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Abstract

Wi-Fi-based radio-SLAM (simultaneous localization and mapping) estimates the positions of users and access
points (APs) simultaneously in GPS-denied indoor environments. To address the observability degradation in
radio-SLAM caused by using only relative distance measurements between APs and the user, this paper proposes a
positioning method based on the extended Kalman filter (EKF) and global geometry constraints. This method first
uses the relationship between signal strength and ranging in the free space path loss (FSPL) model to determine
the visibility of the AP. Then, it establishes a globally constrained positioning framework by integrating AP’s
observed visibility and estimated visibility (from the estimated results of the geometric collision detection of
walls). Simulation results show the improvement of our positioning methods, compared with the traditional EKF,
the proposed method improves user positioning accuracy (RMSE) by 34%, and AP location estimation accuracy
by 37%, enhancing users’ perception capability in unknown environments.
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1. Introduction

With the rapid growth in indoor location-based services, wireless signal-based indoor positioning
technologies have become crucial solutions in GPS-denied environments [1, 2]. The fine-time measure-
ment protocol launched in IEEE 802.11 mc for indoor positioning accelerated the research related to
Wi-Fi-based indoor positioning.

However, existing systems generally rely on pre-deployed access points (APs) with known locations,
which faces significant challenges in practical applications. Traditional approaches relying on known
AP locations, such as trilateration [3] and fingerprint matching [4], not only require complete prior
knowledge of AP positions but also cannot adapt to dynamic environments with moving or newly added
APs. Fingerprint also demands extensive manual effort for offline calibration and struggles with routine
alterations like furniture rearrangement. Temporarily deployed mobile APs, or unrecorded APs in older
buildings, can completely undermine conventional positioning methods. Meanwhile, complex indoor
environments with multipath effects [5] and non-line-of-sight (NLOS) [6] propagation can severely
degrade the accuracy of ranging measurements based on round-trip time (RTT) and received signal
strength (RSSI), ultimately compromising the reliability of the entire positioning system.

These real-world challenges urgently call for innovative solutions that can achieve precise positioning
even when AP locations are unknown. On the other hand, wireless positioning methods based on
simultaneous localization and mapping (SLAM) can estimate both user and AP positions simultaneously,
also known as radio-SLAM [7]. Barneto et al. [8] introduce a novel state model for mapping signal
diffuse and specular scattering, which allows efficient tracking of individual scatterers over time using
interacting multiple model (IMM) extended Kalman filter and smoother. Leitinger et al. [9] formulated
the SLAM problem within a Bayesian framework, representing it as a factor graph to enable efficient
margi nalization of the joint posterior distribution through belief propagation (BP). However, for
Kalman filter-based approaches and factor graph techniques [10], the system has poor observability
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when simultaneously estimating both agent and AP positions using only relative distance measurements
between them. Morales’s research [11] shows that in such radio-SLAM system, poor observability can
cause the clock biases of the receiver and transmitter to be random and unobservable, and the estimated
error variance to diverge. As a result, the lack of global constraints leads to translational and rotational
errors in the estimated localization results. Existing research has not fully utilized the important prior
information contained in building floor plans to enhance the physical consistency of the solution.

To address the challenges, this paper proposes an innovative radio-SLAM framework by integrating
signal transmission characteristics with environmental structural constraints. Our contributions are:

« proposes an observed visibility classification method based on joint analysis of RTT and RSSL By
thoroughly examining the residual between these two measurements, we can identify LOS and
NLOS propagation states.

« introduces geometric constraints from building floor plans. Rather than simply adjusting noise
variance based on visibility, we leverage the consistency between the estimated user-AP relative
visibility and the prior map’s visibility information.

2. Visibility classification

In a LOS environment, the RSSI and RTT distance measurement should conform to the FSPL model; if
there is occlusion, RSSI will be significantly lower than the theoretical value due to additional attenuation.
The residual y of the measurement RSSI and predicted RSSI based on FSPL is used to determine the
visibility. If y < T, the signal is determined as an LOS signal. Otherwise, the signal is a NLOS signal. T’
is the dynamic threshold determined by different environments, ' = K - 0.
LOS, ify<T,
0= . (1)
NLOS, ify >T1T.

In terms of the estimated visibility, it is determined by whether the line from the user and AP
intersects with the wall derived from the floor plan[3]. Expressed as:
_ JNLOS, if pp’and L intersect, @)

b LOS, ifpp’and L do not intersect,

where pp’ is the line segments connecting estimated user p = (x, y) and AP locations p/ = (27,¢7), L
is the vector set of the wall. Therefore, the consistency of visibility is:

Vo = XNOR(Vo, VE), (3)

where the XNOR operation returns true only when both inputs are equal.

3. System Modeling

Distance measurement is a nonlinear equation of AP and user locations. We choose the Extended
Kalman Filter (EKF) to solve the nonlinear problem through local linearization. The nonlinear prediction
equation and measurement equation are differentiated and linearized by replacing the tangent line. It is
a first-order Taylor expansion at the mean.

The state vector contains the user’s position (x, y), user’s velocity (&, %) and the positions of .J APs
(z,97):

x:[m y & g o' oyt o a2 yJ]T6R2J+4. (4)

The status prediction is:
Xpk—1 = FrXp_1jp—1, (5)
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Figure 1: The example of LOS and NLOS propagation of V. When the Vo and Vg are inconsistent, the weight
of the corresponding AP measurement value on the EKF positioning result will decrease.

where x;_1|;_1 is the posterior state at k — 1, x3;_; is the prior state, Fj, € R(2J+4)x(2J+4) jg the
state transition Jacobian matrix:
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The covariance prediction is:
Pyt = FiProip1 Fy + Qi (7)
where Qj is defined as
Qk = diag<o-g%7 057 0-%7 057 05170517 R 0-:123]'70-5]')7 (8)
corresponding to different variances of the status. The residuals to the measurement value zy, is:
Yi = zp — HpXpp—1, )
where the measurement Jacobian matrix Hy, is:
adt  9d' ad!
od ad ad
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The measurement prediction function is :
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2 z—12)2 1 (y — 42)2
| Ve + ) )




The Kalman gain is:

Ky, = Py Hf (H Py Hf +Ry) ™", (12)
where
corresponding to the variances of measurements. Considering the influence of visibility consistency,
Odj, ifVe=1
og =9 . (14)
D'O’dj, lfVCZO,

where D is the trust scaling factor, if visibility is inconsistent, the corresponding measurement value
has higher noise variance. The state and covariance update is:

Xk = Xijk—1 T Ki Y, (15)

P = (I - KpHy) Py (16)

In our framework, the visibility consistency of APs serves as a reliability indicator for measurement
validation. Specifically, when visibility consistency is satisfied, the corresponding AP’s measurements
are deemed more trustworthy, and we proceed with standard state update and prediction following the
EKF workflow. Figure 1 shows an example of this process. Assume that, based on RSSI and RTT, Vp
is classified as LOS. If the segment connecting AP and user intersects the wall, Vg is NLOS, which is
inconsistent compared to V. Therefore, this measurement value is unreliable, and the value of the
element of the measurement noise covariance matrix of AP increases.

4. Evaluation

The performance of the proposed EKF algorithm is verified by simulation in a dynamic noise environment
and compared with other filtering methods.

4.1. Experimental setting

We set the positions of the walls L, the location of the AP (([—3, 5], [30, 5], [15, 20]) with the unit as
meters), and the trajectory of the user. The user’s movement consists of straight walking and turning,
distributed in different rooms within 120 seconds.

All parameter settings used in the system and the initial settings of EKF are shown in Table 1.

Table 1
System Parameters

Parameters | Value

J 3

K 3

At 0.1s

Oz, 0y 0.1m

O, 0y 0.5m

Ozj,0yj 107 %m

Od 1.5 m

D 10

Initial State | Value

X0 [1,14,1,0,0,2,25,0,22,25]"
Py diag([5, 5,1, 1, 20, 20, 20, 20, 20, 20])




4.2. Results and Analysis

Figure 2 shows the result of EKF and the proposed visibility-assisted positioning method. Figure 2(a)
shows the trajectory of the result.
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(a) The result of EKF and the proposed visibility-assisted (b) The error comparison of different APs and the user.
positioning method. The red dots indicate the position-The red line is the estimated error of EKF, and the blue
ing result of the EKF, and the green dots indicate the line is the estimated error of our method.

positioning result of the proposed method.

Figure 2: Positioning trajectory and accuracy.

To analyze the time-error results of our method versus traditional EKF in estimating the positions
of the user and three APs, we plotted all curves in the same coordinate system to observe overall
trends (Figure 2(b)). The obvious difference between our method and EKF is that the measurement
variance matrix is adjusted based on the visibility—— rather than simply adjusting noise variance
based on visibility, we leverage the consistency between the estimated user-AP relative visibility
and the prior map’s visibility information. While our method does not exhibit significantly faster
convergence than EKF for user positioning, the visibility constraints mitigate the initial positioning
error amplification caused by biased initial values. After convergence, our method achieves lower
steady-state errors. Additionally, the AP error curves demonstrate that our method exhibits smaller
oscillations and positioning errors. Quantitative comparisons of key metrics (see Table 2) further
confirm our advantages.

Table 2
Performance Comparison (EKF / Proposed Method)

Metrics User AP1 AP2 AP3

Error Mean (m) 2.26/1.52 397/248 261/157 216/1.26
Error Max (m) 6.24/493 7.68/5.19 4.75/4.60 8.60/8.60
Error Std (m) 1.41/0.88 1.53/1.01 0.71/0.74 1.35/1.01
Error RMSE (m) 2.66/1.76 4.25/268 271/1.73 255/1.61

The comparative analysis demonstrates that our proposed method significantly outperforms the
conventional EKF across most metrics. For positioning accuracy, the mean error improved by 32.7%
(from 2.26m to 1.52m) for user localization and up to 41.7% (from 2.16m to 1.26m) for AP3. The RMSE
showed consistent enhancements, particularly for AP1 with 36.9% reduction (from 4.25m to 2.68m).



Regarding error stability, the standard deviation decreased by 37.6% (from 1.41m to 0.88m) for user
positioning, though AP2 exhibited a marginal 4.2% increase (from 0.71m to 0.74m). Notably, the
unchanged maximum error for AP3 (8.60m) is attributed to initial value deviation at k = 1, suggesting
the algorithm’s sensitivity to initialization. The results confirm our method’s superior performance in
both accuracy and consistency, while highlighting the need for improved initialization techniques to
address outlier cases.

The superior positioning accuracy achieved by our method stems fundamentally from its dynamic
adaptation of the measurement noise covariance matrix Ry, in the EKF framework. Specifically, our
approach innovatively integrates RSSI/RTT ranging data with posterior visibility verification to establish
a dual reliability validation mechanism: when an AP’s observed visibility (based on signal characteristics)
aligns with its geometric visibility (determined by intersection tests between estimated positions and
walls), the data is deemed reliable and corresponding o4; in Ry, remains unchanged; when discrepancies
occur (e.g., signal-indicated LoS conflicts with geometric occlusion), corresponding o4; in Ry, is increased
to reduce that AP’s influence. This design fundamentally overcomes the limitations of the traditional EKF
in complex environments due to the fixed noise assumption. It integrates environmental information as
constraints through a plan view, automatically suppresses interference from unreliable measurements
in scenes with inconsistent visibility, and further improves positioning accuracy.

5. Conclusion

To address the issue of insufficient global constraints in AP position estimation for radio-SLAM, this
paper proposes an EKF-based localization method leveraging visibility consistency. By integrating the
observed and estimated visibility of APs, the method establishes geometric constraints to enhance global
accuracy. Simulation results demonstrate that the proposed residual-based visibility discrimination
approach effectively distinguishes between LOS and NLOS signals. In terms of positioning accuracy,
multiple evaluation metrics, including RMSE, mean error, and standard deviation, show significant
improvements. This work introduces a novel approach by incorporating global geometric constraints
when only relative distance measurements of the target parameters are available, offering a new solution
for sensor network node calibration in an environment with mobile devices.

However, the positioning results are sensitive to initial values, and the measurement data is more
unstable in indoor environments with severe multipath effects. Future research will focus on developing
more robust initial value calibration algorithms and conducting experiments to evaluate the accuracy
and stability of our method.
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