
time.

To mitigate these errors, bayesian filtering is employed in various forms [1]. The most common
approaches in indoor positioning are the Kalman filter and particle filter, often adapted in their extended
or modified forms to better handle the system’s non-linearities. These methods treat the user position
as a random variable, representing the system state. Filtering involves two key phases: the transition
(prediction) phase, where user movement introduces uncertainty, and the correction (observation)
phase, which integrates additional information to reduce that uncertainty. Since PDR estimates relative
position, these correctionsmay incorporate information from external sources such asWi-Fi or Bluetooth
(BLE) signals to improve absolute positioning accuracy. Additionally, map-based models (derived from
building floor plans) can be used for correcting position estimates [2] or to constrain movement models
directly [3].

Nevertheless, most of these correction methods depend on building infrastructure or require mainte-
nance effort (e.g., maintaining aWi-Fi fingerprint database). An alternative could be the visual approach,
which uses a smartphone’s camera as a positioning aid. A camera-based track was included in some
IPIN competition editions, e.g., 2018 (on-site) [4], 2019 (on-site) [5], and 2022 (off-site) [6], but it has not
been featured regularly. Nonetheless, the rapid advances in artificial intelligence (AI) and computer
vision suggest that visual information could play a much larger role in indoor positioning.
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The main challenges for vision-based positioning include accuracy, computational efficiency, and
privacy. This paper explores the accuracy of a visual positioning method using off-the-shelf AI models
in a novel scenario where doors are used as landmarks. It also addresses the privacy aspect through
anonymization techniques that do not significantly affect positioning performance. Direct real-time
requirements are not addressed. However, when multiple options exist, faster calculations are preferred.
The goal is to evaluate the viability of this approach. Promising results could pave the way for more
advanced and privacy-preserving visual positioning solutions.

The paper is structured as follows: Chapter 2 presents related work on indoor positioning, door
detection, and anonymization. Chapter 3 introduces the proposed positioning method. Chapter 4
describes the experimental setup and evaluates the performance of the method. Finally, results are
discussed and possible directions for future research are outlined.

2. Background and related work

2.1. Indoor positioning framework

Indoor positioning allows for various techniques [7]. The core of the positioning method adopted in this
paper is based on author’s previous work [2]. Bayes filters are commonly used in positioning systems,
as they can handle inaccurate inputs and provide a framework for position estimation.

In smartphone-based positioning, a popular choice is the Particle filter (e.g., [8]), where the state
is represented by a set of particles with assigned belief values. Particles are displaced according to
detected steps, their weights can be updated based on observations, and then particles are resampled.
The model enables focus on areas with the highest probability of the true position, achieving better
precision. However, sample impoverishment can occur when particles concentrate in areas of high
belief, which may lead to position loss if the assumption is incorrect. Moreover, the Particle filter is a
stochastic method that introduces randomness in particle movement.

The Particle filter allows for fast computation and good performance even with a relatively small
number of particles, and can represent a more complex system state, including position, orientation,
speed, etc. In this paper, which is focused on door detection integration, we use a grid-based filter [9],
which is deterministic. The map is tessellated into a regular grid, and belief is computed for all points
(i.e., centers of grid cells). The basic grid-based filter preserves all information but lacks the ability to
focus on specific areas with higher resolution.

The computation of the posterior belief, based on the prior distribution, is triggered by a detected
step. Steps are identified using sensor measurements [10]. For the Bayes filter transition phase, both
orientation and distance are needed. Step length can be computed from sensors using step-frequency-
based, acceleration-based, angle-based, or multiparameter approaches [11].

2.2. Door detection

Doors can be detected in images using computer vision methods such as edge and corner detection [12]
or line detection [13]. These methods require a certain amount of computation, and their accuracy is
limited. Moreover, most door detection papers are evaluated in outdoor scenarios, where a wide range
of distinct door appearances is present.

For indoor positioning within a specific building, a more specialized method would be preferable.
Neural networks can be trained to detect doors in images. A promising approach is to combine existing
robust object detection models [14] with fine-tuning tailored to the specific building. Antonazzi et al.
[15] propose a door detection method for robots. They perform fine-tuning of a deep neural network
using synthetic data generated from photorealistic simulation environments. Zhang et al. [16] improve
the original YOLOv3 model by integrating DenseNet blocks in the context of door and window detection
for robots. Their solution includes additional techniques that enhance accuracy without significantly
increasing computation time.



Figure 1: Diagram of the positioning framework.

YOLO models [17] typically require fine-tuning to detect doors, as the COCO dataset [18], on which
most YOLO models are pretrained, does not include door as a separate category. However, there are
object detectors capable of detecting doors without the need for additional training. Grounding DINO
[19] enables detection and localization of objects in images using free-text prompts, without relying
on predefined class labels. It combines a transformer-based image encoder with a language-guided
decoder, allowing flexible object detection queries expressed in natural language.

Although a fine-tuned model would likely achieve higher accuracy, for the purpose of demonstrating
how door detection can be integrated into an indoor positioning system, this off-the-shelf approach is
sufficient. Moreover, door detection serves not as the core positioning method, but rather as a correction
mechanism to adjust PDR estimations.

2.3. Anonymization

To address the privacy aspect of camera-based positioning applications, the primary concern is the
identification of individuals captured in the image. Various techniques exist to anonymize people in
images. Face detection using Haar features is a commonly used approach [20], as it allows for fast
classification of image regions. Detected faces can then be anonymized using techniques such as black
boxes, blurring, or pixelation [21].

In recent years, several deep learning-based methods have emerged, offering more advanced capabili-
ties. Deep Privacy 2 [22] uses a Generative Adversarial Network to detect human faces or full bodies
and replaces them with synthetic counterparts. LaMa [23] is a mask inpainting method capable of
handling complex images using Fourier convolutions. It removes detected individuals from images
through inpainting. For the purpose of door detection, the inpainting approach may be more suitable,
as it presents a simplified image with fewer distracting objects. However, this method is not yet capable
of real-time processing.

3. System overview

Figure 1 presents an overview of the proposed system. The method is composed of the following steps:

• Initialization of the system: the map is tessellated into a regular grid based on floor plans. The
initial position is provided, and a door model is created from the map.

• Accelerometer sensor measurements are processed by a step detector, which triggers position
estimation (performed by the grid-based filter). A low-pass filter is applied to smooth the data.

• Orientation is obtained from the rotation vector and supplied to the step detector.
• Step detection is performed using a four-phase identification method [9]. Step length is calculated
based on the user’s height and step frequency using the formula introduced by Villien et al. [24].



Figure 2: A door appears under different angles from positions A, B, and C (left image). The bounding box of the
detected door determines the observed angle. This angle range is transformed into values between 0 and 1 (in
this case, covering a 56-degree field of view, as indicated by the red rectangle). The proposed method matches
this observed angle with the expected angle based on the user position.

• Doors are detected in the camera frame at the time of a detected step using Grounding DINO
with the prompt door.

• Camera images may be modified using an anonymization technique, where humans are detected
via Haar features and the corresponding regions are blurred.

• The grid-based filter performs a transition phase based on the detected step length and orientation,
followed by a correction phase using the map model and door detection results. The position
with the highest belief value is considered the estimated user position.

The grid-based filter estimates the user position based on the detected step. Each grid cell is assigned
a belief value corresponding to the probability of the user’s presence at that location. The sum of
all belief values is equal to one, which is ensured after every step by normalizing the grid. In the
evaluation described in the next chapter, a one-dimensional grid was used to represent a straight
path. This simplification helps to highlight the impact of door detection. The proposed system is
conceptually similar to the visualization by Fox et al. [25], but it employs discrete sampling of a
continuous distribution.

The transition is performed based on the step length, as the orientation is considered constant in
the experiment. The probability distribution is computed using a convolution with a mask derived
from a normal distribution, where the mean corresponds to the estimated step length and the standard
deviation is 10 cm.

The correction relies on two sources of information. The first is the map model, which prevents
the user from moving through or beyond walls by setting the belief values of inaccessible locations to
zero. For evaluation purposes, this correction is optional. However, in more complex scenarios, it may
serve as the primary correction source. The second and main correction source is door detection. After
processing, Grounding DINO provides a list of bounding boxes which cover the detected doors. Each
detection includes the center position (x, y) of the object in the image, its size (width and height), and a
confidence score. All values are within the interval ⟨0, 1⟩.

Figure 2 illustrates the door-matching process. For all grid positions, angles toward all doors are
calculated. In a controlled scenario, only visible doors need to be considered, which requires knowledge
of the smartphone camera’s field of view. In the one-dimensional case, the angle is measured between
the path and the door. For two-dimensional grids, angles are computed relative to the current device
heading. Each angle is then mapped to the ⟨0, 1⟩ interval (with values possibly outside this range for
objects outside the field of view). This mapped value serves as the mean of a normal distribution with a
standard deviation of 0.2. A detected door is compared with all reference doors, and the probability of a



match is derived from this distribution.
More formally, the belief value for a grid cell 𝑥 at iteration 𝑡 is computed as follows:

𝐵(𝑥)𝑡 = ∑
𝑥′∈𝐺

𝐵(𝑥′)𝑡−1𝑀𝑙(𝑥, 𝑥′) ∏
𝑑∈𝐷𝑡

∏
𝑒∈𝐸

𝑃(𝑑, 𝑒)𝐶(𝑑), ∀𝑥 ∈ 𝐺

where 𝐺 is the grid containing all points (grid cells) on which the belief 𝐵 is computed at iteration 𝑡.
The function 𝑀𝑙(𝑥, 𝑥′) returns the probability of transition from point 𝑥′ to point 𝑥, with the index 𝑙
denoting the mean of the normal distribution used for this calculation. 𝐷𝑡 is the set of doors detected in
the image at iteration 𝑡, and 𝐸 represents the door model. In the implementation, only doors within
the camera’s field of view are considered. The probability of a match between a detected door 𝑑 and a
ground truth door 𝑒 is computed using the function 𝑃(𝑑, 𝑒). The function 𝐶(𝑑) denotes the confidence
score of the detected door 𝑑.

4. Evaluation

The goal of the evaluation is to demonstrate the capability of the door detection method to reduce
uncertainty and correct errors accumulated by an imprecise PDR model.

4.1. Scenario

A straight corridor segment, 30 meters in length, is used for the evaluation. The first segment (12.35
meters) is traversed without applying door detection, allowing error accumulation. In the remaining
segment, eight doors are visible. All doors are 90 cm wide but are unevenly distributed. On the right
side, three doors are located at 16.0 m, 23.4 m, and 29.6 m from the starting point. On the left side, five
doors are positioned at 16.1 m, 21.5 m, 24.4 m, 27.5 m, and 30.0 m. Measurements refer to the farthest
point of each door. Additionally, there are 275 cm between the path endpoint and the wall enabling
correction by the map model. The goal is to compute the difference between the true final position and
the estimated position after completing the path.

The experiment was conducted twice: once in an empty corridor, and once with two people present
(one standing, one moving). Initial experiments showed that the PDR system is reliable under these
conditions: all 37 steps were detected, and heading deviations remained within acceptable limits.
Therefore, a one-dimensional grid along the path is used for position estimation, and orientation is
omitted. The grid resolution is 10 cm between adjacent cell centers. The dataset used in this evaluation
is publicly available [26].

A Xiaomi MI 10 running Android 13 was used. A custom application recorded rear-camera video
vertically, capturing a 56-degree field of view. The application also recorded timestamps for each video
frame along with accelerometer and rotation vector measurements. Manual checkpoints were marked
by the user and are included in the dataset.

Anonymization was applied using Haar feature detection for upper bodies, followed by blurring with
a 33 × 33 kernel. In the first run (with no people present), the first right-side door was open. Duplicate
door detections (i.e., overlapping bounding boxes) were removed, with the instance having the higher
confidence retained for position estimation.

4.2. Door Detection

The exact evaluation of door detection performance is not the primary focus of this paper. The
focus is placed on observing and understanding the behavior of the detection method, as opposed to
quantitatively assessing its accuracy.

Not all eight doors were detected in any single camera frame. The best result achieved was the
detection of three doors within one frame. The maximum distance at which a door was successfully
detected from the camera was approximately 10 meters along the straight path. Figures 3 illustrate
examples of detection outcomes.



Figure 3: Door detection results are illustrated as follows: the first image shows a detected open door; the
second presents a door opened into the corridor; and the third demonstrates detection in an image containing
blurred individuals. First image is from Scenario 1 and third image is from Scenario 2 with anonymization.

Figure 4: Door detection examples: the first image shows duplicate detections of a single door; the second
illustrates various objects incorrectly identified as doors; the third shows vending machines mistakenly detected
as doors. Only first image is from Scenario 1.

The confidence scores of detected doors range between 30% and 69%. The lower bound is set by the
threshold in Grounding DINO, for which the default value was used. Reducing this threshold may lead
to the detection of additional doors.

The accuracy of door detection depends heavily on the characteristics of the building. In cluttered
environments or in the presence of people, the detection performance decreases (see Figure 4). A
frontal view of the door increases the likelihood of successful detection. Therefore, using the camera
in horizontal orientation, which provides a wider field of view, may be advantageous. Some informal
experiments also included open doors. When doors open into the corridor, they are more easily
recognized.

In more cluttered buildings, there are more false detections, such as vending machines, whiteboards,
and similar objects. However, false detection of windows occurred only under specific conditions.
Overall, the results are satisfactory, with potential for further improvement through model fine-tuning,
leveraging video sequences via multi-object tracking, or aggregating detection results across multiple
frames rather than relying on a single image.



4.3. Positioning results

The true path was 30 meters long. PDR without a grid-based filter but with step length estimation
resulted in an estimated distance of 33.68 m. Using a grid with a resolution of 10 cm, the estimated
distance was 33.75 m. When the map model correction was applied, the estimated distance improved to
33.35 m. Thus, the estimation error was 3.75 m without the map model and 3.35 m with it. A small
portion of this error is due to space discretization; however, the primary source of inaccuracy is the
incorrect estimation of step length.

The PDR model tends to overestimate the actual step length. By incorporating the door detection
method, the model was able to mitigate this inaccuracy. Particularly in the middle of the door segment,
where three doors were successfully identified, the position remained nearly constant for three consec-
utive steps. This can be interpreted as the PDR model projecting a faster pace, while the door detection
constrained the movement to align with the map and visual input from the camera. A summary of
results is presented in the following table.

Errors in meters Scenario 1 Scenario 2 Scenario 2
+ anonymization

Grid 3.75 5.25 5.25
Grid + Map correction 3.35 3.35 3.35
Grid + Door detection 1.15 3.45 3.45
Grid + Door detection + Map 1.15 3.25 3.35

Scenario 1 was conducted in an empty corridor, while Scenario 2 included the presence of two people.
Door detection refers to the proposed system. Map correction means that positions beyond walls are
excluded from the grid. In this case, the distance between the endpoint and the last grid cell is 2.75 m;
otherwise, it is 6.35 m.

These results are obtained in a specific scenario designed to exaggerate the impact of door detection,
especially in Scenario 1. In a more complex scenario involving changes in direction, the map model
would affect the accuracy more significantly. In this case, only a small correction is applied. However,
door detection still enables position correction.

In Scenario 2, the characteristics of this path are demonstrated. If the step length is overestimated,
the map correction improves the position. If it was underestimated, the map would have little effect
for this path. However, the data suggests that door detection produces the same correction as the map
model. Moreover, this applies even with anonymized images.

Conclusion

This paper presents an indoor positioning system based on Pedestrian Dead Reckoning (PDR) and a grid-
based filter, where corrections are applied using door detection from camera images. The off-the-shelf
model Grounding DINO is employed to obtain bounding boxes representing detected doors.

The evaluation demonstrates promising results, with the positioning error reduced from 3.75 m to
1.15 m using the proposed method. Additionally, an anonymization technique was incorporated to
address privacy concerns related to the use of camera images.

These experiments suggest the possibility of using doors as visual landmarks for PDR correction. In
the tested scenario, it exceeded, or at least matched, the corrections provided by the floor plan model.
In such a small-scale experiment, the map model may seem obsolete. However, further experiments in
more complex scenarios are necessary to determine whether this method provides similar corrections.
It is also necessary to evaluate whether it can be considered an alternative to the map model or a
complementary approach.

The main drawback of this method is its computational cost. The usage of text-to-image model
Grounding DINO demonstrates the feasibility of using deep learning for door detection. Depending on
the context, a fine tuned robust model, or a solution tailored to a specific building with an emphasis on
efficiency and accuracy, would be preferable.



Moreover, several questions remain open. In particular, the feasibility of deploying such a system in
real-time scenarios is yet to be confirmed. Furthermore, the effectiveness of the proposed correction
method should be compared to corrections based on Wi-Fi or Bluetooth signals. Further work is also
needed to improve the robustness and accuracy of the door detection process itself.
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