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Abstract 
This article presents a comprehensive approach to the structural-parametric optimization of 
Mamdani-type fuzzy control systems (FCS) using a set of bioinspired methods. The proposed 
methodology integrates optimization of the number of linguistic terms (LT), rule base (RB) synthesis, 
selection of membership function (MF) types, parametric tuning, as well as the adjustment of fuzzy 
inference engine (FIE) operations and defuzzification methods in the most rational sequence. The 
approach is validated through its application to a FCS for an unmanned aerial vehicle (UAV). 
Experimental results demonstrate that the greatest improvements in control accuracy are achieved 
through the parametric optimization, with reductions in the objective function of up to 27.5%. The 
final optimization stage yielded only minor gains (5.6%), indicating its lower impact. The proposed 
optimization strategy enables the development of high-performance fuzzy systems with simplified 
implementations and reduced computational costs, making it suitable for embedded control 
applications in robotics and autonomous systems. 
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1. Introduction 

The design and development of complex technical systems across diverse domains of human 
activity, ranging from robotics and industrial automation to medicine and agriculture, are 
invariably associated with multifaceted optimization problems [1-3]. These challenges arise 
from the need to balance competing objectives, satisfy strict performance requirements, and 
ensure reliability, adaptability, and cost-efficiency under diverse operating conditions. As 
system complexity increases, so too does the dimensionality of the parameter space, often 
accompanied by strong nonlinearity, multimodality, and the presence of numerous local optima 
[4-7]. Moreover, structural decisions, such as the configuration of control architectures or 
system topologies, must often be made in tandem with parametric tuning, giving rise to highly 
interdependent structural-parametric optimization tasks. Conventional optimization 
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techniques, though effective in narrowly constrained contexts, frequently fall short when 
addressing the intricate interrelations and uncertainties inherent in large-scale, real-world 
systems [8-10]. These limitations have catalyzed the exploration of more flexible, adaptive, and 
computationally intelligent approaches to system optimization. 

One of the most promising directions in contemporary optimization research is the 
development of novel algorithms inspired by natural phenomena and biological systems [11-
13]. Bioinspired optimization approaches have gained increasing attention due to their ability 
to efficiently explore complex and high-dimensional search spaces, often avoiding local optima 
and adapting well to non-linear and multi-objective formulations [14-17]. Among the most 
widely adopted and well-tested methods are genetic algorithms (GA) [18], particle swarm 
optimization (PSO) [19], ant colony optimization (ACO) [20], grey wolf optimization (GWO) 
[21], ant lion optimization (ALO) [22], whale optimization algorithm (WOA) [23], cuckoo search 
(CS) algorithm [24], Artificial Bee Colony (ABC) [25] etc. These techniques have been 
successfully applied to a wide range of engineering problems, including control system tuning, 
scheduling, structural design, power system planning, and robotics. 

Moreover, recently, several newer bioinspired methods have emerged, aiming to improve 
convergence speed, adaptability, and robustness. These include the Tianji s horse racing 
optimization (THRO) [26], stellar oscillation optimizer (SOO) [27], goal programming-based 
algorithm for solving multi objective optimization problems [28], improved chicken swarm 
optimization with differential evolution (ICSODE) [29], animated oat optimization (AOO) [30], 
and enzyme action optimization (EAO) [31]. These approaches have shown significant promise 
across various domains, such as renewable energy systems, biomedical engineering, image 
processing, and machine learning model optimization. The continuous emergence of such 
algorithms highlights the relevance of nature-inspired computation in addressing complex real-
world optimization challenges. 

Fuzzy control systems, in turn, are increasingly adopted in domains requiring robust 
operation under uncertainty and imprecision [32, 33]. However, as systems grow in complexity 
and operate in dynamic environments, the design and tuning of fuzzy systems become 
increasingly challenging. The optimization of fuzzy systems includes multiple facets, ranging 
from the structural configuration of the rule base and membership function shapes, to 
parameter tuning and controller gain adjustment [34-36]. The inherent non-linearity and high 
dimensionality of fuzzy models often make conventional analytical or gradient-based 
optimization techniques insufficient. Therefore, a range of optimization strategies have been 
proposed, including multi-objective optimization, hybrid approaches, and adaptive tuning 
mechanisms, to refine fuzzy controller performance across varying application domains such 
as robotics, industrial process control, energy systems, and intelligent transportation [37-39]. 

In this context, bioinspired algorithms offer a particularly effective toolkit for the structural-
parametric optimization of fuzzy systems [40-42]. Their global search capabilities, population-
based nature, and flexibility make them suitable for simultaneously optimizing both discrete 
and continuous variables present in fuzzy system design. As demonstrated by numerous studies, 
methods such as ACO, GA, GWO, and other algorithms have been employed for optimizing 
membership function parameters, rule bases, and structural components [43-45]. These 
approaches enable the automated synthesis of fuzzy controllers that are well-tuned to specific 
system dynamics, thereby improving control accuracy, robustness, and adaptability in complex 
nonlinear systems. 



Despite the substantial progress achieved in recent years, most existing studies primarily 
address isolated aspects of fuzzy system optimization, either focusing on parameter tuning or 
structural adjustment. However, the problem of holistic or complex optimization, which entails 
the systematic execution of all key synthesis procedures in a coherent and rational sequence 
using appropriate methods and technologies, remains largely unresolved. A fragmented 
optimization approach often limits the attainable performance and adaptability of fuzzy 
systems, particularly in complex, real-world applications. 

Accordingly, the principal objective of this paper is to develop and validate a comprehensive 
approach to structural-parametric optimization, which integrates all critical stages of fuzzy 
system design within a unified, logically structured and the most rational sequence, which will 
allow to create fuzzy control systems for nonlinear dynamic objects with high quality indicators 
and robust properties with the shortest duration of the synthesis and implementation processes. 
The core contributions of this work are threefold: (1) a detailed analysis of the influence of each 
individual optimization procedure on the efficiency of the fuzzy system, as well as the necessary 
conditions for its direct execution; (2) the formulation of a stepwise approach to complex 
structural-parametric optimization, ensuring the most rational sequencing at integration of the 
core synthesis stages; and (3) a study of the effectiveness of the proposed approach using the 
example of a UAV's fuzzy control system. 

2. Analysis of the influence and necessary conditions of individual 
optimization procedures execution on the efficiency of the FCS 

In the design of real-world fuzzy systems under conditions of limited expert knowledge and 
absence of a priori information, complex structural-parametric optimization tasks may arise. 
Successful resolution of such tasks requires not only a suite of high-performance structural and 
parametric optimization methods but also their application in an appropriate sequence. An 
improper order of application can lead to suboptimal use of these methods, reducing their 
effectiveness and significantly increasing the overall computational cost of the design and 
optimization process. Therefore, determining an optimal sequence for structural-parametric 
optimization procedures based on the available methods and technologies is essential for 
enhancing the efficiency and success of FCS design.  

To determine the optimal sequence of structural-parametric optimization procedures in the 
development of Mamdani-type FCSs, it is advisable to analyze the impact of each individual 
procedure on the overall effectiveness of the system, as well as the necessary conditions for its 
direct implementation. The main procedures involved in the structural-parametric optimization 
of Mamdani-type FCSs typically include: (1) optimization of the rule base; (2) optimization of 
the number of linguistic terms for input and output variables; (3) optimization of the 
membership function types for linguistic terms; (4) optimization of the FCS parameters; and (5) 
optimization of the types of core operations in the fuzzy inference engine (aggregation, 
activation, accumulation), as well as the defuzzification method. 

The rule base optimization procedure involves determining the optimal consequents vector 
and the optimal number of rules (i.e., rule base reduction in terms of rules count or rules 
components). This procedure is effectively implemented using the multi-agent method based 
on ACO developed in [43]. As such, rule base optimization is often a primary task in the 
structural-parametric optimization of a fuzzy system. This is because evaluation of the fuzzy 



sy
and parameters, FIE procedures, and the defuzzification method requires a pre-constructed RB 
with a predefined optimal consequents vector. The only exception is the optimization of the 
number of LTs for input and output variables. The structural optimization method for FCSs 
proposed in [46], which allows efficient optimization of both the number of linguistic terms and 
the rule base itself for each LTs configuration. 

The procedure for optimizing the types of fuzzy membership functions enables the selection 
of the most suitable membership function for each linguistic term of all input and output 
variables in a FCS. This optimization aims to enhance system accuracy and performance while 
also reducing the complexity of subsequent parametric optimization by minimizing the total 
number of tunable parameters. The procedure can be effectively implemented using the method 
proposed in [44], which employs a combination of bioinspired evolutionary global optimization 
algorithms to search for optimal LTMFs.  

Parametric optimization of Mamdani-type FCSs involves the tuning of adjustable parameters 
of LTMFs as well as normalization coefficients associated with input and output variables. This 
process is essential for enhancing system accuracy and improving the effectiveness of solving 
specific tasks. Since setting specific LTMFs parameter values is only feasible after their types 
have been determined, the LTMFs parametric optimization must follow their types 
optimization. Otherwise, any later change in LTMFs types would require re-performing the 
parameter optimization procedure, resulting in unnecessary computational overhead. In turn, 
the procedures for optimizing fuzzy system parameters, namely the parameters of LTMFs and 
normalization coefficients, can be effectively implemented using hybrid multi-agent methods, 
such as the hybrid improved GWO developed and investigated in [45]. However, if a sufficiently 
high level of accuracy and performance has already been achieved during the preceding 
optimization stages, parametric optimization of LTMFs and normalization coefficients may be 
carried out using individual local search methods. These include, in particular, the gradient 
descent method or the extended Kalman filter algorithm (EKF) [41, 47]. 

The optimization procedures for selecting the types of core operations in the fuzzy inference 
engine (aggregation, activation, and accumulation) as well as the defuzzification method, can 
be applied to improve the accuracy of a FCS and enhance its effectiveness in solving the target 
tasks. However, the implementation of these procedures is advisable only after the prior 

timization of the 
number of LTs, which must precede the RB optimization. In the process of optimizing the fuzzy 
inference operations, the following core operators can be considered: for aggregation  "min" 
or "prod"; for activation  "min", "prod", or "average"; for accumulation  "max", "sum", 

-sum operation [48]. For defuzzification, the available 
methods include the centroid (center of gravity), bisector, right maximum, left maximum, and 
middle of maximum techniques [48]. Given the relatively small number of alternative types for 
FIE operations, their optimization can be formulated as a single discrete optimization problem 
with a limited set of alternatives. This problem may be solved using full enumeration of all 
possible combinations, stochastic search (random generation of FIE operation combinations to 
identify the best option), or a sequential search method. The latter approach, proposed in [46], 
has been successfully applied to optimize the number of linguistic terms and the system's RB. 

Considering the above-mentioned requirements for the rational sequence of structural-
parametric optimization procedures in Mamdani-type fuzzy systems, Table 1 outlines, for each 



optimization procedure, all the prerequisite procedures that must precede it. Based on the 
analysis of the requirements presented in Table 1 and the aforementioned considerations, a 
step-by-step approach to comprehensive structural-parametric optimization of Mamdani-type 
FCS can be formulated.  

Table 1 
Requirements for the sequence of structural-parametric optimization of fuzzy systems of 
Mamdani type 

Optimization procedure of fuzzy control system Procedures that must precede 
Rule base Number of LTs for input and output 

variables 
Number of LTs for input and output variables - 

Types of LTMFs  Rule base, number of LTs for input and 
output variables 

Parameters of LTMFs and normalization 
coefficients 

Rule base, number of LTs for input and 
output variables, types of LTMFs 

Types of FIE operations (aggregation, activation, 
and accumulation) and defuzzification method 

Rule base, number of LTs for input and 
output variables 

 

3. Approach to complex structural-parametric optimization of 
Mamdani-type fuzzy control systems 

The developed structural-parametric optimization approach is presented as a block diagram 
in Figure 1. In the proposed approach to comprehensive structural-parametric optimization of 
Mamdani-type fuzzy systems (Figure 1), the initial procedures involve the optimization of the 
number of linguistic terms and the synthesis and optimization of the rule base. These 
procedures are executed concurrently using the structural optimization method described in 
[46]. According to this method, the optimal number of LTs is determined through sequential or 
stochastic search, coupled with the simultaneous synthesis and optimization of the 
corresponding rule base for each generated variant. The RB is synthesized with an optimal 
consequent vector and an optimal number of rules using a multi-agent method based on the 
ACO.  

Upon completion of these procedures, a verification step is conducted to determine whether 
the design objectives of the fuzzy system, such as the required accuracy and other performance 
indicators, have been achieved. If the verification yields a positive result, the process of 
structural-parametric optimization is considered complete, and the developed and optimized 
FCS may be implemented using appropriate hardware-software platforms and subsequently 
applied to solve the targeted tasks. Otherwise, the process proceeds to the next optimization 
stages according to the proposed approach (Figure 1). As outlined in the approach, the 
subsequent procedures are performed sequentially: optimization of the LTMFs types, system 
parameters, fuzzy inference engine operations, and the defuzzification method.  



 

Figure 1: Block diagram of the approach to complex structural-parametric optimization of the 
Mamdani type FCS. 

The optimization of LTMFs types is carried out using a bioinspired method developed in 
[44], based on genetic algorithms, artificial immune systems (AIS), or biogeography-based 
optimization. Parameter optimization of the fuzzy system can be conducted using the improved 
hybrid grey wolf optimization method proposed in [45], or via local search techniques such as 
the extended Kalman filter algorithm [41, 47]. The optimization of fuzzy inference operations 
and the defuzzification method is most appropriately performed using exhaustive search, 
stochastic search, or the sequential search method [46]. 

After the execution of each of these procedures, a verification step is performed to assess 
whether the system has achieved the desired performance objectives. If the required level of 



effectiveness is reached, subsequent optimization steps may be skipped to avoid unnecessary 
computational overhead. 

The developed approach to the comprehensive structural-parametric optimization of 
Mamdani-type fuzzy systems (Figure 1) can also be applied to the optimization of Takagi
Sugeno fuzzy systems. In this case, instead of optimizing the rule base using ACO-based 
methods, the optimization of the rule consequent weight coefficients is performed using the 
improved hybrid GWO method proposed in [45]. 

To validate the effectiveness and rationality of the proposed approach, this study performs 
a comprehensive structural-parametric optimization of a Mamdani-type fuzzy system for UAV 
flight control. In turn, this study does not present a comparison of the employed bioinspired 
methods with their counterparts in terms of efficiency, time, and computational costs during 
the optimization procedures, as such comparisons have already been conducted extensively in 
previous research, including benchmarks against classical optimization methods. 

4.  Study of the effectiveness of the proposed approach using the 
example of a UAV's fuzzy control system 

The structural-parametric optimization procedures were carried out in accordance with the 
proposed approach for the altitude automatic control system of the UAV, whose detailed 
description, mathematical model, and key technical specifications are provided in [46]. The 
studied Mamdani-type fuzzy altitude controller implements the control law defined by equation 
(1), while the UAV's mathematical model consists of a system of equations presented in [46]. 

( ), , ,= FC P D Iz z zu f K K K dt    (1) 

where u is the actual control signal; z is the altitude control error; KP, KD, and KI are the 
normalization coefficients of the controller. 

The comprehensive structural-parametric optimization procedures of the described FCS 
were conducted for the case of UAV flight at a fixed altitude over mountainous terrain with 
complex topography, which is thoroughly examined in [46]. The primary design objective was 
to achieve the highest possible altitude control accuracy (i.e., the lowest possible value of the 
objective function J1, defined by equation (2)) for the FCS under a fixed number of iterations 
during the optimization procedures. 

( ) ( )( )
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where x is the horizontal coordinate; xmax is the length of the terrain section for which the 
calculations were made; vx is the flight speed along the coordinate x; S is the vector of optimized 
parameters or components of the structure for each specific optimization procedure of the 
approach; zD is the specified value of the flight altitude over mountainous terrain; zD is the real 
value of the flight altitude. 

Thus, for the purpose of detailed analysis, no fixed target value of the objective function (2) 
was predefined at the beginning of the fuzzy system design, and no verification of goal 
achievement was performed after each optimization procedure during the process. All major 



optimization procedures of the proposed approach (Figure 1) were executed sequentially, with 
a specified number of iterations allocated to each procedure. 

Since the first two procedures, namely, the optimization of the number of linguistic terms 
and the synthesis and optimization of the RB, were successfully carried out for the given UAV 
altitude control system in [46], they were not repeated in the present study. Instead, the best 
results obtained in [46] using the structural optimization method based on selecting the optimal 
number of linguistic terms were taken as the starting point for the subsequent optimization 
procedures. Specifically, the optimal vector of linguistic term numbers and the corresponding 
synthesized RB with 36 rules and an optimal consequent vector were adopted, for which the 
achieved value of the objective function (2) at this stage was J1 = 0.119. In turn, these results in 
paper [46] were obtained in 8 iterations. 

Following this, in accordance with the proposed approach (Figure 1), the third procedure  
optimization of the types of LTMFs  was carried out to further enhance the accuracy of altitude 
control. This procedure was performed using a bioinspired method for selecting optimal 
membership functions based on evolutionary algorithms, as developed in [44]. At the initial 
stage of LTMFs type optimization, the set of alternative MFs included all major types of 
functions described in [44]. The parameters of these MFs were chosen to ensure a uniform 
distribution of linguistic terms across the operational ranges of all three input variables and the 
output variable of the fuzzy altitude control system. Initially, triangular membership functions 
were assigned to all linguistic terms of the controller. Under this configuration, the total number 

was preliminarily set at 54. 
As a composite objective function JC for executing the LTMFs type optimization, expression 

(3) was selected [44].  

,= +C 1 2 2JJ J k J  (3) 

where J2 is the objective function that determines the complexity of further parametric 
optimization of a fuzzy system; kJ2 is the weighting factor. 

In turn, the component of the objective function J1 was calculated according to expression 
(2), while J2, which evaluates the complexity of subsequent parameter optimization, was 
computed as the total number of adjustable parameters of the LTMFs set based on expression 
(4) [44].  
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where ( )i
ink q  and ( )j

outk k  are the numbers of optimized parameters of the q-th linguistic term 

for the i-th input variable and the k-th term for the j-th output variable depending on their 
membership functions type; n and m are the total numbers of input and output variables; i and 

j are the total numbers of LTs for the i-th input variable and j-th output variables.  
The weighting coefficient for J2 was set kJ2 = 0.002. Prior to the execution of the LTMFs 

optimization procedure for the fuzzy altitude controller with triangular MFs, the initial values 
of the objective functions were as follows: JC = 0.227, J1 = 0.119, and J2 = 54. 

Since the previous optimization procedures (i.e., optimization of the number of LTs and rule 
base) had already enabled the fuzzy altitude control system for the UAV to achieve sufficiently 



high control accuracy (J1 = 0.119), the iterative search for the optimal vector of membership 
functions was conducted using only a single global optimization evolutionary algorithm, 
namely, the biogeography-based optimization algorithm. This choice was made to reduce 
computational and time costs, as BBO demonstrated the best performance for membership 
functions types optimization in the studies reported in [44]. 

During the execution of the LTMFS type optimization using the BBO algorithm, its core 
parameters were experimentally tuned for this specific task. In particular, an ecosystem was 
initialized with Zmax = 100 habitats (islands). The species migration rates as functions of the 
number of species per island, NS) and NS), were assumed to be linear, with maximum values 

max = max = 1. The mutation operator coefficient was set to r = 0.1, and the maximum allowable 
number of species per island (corresponding to the optimal habitat suitability index fopt) was set 
at NSmax = 10. The habitat suitability index f was calculated as the inverse of the composite 
objective function JC. The stopping criterion for the optimization process was defined as 
reaching the maximum number of iterations Nmax = 100. 

Upon completion of the LTMFs type optimization using the BBO algorithm for the FCS, the 
composite objective function JC was successfully reduced to 0.184 (an 18.9% decrease), the 
performance objective J1 was lowered to 0.098 (a 17.6% improvement), and the complexity 
criterion J2 decreased to 43 (a reduction of 11 parameters). These results indicate that the 
optimization procedure was effectively carried out in accordance with the proposed 
comprehensive algorithm. As a result, both the altitude control accuracy and the overall 
simplicity of the LTMFs structure were improved, significantly facilitating the subsequent 
parametric optimization of the designed fuzzy control system. 

In turn, the optimal membership function vector S obtained using the BBO algorithm has 
the form: 

{ , , , , ,

, , ,

, , ,

, , , , , , },

S = 1 1 1

1 1 1 1

Gs FN TrpFN TrFN Gs FN SgFN ZFN Gs FN SFN

Gs FN Gs FN TrFN ZFN GbFN Gs FN TrFN TrFN Gs FN SFN
 (5) 

where Gs1FN, TrpFN, TrFN, SgFN, ZFN, SFN, and GbFN are the Gaussian 1st type, trapezoidal, 
triangular, sigmoid, Z-shaped, S-shaped, and bell-shaped functions.  

Subsequently, in accordance with the approach presented in Figure 1, the accuracy and 
efficiency of the UAV altitude control system were further improved by performing the next 
procedure, namely, the parametric optimization. Since the preceding optimization of the 
number of LTs, the RB, and the types of LTMFs had already yielded sufficiently high accuracy 
and performance for the developed system (J1 = 0.098), only the tunable parameters of the 
membership functions were optimized in this stage. To significantly reduce computational 
costs, this procedure was carried out using a single local search algorithm, specifically the 
Extended Kalman Filter algorithm. In the application of the EKF algorithm, the initial values of 
the a posteriori error covariance matrix were selected as P0 = 40900I43, where I43 is the identity 
matrix of size 43. The process noise covariance matrix was set to Q = 3900·I43. The measurement 
noise covariance matrix R was considered scalar in this case, with R = 500, as the fuzzy altitude 
controller has only one output (the control signal u). The stopping criterion for the optimization 
process was defined as the maximum number of iterations Nmax = 100. The objective function 
for this stage of optimization was J1, computed according to (2). 

The performed parametric optimization of the LTMFs resulted in a significant improvement 
in the accuracy of UAV flight control. Specifically, the value of the objective function J1 was 



reduced to 0.071 (a 27.5% decrease), which confirms the effectiveness and appropriateness of 

with the optimized parameters is presented in Figure 2. 

 

Figure 2: LTMFs with the optimized types and . 

The final optimization procedure within the proposed approach involves the optimization 
of the types of FIE operations and the defuzzification method. This procedure was carried out 
after the parametric optimization of the LTMFs to further improve the accuracy of UAV altitude 
control, using a sequential search method proposed in [46], which has previously proven 
effective in optimizing the number of linguistic terms and the rule base. During this stage, all 
major types of FIE operations and defuzzification methods were iteratively evaluated through 
sequential substitution, with the corresponding objective function (2) computed for each 
configuration to identify the best-performing option. The optimization process began with the 
aggregation operation and proceeded through the activation and accumulation operations, 
concluding with the defuzzification method. To enhance the effectiveness of this approach, the 
sequential search was conducted over two full cycles. Initially, the following configuration was 
used: the aggregation operation was set to "min", the activation to "min", the accumulation to 
"max", and the defuzzification method to the center of gravity. During the procedure, 12 
iterations were performed per cycle, resulting in a total of 24 iterations over two cycles.  

As a result of the optimization, the following configuration was identified as optimal: 
aggregation  "min", activation  "prod", accumulation  "max", and defuzzification  center of 
gravity. As seen from the results, only the activation operation changed (from "min" to "prod"), 
while the remaining FIE operations and the defuzzification method remained unchanged. This 
modification led to a further reduction in the value of the objective function from 0.071 to 0.067 
(a 5.6% improvement), thereby slightly increasing the accuracy of the UAV's altitude control. 
Conversely, changes to other types of FIE operations and defuzzification methods only resulted 
in an increase in the objective function value. 

Table 2 presents the overall results of the comprehensive structural-parametric optimization 
procedures for the UAV's fuzzy altitude control system, implemented using the proposed 
approach, where N denotes the number of iterations for each corresponding procedure. 



Table 2 
Results of the comprehensive structural-parametric optimization procedures for the UAV's 
fuzzy altitude control system 

Optimization procedure N J1 Optimization result 
Optimization of the LTs number 

and the RB synthesis 
8 0,119 Achieved J1 = 0.119; number of 

RB rules decreased from 61 to 
36 

Optimization of LTMF types 100 0,098 J1 decreased by 17.6%; number 
of LTMF parameters decreased 

from 54 to 43 
LTMF parametric optimization 100 0,071 J1 decreased by 27.5% 

Optimization of FIE operations and 
the defuzzification method method 

24 0,067 J1 decreased by 5.6% 

 
As a result of the optimization process, the objective function value (2) was reduced to J1 = 

0.067 through the execution of 8 iterations in the first two procedures (optimization of the LTs 
number and the rule base), 100 iterations in the third procedure (optimization of LTMF types), 
100 iterations in the fourth procedure (parametric optimization), and 24 iterations in the final 
procedure (optimization of FIE operations and the defuzzification method). 

As shown in Table 2, the UAV flight control system optimized using the proposed integrated 
approach demonstrates significantly higher control accuracy and improved performance 
compared to the system with only the number of LTs and the RB optimized, as described in 
[46]. This confirms the high effectiveness of the proposed approach to the comprehensive 
structural-parametric optimization and supports the feasibility and utility of the primary 
procedures involved. Moreover, this comprehensive approach has also demonstrated high 
effectiveness during its application to the development of FCSs for other complex technical 
objects, such as a pyrolysis plant and an electric vehicle  an outcome that is planned to be 
presented in future studies. 

5. Conclusions 

This study proposes an advanced approach to comprehensive structural-parametric 
optimization of fuzzy control systems. The main novelty of the developed approach is that it 
combines all critical stages of fuzzy system design within a unified, logically structured and the 
most rational sequence, which makes it possible to create fuzzy control systems for nonlinear 
dynamic objects with high quality indicators, robust properties and simplified software and 
hardware implementation while maintaining shortest duration of the synthesis process and 
minimal computational costs. This approach includes the optimization of the number of 
linguistic terms for input and output variables, synthesis and optimization of the rule base, 
selection of optimal types of membership functions, parametric optimization, as well as the 
identification of optimal fuzzy inference engine operations and defuzzification method. 
Moreover, the core optimization procedures of this approach are performed using a specially 
selected set of highly efficient and well-established bioinspired algorithms that have repeatedly 
proven their superiority in a number of previous studies. 



The effectiveness of the proposed approach has been validated through its application to the 
comprehensive structural-parametric optimization of a fuzzy altitude control system for the 
UAV. Analysis of the experimental results indicates that the first two optimization procedures 
(LTs number and RB optimization) are foundational within the proposed methodology. They 
allow for the identification and implementation of highly flexible and effective fuzzy control 
and decision-making strategies by forming optimized rule bases in number and consequents. 
As a result, this ensures high efficiency, interpretability, and logical transparency of the fuzzy 
systems while preserving implementation simplicity. Subsequently, the optimization of LTMF 
types significantly improves the accuracy and performance of the FCS following the 
foundational procedures. It also simplifies the next phase (parametric optimization) by reducing 
the number of LTMF parameters subject to optimization. Parametric optimization, in turn, 
provides the most substantial improvement in system performance at the penultimate stage of 
design, requiring relatively low computational effort, which makes it one of the most important 
stages of comprehensive optimization. For instance, this procedure reduced the objective 
function J1 for the UAV's control system by 27.5%. The final optimization stage, involving the 
tuning of FIE operations and the defuzzification method, was found to have the least impact on 
overall system performance. In the case of UAV's FCS, it resulted in only a 5.6% improvement 
in performance. Therefore, this procedure can be omitted in a number of cases, which will 
further reduce the computational and time costs of the entire design and optimization process. 
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