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Abstract

High-precision time synchronization is essential for reliable communication in next-generation wireless systems
such as 5G and the Internet of Things (IoT), particularly under high mobility and dynamic noise conditions.
In this paper, we propose an Adaptive Dynamic Adjustment Kalman Filter (ADA-KF) to enhance both the
accuracy and robustness of clock synchronization in such challenging environments. The proposed method
incorporates a dual-residual sliding window mechanism combined with an Exponentially Weighted Moving
Average (EWMA). ADA-KF uses residual variance, theoretically grounded in Maximum Likelihood Estimation
(MLE), to adaptively update process and observation noise covariances. In 5G scenarios, precise synchronization
between the base station (gNB) and user equipment (UE) is essential. However, traditional methods relying
on fixed noise assumptions often struggle to perform effectively in rapidly changing wireless conditions. By
adaptively updating the noise model in real time, ADA-KF greatly enhances filtering performance in non-stationary
environments. Simulation results demonstrate that ADA-KF achieves faster convergence and higher estimation
accuracy than existing methods under low SNR and high mobility conditions. These results indicate strong
potential for its application in future communication systems.
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1. Introduction

With the rapid evolution of wireless communication technology, particularly the widespread deployment
of the Internet of Things (IoT) and 5G networks, achieving high-precision time synchronization between
base station (gNB) and user equipment (UE) has become a critical foundation for ensuring ultra-low
latency and highly reliable communication. This requirement is especially prominent in application
scenarios that demand high timing accuracy, such as industrial automation and vehicle-to-everything
(V2X) systems. As illustrated in Figure 1, these time-sensitive applications are subject to dynamic
conditions such as mobility and channel variability. However, real-world application scenarios present
numerous challenges: the high mobility of terminal devices leads to frequent changes in their relative
positions with respect to base station; environmental temperature fluctuations may cause clock source
drift; and the uncertainty of wireless channels. These complex factors collectively result in significant
time-varying characteristics of clock offset and clock skew. This severely limits the robustness and
accuracy of clock synchronization systems.

Traditional clock synchronization methods typically rely on static noise assumptions, which result in
significant performance degradation in highly dynamic and interfered environments, and failing to
meet the dual requirements of synchronization accuracy and robustness demanded by next-generation
communication systems. As shown in Figure 2, the 5G two-way time synchronization model achieves
basic synchronization by exchanging timestamps between gNB and UE over the uplink and downlink.
Although this model achieves high synchronization accuracy and strong interference resistance under
ideal conditions, its performance degrades in complex environments. The fixed parameter estimation
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methods it relies on cannot adapt to dynamic noise characteristics, which are exacerbated by high-speed
terminal movement and oscillator imperfections. To overcome these limitations, previous studies have
attempted to introduce state estimation methods such as Kalman Filter (KF) for modeling and tracking
[1, 2, 3]. However, most current methods still rely on fixed noise statistical models and lack adaptability
to dynamic heterogeneous network environments [4, 5, 6, 7], necessitating more flexible and efficient
solutions.
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Figure 1: Overview of Time-Sensitive Applica-  Figure 2: 5G Two-Way Time Synchronization

tions in 5G Systems Model

2. Related Work

In the field of time synchronization, early research primarily focused on the IEEE 1588 Precision
Time Protocol (PTP) and the Network Time Protocol (NTP). The pioneering work of Mills 8] laid
the foundation for internet time synchronization. Although these protocols perform well in wired
networks, they struggle to achieve nanosecond-level precision in wireless scenarios due to variable
delays, multipath effects, and dynamic channel conditions. As a result, researchers have increasingly
adopted state-space models to tackle clock synchronization, with a focus on the estimation and correction
of clock offset and clock skew. Among these, KF and its variants have received significant attention.
Mebhra et al. [9] proposed an innovative method for variance identification and iterative optimal gain
adjustment, enabling optimal gain updates under unknown noise covariances. However, this method
relies heavily on sufficient steady-state observational data, making it difficult to adapt to highly dynamic
or short-term synchronization tasks. Moreover, its strong prior assumptions about the structure of
process noise limit its flexibility in practical applications. To enhance filter robustness in dynamic
environments, Zheng et al. [10] introduced a Robust Adaptive Unscented Kalman Filter, which addresses
the challenges of unknown or varying process and observation noise covariances in nonlinear systems.
This method incorporates a fault detection mechanism that dynamically updates covariance matrices
based on innovations and residuals, improving estimation accuracy while reducing computational
burden. However, due to its reliance on threshold-triggered abrupt adjustments, it struggles to maintain
stable estimates in scenarios with frequent small-scale noise fluctuations. Huang et al. [11] proposed a
Sliding Window Variational Adaptive Kalman Filter (SWVAKEF), which jointly estimates state and noise
covariance within a sliding window using Bayesian inference. It demonstrates strong performance
under slowly varying noise conditions. However, its reliance on complex inverse-Wishart priors and
backward smoothers results in high computational cost and suboptimal real-time performance in rapidly
changing noise environments. In addition, Zuo et al. [12] proposed a joint estimation algorithm based
on correlation detection and implicit synchronization (CDIS-JE) that allows clock offset estimation at
the physical layer without increasing communication overhead. However, this method relies on a fixed
topology and ideal reference nodes, limiting its adaptability.

In the context of 5G applications, Werner et al. [13] proposed an Extended Kalman Filter method
based on DoA/ToA fusion for joint estimation of node position and clock offset. However, its noise model



is fixed and lacks online adaptability, limiting its effectiveness in dynamic environments. Goodarzi et al.
[14] combined BP and BRF to propose a hybrid Bayesian synchronization algorithm that balances global
accuracy and edge synchronization efficiency. However, its strategy relies on a structured network and
fixed noise model, making it difficult to adapt to rapidly changing wireless environments. Hu et al. [15]
combined 5G NR multipath measurements with UWB systems and proposed an iterative maximum
likelihood algorithm that improves positioning accuracy in GNSS-denied environments. Although
the method effectively addresses positioning in 5G systems, it relies on a fixed error model and lacks
adaptive covariance mechanisms, and its high dependence on 5G infrastructure limits its applicability
in heterogeneous networks.

To address the above issues, we propose a novel clock synchronization algorithm called ADA-KF
(Adaptive Dynamic Adjustment Kalman Filter). This method is based on a dual-residual mechanism that
continuously records both measurement and prediction residuals using a sliding window. It employs
the Maximum Likelihood Estimation (MLE) principle to obtain unbiased estimates of residual variances.
Additionally, an Exponentially Weighted Moving Average (EWMA) strategy and an adaptive smoothing
factor are introduced to dynamically update the covariance matrices, enabling online modeling of non-
stationary noise and adaptive adjustment of the filter structure. While maintaining the convergence
properties of the classical KF, the proposed algorithm significantly enhances synchronization accuracy
and robustness in dynamic environments. The main contributions are as follows:

+ An Adaptive Dynamic Adjustment Kalman Filter algorithm (ADA-KF) for clock synchronization
is proposed, which can dynamically update the noise covariance based on residual statistics.

+ A dual residual sliding window mechanism is constructed to dynamically model non-stationary
noise, effectively improving the filter’s robustness and convergence speed under complex condi-
tions.

« The introduction of MLE principle and EWMA smoothing strategy enables dynamic and stable
updates of the covariance.

+ System-level simulations demonstrate that ADA-KF outperforms existing methods under chal-
lenging conditions such as high mobility and low signal-to-noise ratio (SNR).

3. Proposed Approach

3.1. System Model

We adopt a standard second-order clock model to represent the local clock behavior of each node. The
state vector is defined as:
Ok
Xj = (1)

Ok

where 0}, denotes the clock offset and ¢y, represents the clock skew.
The state transition model is given by:

Xp = AXp_1 + W1 ()
where the transition matrix is:
1 At
A= [0 1 ] (3)

where Aty denotes the sampling interval. The process noise wy_1 is modeled as a zero-mean Gaussian
random variable with time-varying covariance Qy:

Wg_1 ~ N(O, Qk) (4)

The observation model is:
z, = Hxy, + vy, (5)



where H = [1,0]. The observation noise vy, is also modeled as a zero-mean Gaussian noise with
time-varying covariance Ry:

Vi ~ N(O, Ry) (6)

Traditional methods typically assume Qj and Ry, to be fixed, which limits performance in highly
dynamic environments. To address this, we propose an online adaptive estimation strategy that uses a
sliding window of historical residuals to estimate noise covariances. Following the MLE principle, the
sample variances of these residuals provide unbiased estimates for Qy and Ry, thereby improving the
filter’s adaptability under non-stationary noise.

3.2. Dual-Residual Sliding Window Mechanism

After each filtering step, two types of residuals are recorded:

+ Measurement residual:
r) =z — HXppy (7)
+ Prediction residual:
i = Xy — AXp_1 k-1 (8)

For each component, we have:
7";(60) =0 — (ék—l + &kthk) ) T;(f) = op — Gp1 )

Each residual sequence is stored in a sliding window of length L:

« Measurement residual buffer:

Ry ={r]_pi1-- 10} (10)
+ Prediction residual buffer:
Rl’ = {ri—L—&-lv R ,I‘i} (11)
The sample variances of these buffers are then used to estimate the noise covariances:
R = Var(R,), Q, = Var(R,) (12)

In practical clock synchronization systems, clock offset and clock skew are distinct error sources.
Clock offset reflects a fixed initial deviation, while clock skew accumulates over time. For model
simplification and filter stability, we assume a proportional relationship between the two process noise
terms:

QY =, n<1 (13)
where 7 is a small scalar constant indicating that the offset noise is significantly smaller than the
skew noise. Although this assumption is not physically derived, it is widely adopted in practice to
simplify the state model, as skew variation typically dominates offset drift over short time intervals.
This simplification improves KF convergence and robustness in dynamic environments.

3.3. MLE-Inspired Covariance Update

According to Mehra’s covariance matching theory[9], the MLE estimate of noise covariance is consistent
under the following conditions:

Efrf(r{)"] =Ry, E[f(r)"] = Qu (14)
Thus, we treat the sample covariance over the sliding windows as an unbiased estimator.
~ MLE 1 b 2
Ry = i3 Z (rf) (15)
i=k—L+1
QMLE 1 zk: Ui <T§¢)>2 0 (16)



3.4. Adaptive Factor Update

To balance responsiveness and stability while mitigating abrupt fluctuations caused by sample variance
jumps,we apply an EWMA mechanism with adaptive smoothing factors Az and Aq for dynamic update:

~ MLE

Rry=(1-Xp)Rik_1 + ArR;, (17)
Qi = (1-20) Qi1+ 20Q) (18)

3.5. Algorithm Summary

We summarize the complete filtering procedure in Algorithm 1.

Algorithm 1 ADA-KF: Adaptive Dynamic Adjustment Kalman Filter

1: Input: Observation z, previous state estimate )Ack,” L_1, covariance P_1, residual buffers R,
Ry, smoothing factors A\g, Ar, window size L

2: Prediction:

3 Xpk—1 = AkXp_1jk—1

4 Py = ApPr1 Al + Qi

5. Measurement Update:

6:  Compute residual: r}, = 2, — HX,_y

7. Compute Kalman gain: K = Pk‘k,lHT(HPMk,lHT + Ry) !

8 Update state estimate: Xp, = Xpp—1 + Kkrz

9:  Update covariance: Py, = (I — K;H)Py,_;

10: Residual Update:

11:  Compute residual

122 Append ry, r to Ry, R,

13: if residual window is full then

14: MLE-Inspired Covariance Update:

15: Compute sample variance and update the noise covariance Ry, and Qj, based on the unbiased
MLE estimate.

16: EWMA Adaptive Factor Update: Update R, and Qj, with smoothing factors Ar and Ag

17: end if

4. Simulation Results

We conducted extensive simulations to evaluate the performance of the proposed ADA-KF under
dynamic wireless synchronization scenarios, including high mobility and varying noise levels. To
simulate different SNR conditions (ranging from -20 dB to 20 dB), zero-mean Gaussian noise was added
to the system. All experiments were implemented in MATLAB with a fixed sampling interval. Each
simulation was repeated 100 times, and the average results were reported.

ADA-KF is compared with three representative approaches: the KF with fixed process and observation
noise covariances, the CDIS-JE algorithm, and the SWVAKEF. In contrast to these methods, ADA-KF
employs a dual-residual sliding window mechanism and adaptively updates noise covariances using
sample variance estimates. To prevent abrupt changes in the estimated covariances, an EWMA is
applied to smooth the updates. This process is theoretically supported by MLE consistency theory,
which justifies the use of residual variances as unbiased estimators under suitable assumptions. This
combined adaptive mechanism enables ADA-KF to respond more effectively and stably to dynamic and
time-varying noise conditions.

Figure 3 illustrates the convergence behavior of the clock offset estimation under moderate noise
conditions (SNR = 0 dB). A sliding window of 20 samples was applied to compute the root mean square
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Figure 3: Sliding window RMSE of clock offset under 0 dB SNR

error (RMSE) of clock offset 8, enabling analysis of short-term fluctuations and convergence trends.
Compared to the standard KF (blue line), CDIS-JE (green line), and SWVAKF (magenta line), ADA-KF
achieves faster convergence and maintains a significantly lower steady-state RMSE. These results
confirm the method’s improved stability and enhanced noise suppression capability under moderate
conditions.

To further investigate performance under challenging environments, we simulated a high-mobility
scenario with SNR = -10 dB and UE speed of 120 km/h. The convergence point is defined as the first
time step when the RMSE of clock offset 6 drops below 10e-8, measured in frame numbers. Table 1
presents the comparative performance of ADA-KF and other methods, including convergence frame
and RMSE values for both clock offset # and clock skew ¢.

Table 1
Performance Comparison under High Mobility (SNR = -10 dB, Speed = 120 km/h)

Algorithm Convergence Frame RMSE(f) [s] RMSE(¢) [ppm]

KF 82 1.59e-8 1.02e-4
CDIS-JE 70 1.15e-8 8.7e-5
SWVAKF 58 5.95e-9 4.3e-5
ADA-KF 22 2.21e-9 1.78e-5

As shown in the table, ADA-KF achieves the fastest convergence (22 frames) and the lowest RMSE
for both clock offset and clock skew, demonstrating its superior convergence speed and estimation
accuracy in this challenging scenario. These improvements confirm the effectiveness of adaptive noise
covariance adjustment in high-mobility and noisy environments.

To evaluate robustness under various noise conditions, we conducted experiments under varying SNR
levels from —20 dB to 20 dB (-20, -10, 0, 10, 20 dB). Figures 4 (a) and (b) show the RMSE performance
of clock offset 6 and clock skew ¢, respectively. Across all tested SNR levels, ADA-KF consistently
outperforms other methods. The advantage of ADA-KF is especially pronounced under low-SNR
conditions (-20 dB and —10 dB), where the fixed-parameter KF suffers severe degradation due to its
inability to adapt process and measurement noise covariances to the actual noise environment. CDIS-]JE
benefits from its lightweight correlation-based design but shows limited resilience against channel
noise, particularly in skew estimation, where the cumulative effect necessitates long-term tracking.
SWVAKEF adapts to noise statistics via variational Bayesian inference and achieves competitive accuracy,
but its sliding-window structure leads to slower adaptation to abrupt noise changes compared to ADA-
KF’s dual-residual updating mechanism. As the SNR increases, all methods improve due to enhanced
signal quality. However, ADA-KF consistently achieves lower RMSE. Notably, ADA-KF and SWVAKF



demonstrate significantly better skew estimation than CDIS-JE and KF, confirming the importance of
adaptive state-space modeling for robust clock synchronization in dynamic wireless environments.

(@) (b)

Figure 4: RMSE analysis under different conditions. (a) RMSE of clock offset (b) RMSE of clock skew

5. CONCLUSIONS

In this paper, we have proposed an innovative ADA-KF algorithm for clock synchronization in wireless
networks, specifically designed to address the challenges arising from high mobility and dynamic noise
environments. By incorporating a sliding window mechanism and leveraging sample variance estimates
for covariance estimation, the ADA-KF algorithm adapts to time-varying noise. These estimates are
theoretically supported by MLE consistency theory and are further stabilized using EWMA smoothing.
As a result, ADA-KF achieves superior performance compared to other methods, providing faster
convergence and better synchronization accuracy. The method exhibits significant improvements in
both convergence speed and steady-state error, particularly in low SNR and high-speed environments.
Future research can explore deploying ADA-KF in practical 5G/6G deployments and integrating it with
deep learning models to further improve noise estimation accuracy and scalability.
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