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Abstract

Localizing, detecting, navigating and tracking devices, especially smartphones in dynamic environments, has
received significant attention from the research community in recent years, as knowledge of the current position
is helpful in numerous applications, ranging from emergency situations to the analysis of human activities.
Smartphones, as well as other smart devices operate at low cost and without additional infrastructure. This can be
realized by utilizing the smartphones’ inertial sensors, such as magnetometers, accelerometers, and gyroscopes.
In this paper, we propose a novel approach for detecting pedestrian steps, which can be used for estimating
the distance covered by the pedestrian, from raw Inertial Measurement Unit (IMU) data by separating each
measurement to its 3 degrees of freedom. This approach utilizes the optimum combination of the motion sensors’
degrees of freedom, through an intelligent break down of the off-the-shelf smartphone raw data from the built-in
sensors. Data are gathered from five different body positions and three corresponding speeds, resulting in a
rich dataset which accounts for many different input patterns and possible scenarios. From the experimental
evaluation results, it becomes evident that the proposed step counting approach outperforms the commonly used
approaches, that rely on single (combined) measurements from the sensors, under a variety of input conditions.
The optimum combination, with the lowest average percentage error (0.613%) of all tested combinations, is
achieved by deploying smartphone on the pedestrian’s arm at slow speed.
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1. Introduction

Localization and tracking people has attracted considerable attention from both the academia and
industry in recent years, since the awareness of the current position is beneficial in numerous areas,
such as search and rescue, localizing people with disabilities, mining locations, wilderness areas,
emergency services and military. Nevertheless, smart devices and smartphones attract attention in
academia and industries due to their rapid integration with everyday life. Almost everyone, despite of
age and gender, carries at least a smartphone on a daily basis. The smartphones usage is expected to
climb to almost eight billion by 2028 [1]. Smartphones, as well as other smart devices, are hardware
with advanced computing capabilities used to gather data from the physical world, thus providing the
opportunity of developing services and applications to perform various actions.

Pedestrian Dead Reckoning (PDR) utilizes the motion sensors for estimating the distance and direction
of pedestrians. The method of determining one’s present location using their previously known position
and moving that position forward over time using predetermined or estimated trajectories and speeds
(or, alternatively, stride lengths and directions) is known as pedestrian dead reckoning, or PDR [2]. The
total distance covered is the product of the stride length and number of steps taken. Typically, the
steps can be estimated by utilizing the data of an IMU, while for accurate stride length estimation, a
study of human and animal locomotion may be required. The work presented, concentrates on the
step detection algorithm, as part of the PDR system. The fact that PDR does not depend on external
measurements, makes it a good alternative, especially in the absence of Global Navigation Satellite
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System (GNSS). However, developing a PDR system is a challenging task since it depends on the smart
devices’s IMU low-cost sensors, which are easily affected by a variety of factors and they are highly
sensitive to movements. In the present study, an accurate and robust step counting system was achieved
without a predefined smartphone placement and based entirely on raw data received from the IMU
sensors.

The remainder of this paper is organized as follows. Section II includes the related work. In section
111, the proposed step counting system algorithm is detailed. Section IV examines the experimental
data to confirm the algorithm’s performance and evaluates the findings of the experiments. Section V
provides a discussion of the results and future directions.

2. Related Works

The step detection and counting, also called pedometer, is commonly used by numerous applications
for estimating the total distance walked by pedestrians. The accelerometer is the most commonly used
sensor for step detection, since its magnitude remains nearly constant as the pedestrian is standing
still and specific patterns (magnitudes) can be observed while walking. The gravity acceleration
measurements can be adjusted by passing the acceleration magnitudes through a low-pass filter [3].
Other methods for processing the acceleration magnitudes include the Principal Component Analysis
(PCA) and principal component regression [4]. Also, algorithms based on Kalman Filters are used
for handling real-time step frequency updates [5]. Techniques, such as setting a threshold [5], [6],
double threshold detection, which are based on filtering the magnitude of acceleration followed by
applying a threshold on the filtered data [7], peak detection, measuring the peaks of the vertical
acceleration [8, 9, 10, 11, 12, 13, 14, 15, 16] and windowed peak detection techniques [17] can also be
utilized. The acceleration signal patterns on inertial force trigger step events [18], which in turn can
be used for step counting through the peak and time domain set for dual-feature step detection [9].
Alternatively, the step detection can be achieved by utilizing the correlation coefficients for identifying
whether the collected measurements exhibit similar tendencies [19]. False steps can be identified by
setting a threshold between maximum and minimum peaks [20].

The PDR step detection techniques commonly depend on the smartphone placement, noise and bias
reduction algorithms as well as prior sensors’ calibration. IMU sensors are sensitive to movements,
for example the accelerometer is sensitive even to little noise, gyroscope is extremely sensitive and
suffers from drifts, and magnetometer suffers from nearby magnetic fields interference. Previous step
detection algorithms assumed that sensors are mounted in a fixed position relative to the pedestrian’s
body mainly for the stability of measurement. The number of steps is counted by detecting the peaks of
acceleration and the smartphone is required to be mounted for accurate measurements and disturbances
avoidance [21]. However, there is an identified need in various applications to promote alternative
smartphone placement, such as free walking [5, 3]; texting/calling, swinging [12, 13]; keeping in bags
and pockets [22, 16, 17, 23]; holding in front of the body in a vertical direction [14, 18, 20]; holding in
hand with the screen facing upwards [15].

Measurements fluctuations can occur even under steady state conditions, such as accelerometer mag-
nitude fluctuations due to the presence of gravity. Commonly, the smartphone sensors are inexpensive
with poor accuracy and sensitivity. They are noisy and their bias and scale-factor performance are
low. The noise is more evident under low Signal-to-Noise Ratio (SNR) conditions. Therefore, different
techniques are used to eliminate them, while the aim of the work presented is to use off-the-shelf
smartphones with no data pre-processing methods. Furthermore, the axis whose data has the maximum
magnitude is commonly selected [24]. Alternatively, the Discrete Kalman Filter provides noise reduction
and flattening of insignificant acceleration changes [5]. The gravity from the accelerometer signal can
be eliminated, by shifting up the y-axis about 9.8m/s? through a high-pass filter [8]. The high-pass
filter can also be followed by a low-pass filter, such as a moving average filter, for smoothing the signal
and reducing the random noise [8].

Bias reduction is also considered an important task for developing a PDR step detection system.
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Figure 1: Stride vs Step Length

Bias is the error in the measurements, even after they are calibrated, and it needs to be estimated and
removed. One way to achieve this is by placing the smartphone motionless on a plain surface and note
the measurements, in an attempt to identify and adjust differences in the acceleration measurements, i.e.,
due to the presence of gravity [25]. Other noise reduction techniques include the Finite Impulse Response
(FIR) low-pass filter [17] and a 3-degree Savitzky-Goby Filter [13]. Furthermore, the magnetometer
measurement disturbances can be eliminated through a quaternion-based Extended Kalman Filter
(EKF) [3]. The authors in [3] eliminated the small jitters produced during pedestrians’ walking and
holding the smartphone, by setting a threshold for the gauge errors of steps. Similarly, the authors
in [16] calibrated the magnetometer bias by following the ellipsoid filling method. Nevertheless, each
component should be calibrated using predetermined offset parameters, as the raw data are offset due
to the surrounding magnetic environment and sensor’s conditions [26].

3. Methodology

PDR step detection is an infrastructure-less technique, mainly used in navigation. The accuracy of the
steps taken by pedestrians over time, without a predefined smartphone placement is of vital importance.
Furthermore, the aim of the work presented is to evaluate the proposed PDR step counting system on
different off-the-shelf smartphones, placed at the most typical pedestrian body positions using the peak
detection method.

3.1. Smartphone Placement and Speeds

Pedestrians typically place their smartphones on their upper arm, hand pelvic and thigh [4]. For the
work presented, ankle is also added, after considering the recently introduced ankle bands for measuring
pedestrians’ walking by monitoring the way heels strike the ground while walking [27].

3.2. Stride Lengths

A gait analysis, which is a study of the way people walk and/or run and consists of the step and stride
length, was carried out for each participant. The step length is the distance measured from the toe of
the right foot to the toe of the left foot, or from the heel of the right foot to the heel of the left foot.
Similarly, the stride length is the distance measured from heel to heel of the same foot or toe to toe of
the same foot. As a result, a stride consists of two steps, as shown in Figure 1. Both are estimated by
dividing the distance travelled by the number of steps or strides respectively.

3.3. Data Analysis

The data analysis was carried out using MATLAB R2023. Specifically, an Android application was used
for collecting data from the smartphone motion sensors, i.e., accelerometer (m/ 32), linear accelerometer
(m/s?), gyroscope (degrees/s), gravity (m/s?) and magnetometer (iT). In particular, the accelerometer is
an electromechanical device which measures the force of acceleration caused by movement or gravity
or vibration, and acceleration is a measurement of the change in velocity or speed divided by time.



Linear accelerometer is a software-based motion sensor that reports the linear acceleration of the sensor
frame, not including gravity. While, theoretically the difference between accelerometer and linear
accelerometer is the gravity component (gravity at rest is 9.8m/s?) on the z-axis, the data collected
for x- and y-axes were also different. Furthermore, gyroscope estimates the speed of rotation, thus it
determines the orientation of the smartphone from the initial state of rest. Magnetometer estimates
the magnetic field to which the smartphone is subjected, whereas in the absence of any magnetic or
ferromagnetic object, the magnetometer provides the coordinates of the earth’s magnetic field (magnetic
North). Gravity sensor is another software-based motion sensor that calculates its values using more
than one hardware sensor.

For the work presented, smartphones were deployed in 5 different body positions i.e., Hand, Arm,
Waist, Leg and Ankle, for three different speeds, i.e, slow, normal and fast, and iterated three times
by carrying out experiments with different participants, thus a total of 45 datasets were extracted and
analysed. Initially, the total number of steps was estimated using all motion sensors raw measurements,
i.e., Accelerometer, Linear Accelerometer, Gyroscope, Gravity and Magnetometer, compared with
the actual number of steps taken and the more accurate sensor measurements were selected. It was
observed that only four sensor measurements, i.e., Accelerometer, Linear Accelerometer, Gyroscope
and Magnetometer, appeared relevant to the step counting task. These four sensors measurements
were fused by using all possible 3-sensor combinations as follows:

« Acc. - L. Acc. - Gyro. (ALG)
« Acc. - L. Acc. - Mag. (ALM)
« L. Acc. - Gyro. - Mag. (LGM)
« Mag. - Acc. - Gyro. (MAG)

While in the existing literature, the PDR step detection systems are built by considering the sensors’
axes as a single measurement, in the work presented the sensors’ measurements were split and analysed
based on their 3 axes (x, y, z). Therefore, for each sensor fusion combination, i.e., ALG, ALM, LGM
and MAG, each sensor was analysed based on its three axes; thus providing a total of nine different
measurements (entries) and 84 total possible combinations. The method was compared with the single
measurement method, where each sensor measurement is utilized as a single combined measurement
of all 3 axes.

3.4. Step Counting Algorithm

Although data pre-processing is commonly used in the existing literature during the development
of a step counting system, it eliminates the opportunity of utilizing off-the-shelf smart devices, as
well as requires high computational cost. In the work presented, the proposed step counting system
entirely depends on the raw motion sensor measurements. Specifically, the step counting algorithm,
shown in Algorithm 1, begins with the collection of the raw sensor data measurements. Then, each
sensor datastream is split into three measurements (i.e, x-, y- and z-axes), thus providing a total of nine
different datastreams and 84 total possible combinations (i.e., 9 choose 3).

Then, the collected raw sensor data measurements magnitude is estimated using Equation (1), and
any constant effects are removed by subtracting the mean from the magnitude,

Magnitude = \/ (data,)? + (daz‘ay)2 + (data,)? (1)

where datay, data,, and data, represent the input sensor data for x-, y- and z-axes respectively.
The standard deviation estimation follows, using Equation (2), which is used as the threshold value,

YOG - X)?

STD(X) = N

(2)

where N is the number of measurements in the dataset, X; represents each of the values and X is the
mean of X;,i =1, .., N.



Algorithm 1 Step Counting Algorithm
1: Input three sensor datastreams at a time (i.e., ALG, ALM, LGM, MAG)
2: Split each sensor datastream into three components (x-, y-, z-axes), thus providing a total of nine
different sensor component datastreams and 84 total possible combinations (i.e., 9 choose 3)
for iteration = 1,2, ...,84 do
Estimate the magnitude
Deduct the magnitude mean
Set the threshold to 1 standard deviation
Estimate the total number of steps (peaks above the threshold)
end for

All output results, above the threshold value, are considered as pedestrian steps. The error is the
absolute difference between the counted and estimated numbers of steps. The overall percentage error
is computed for the total number of steps, as well as various error statistics including the average,
median, minimum and maximum errors for each body position and corresponding speeds.

4. Experiments and Results

For the present work, three volunteers participated in the experiments. The participants were chosen
as non-athletes and they were in prior asked to describe their exercise workouts, experience level and
state any injuries or illnesses they may have. All three of them stated that they usually exercise, mostly
walking in the morning, and they had no injuries or illnesses. Therefore, all three experiments were
carried out in the morning, i.e., 6:00-7:00 am, using the same professional gym treadmill (Technogym
Excite Run 500i), in the same gymnasium, within the same week, i.e., Monday, Thursday and Friday, for
avoiding any external biases. In particular, two women and one man participated in the experiments,
aged between 18-50 years, each one equipped with five different off-the-shelf smartphones deployed at
different body positions, using commercial running water resistant smartphone cases, as illustrated in
Figure 2, numbered 1 to 5, representing Hand, Arm, Waist, Leg and Ankle respectively. Furthermore,
the smartphone models are listed in Table 2. Each body position was experimented at three different
speeds, 3.3km/h (slow), 4.6km/h (normal) and 5.9km/h (fast) [4]. The five different body positions at
three different speeds resulted in 3 * 5 * 84 = 1260 different sensor fusion combinations examined for
each experiment. Moreover, the Android application update interval was set to 0.01 seconds, thus a
frequency of 100Hz, generating a data stream of 90,000 entries for each body position including all three
speeds. An assistant guided the participants throughout the experiments by providing a briefing prior to
each experiment. The participants were instructed to walk at three different speeds with a duration of
15 minutes each. The assistant clearly stated that the experiments were timed and they had the option
to terminate at any time they felt tired or sick. Additionally, the participants were encouraged to have a
short warm-up before the experiment, such as body stretching exercises and walking on their own pace
on the gym’s indoor mini running track. During their free walking, the assistant measured and recorded
their step length, which was later compared with their step length while walking on the treadmill. All
experiments were video recorded using an iPad Pro and watched afterwards for verifying the total
number of steps taken, as well as the step length. The pedestrians’ step lengths were measured using
artificial landmarks placed on the treadmill. The distances covered during the experiment were 0.82km,
1.05km and 1.47km for slow, normal and fast speeds respectively, as recorded by the gym treadmill.
It is noted that the total speed for each experiment was between 3.65km and 3.75km due to the extra
time at the beginning, middle and end of each experiment. Specifically, the experiment duration was 49
minutes, thus walking for 1 minute until the assistant progressively set the speed to 3.3km/h (slow)
followed by 15 minutes walking at a steady speed. After completing the first lap, the participants were
instructed to walk for 1 additional minute, while the assistance progressively set the speed to 4.6km/h
(normal) followed by 15 minutes walking at a steady speed. Similarly, after completing the second lap,
the participants were instructed to walk for an additional minute while the assistant progressively set



Table 1
Optimum combinations of sensor axes for step counting using proposed algorithm

Slow Normal Fast

Avg.% Mdn% Min% Max% Avg.% Mdn.% Min% Max% Avg.% Mdn% Min% Max%
Hand | Acc, Acc, L. Acc, 2118 2411 1206 2737 | L.Acc, Gyro, Mag, 0887 1LI51 0314 1195 | Acc,  L.Acc, Mag, 7423 683 0914 14520
Arm Acc,  Acc, L.Acc, 0613  0.561 0 1.277 | Acc, Acc, Acc, 1.159 1.212 0692 1572 | Acc, L. Acc, Mag.,, 2258 1.977 1356 3.441
Waist | Acc, L.Acc, Mag, 3722  3.649 1702 5816 | Acc, Mag.,  Mag., 3171 1.212 0.629  7.673 L. Acc, Gyro, Mag., 1.861 0.565 0215  4.802
Leg Acc, Gyro, Mag, 6758 6383 6241 7.649 | Gyro, Mag, Mag, 4532 3030 1635 8931 | L Acc, Mag, Mag, 4803 4409 1921 8079
Ankle | Acc, L. Acc, Mag, 11720 12411 1474 21.277 | Acc, L. Acc, Mag.,, 5912 5.030 2.956  9.748 Acc, L. Acc, Mag., 6.055 6.075 2486 9.604

o

| | Speed 1: 3.3 km/h | | Speed 2: 4.6 km/h | | Speed 3: 5.9 km/h | |
— 1

I T 1 T L
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Figure 2: Experiment Timeline

Figure 3: Smartphone Placement

Table 2
Body position vs Smartphone model

Smartphone Number | Body Position | Smartphone Model
1 Hand Xiaomi Mi 11 Lite 5G
2 Arm Xiaomi Mi 11i
3 Waist Xiaomi Poco X3 NFC
4 Leg Huawei P10 lite
5 Ankle Honor 6X

Table 3
Steps Counted and Step Length

Participant ‘ Slow ‘ Normal ‘ Fast H Height ‘ Free walking | Treadmill

1 1425 1650 1860 165cm 66-67cm 56-58cm
2 1410 1590 1770 170cm 68-71cm 57-59cm
3 1410 1590 1770 170cm 68-71cm 57-59cm

the speed to 5.9km/h (fast) and walked for 15 minutes at a steady speed. Finally, the participants walked
for an additional minute for cooling down. The experiment timeline is shown in Figure 2. In addition,
the smartphone orientation axes and their employment orientation is demostrated in Figure 3. During
the experiment, the duration of each speed interval was recorded by the assistant, as well as the number
of steps was counted by using an electronic hand clicker counter. The total counted number of steps
walked by each participant is listed in Table 3. Besides, it was concluded that the step length is directly
related to the pedestrian’s height, as well as their step length was smaller compared to free walking on
the gym’s indoor mini running track. The participants’ height and step length are shown in Table 3.
The optimum combination for each experiment, i.e., the one that achieves the minimum average error,
is reported in Table 1, together with other error statistics such as median, minimum and maximum



Table 4
Optimum combination of sensor data for step counting using single measurement method

Slow Normal Fast
Method Avg.% Mdn.% Min% Max% | Method Avg.% Mdn% Min% Max% | Method Avg.% Mdn% Min% Max%
Hand | ALG 11.690  10.246 9.22 15.603 | LGM 9.166 8.931 3.962 14.606 | MAG 15.727  22.655 1.299 23.226
Arm ALG 10.447 10 7.298 14.042 | MAG 15.226  14.465 4.545 26.667 | ALM 13.542  25.254 1.017 24.355
Waist | ALG 17.168  18.456 3.191 29.858 | ALM 7.520 6.729 3.818 12.012 | ALG 10.184  7.627 3.602 19.322
Leg ALM 30.294 24610 10.386 55.886 | ALM 24.685 14.182 13.585 46.289 | ALM 35.784  38.361 6.505 62.486
Ankle | ALM 14.656  11.206 0.421 32340 | ALM 10.001  11.576 0.629 17.799 | ALM 16.388  15.650 10.395 23.118

error. For comparison purposes, we also implement the Single Measurement method, which considers
each sensor datastream as a combined measurement of all 3 axes components.

5. Discussion

Throughout all experiments, body positions and their corresponding speeds, there were combinations
with zero error. That is, the number of steps estimated was exactly the same with the number of
steps counted. From Table 1, it can be observed that the optimum combination, with the lowest
average percentage error (0.613%), of all tested combinations, is achieved by deploying a smartphone
on the pedestrian’s arm at slow speed with the combination of Accelerometer-y, Accelerometer-z
and Linear Accelerometer-z. The biggest average error was 11.72% and it was produced by using
the combination of Accelerometer-z, Linear Accelerometer-y and Magnetometer-y on the ankle at
slow speed. Furthermore, the optimum body position for holding a smartphone while walking is
the arm with an overall average error of 4.0295% and median 3.7509%, whereas the ankle produced
the highest overall average error 23.6873% and median 23.5169%. However, the optimum results
are most frequently obtained from the combination of Accelerometer-x, Linear Accelerometer-x and
Magnetometer-y, followed by Accelerometer-y Accelerometer-z and Linear Accelerometer-z. Moreover,
regarding the normal speed, the optimum combination includes the Linear Accelerometer-x, Gyroscope-
z and Magnetometer-z with an average error of 0.887% and median 1.1515%, which provides new
opportunities for future research, since most pedestrians utilize a smartphone armband during walking.
The results revealed that the proposed method outperformed the Single Measurement method; i.e., where
each sensor datastream is considered as a single combined measurement. The estimated number of steps
using the Single Measurement method are shown in Table 4. In addition, the optimum combinations
of the proposed method and Single Measurement are compared in Figure 4. Specifically, for Single
Measurement, the lowest average error (7.520%) and lowest median error (6.729%) was achieved using
the combination of Accelerometer, Linear Accelerometer and Magnetometer (ALM), deployed on the
waist at normal speed. Similarly, the minimum error (0.421%) was achieved using the same combination,
deployed on the ankle at slow speed, whereas the maximum error was observed on the leg at fast speed.
The aim of this research is to achieve the lowest overall error for the optimum combination. Firstly,
despite the fact that in reality the walking speed is complicated, in the work presented we considered
three different speeds. Secondly, the pedestrians were equipped with five different off-the-shelf smart-
phones aiming to find the optimum body position, which is concluded to be the arm, a realistic body
position placement for most pedestrians, which in turn provides opportunities for future work.

6. Conclusions

This paper presents an accurate and robust step counting algorithm based on the optimum combination
of the axes components from the four following IMU sensor data streams: accelerometer, linear
accelerometer, gyroscope and magnetometer. The intended method focuses on the usage of off-the-shelf
smartphones deployed at a variety of different body positions. The performance of the proposed method
is evaluated by using experiments with different volunteers. The experimental results showed that
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Figure 4: Comparison of optimal results between Proposed Method (OPT) and Single Measurement (SGL)

the proposed method outperforms the commonly-used methods which consider the motion sensors’
measurements as a single combined measurement. In the future, we plan to extend the algorithm to
include the pedestrian’s heading and even track the location.

7. Online Resources

All the sensor data captured and used in the presented study, is available at
https://github.com/conisaia/Step-Counting-by-Optimum-Fusion-of-IMU-Sensor-Measurements

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.
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