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Abstract 
Data acquisition (DAQ) systems are fundamental to condition-based maintenance (CBM), serving as the 
critical interface between physical machinery and digital analysis platforms. As industrial systems grow 
increasingly complex, effective maintenance strategies have evolved from reactive and time-based 
approaches to predictive methods that rely on real-time asset health monitoring. This shift has been enabled 
by advances in sensor technology and computational capabilities, making continuous equipment 
monitoring both technically feasible and economically viable. However, the success of CBM 
implementations depends heavily on the quality and reliability of their underlying data acquisition 
infrastructure. Poor data quality, inadequate sampling rates, or incomplete sensor coverage can result in 
missed failure indicators, false alarms, and suboptimal maintenance decisions, potentially leading to 
equipment failures, supply chain disruptions, and significant economic losses. This research examines 
foundational principles of data acquisition systems, addressing their structure, components, and functions. 
We have decomposed the DAS into three fundamental subsystems: measurement, conditioning and 
transferring, providing essential knowledge about data acquisition. 
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1. Introduction 

Maintenance is a critical aspect of any industrial process. It influences machinery availability, 
product quality, personnel safety, economic viability of manufacturing. As industrial systems 
become increasingly more sophisticated, the consequences of equipment failure extend far beyond 
simple repair costs, potentially causing supply chain disruptions, environmental incidents, and 
reputational damage. The evolution of maintenance strategies  from reactive approach to 
preventive time-based schedules and now to predictive methods reflects the growing recognition 
that maintenance is not merely a cost center but a strategic function. 

Condition-based maintenance, or CBM for short, represents a paradigmatic shift in industrial 
maintenance philosophy. It has significantly transformed how organizations approach asset 
maintenance management. At its core, CBM is a maintenance approach built around the knowledge 
of the actual health conditions of equipment and systems through continuous or periodic monitoring 
of performance indicators, allowing maintenance crew to make decisions based on real-time data 
about asset health rather than intervening only on predetermined schedules or executing reactive 
responses to random failures. 

CBM became possible for a couple reasons. The first being technological advancement in sensors 
technology, which has dramatically improved in terms of accuracy, reliability, and cost-effectiveness 
over the past two decades. Modern sensors can now detect changes in vibration patterns, 
temperature fluctuations, acoustic signatures, and chemical compositions with unprecedented 
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precision. The second enabler is the evolution of data processing methods and communication 
technologies. The exponential growth in computational power has enabled real-time processing of 
complex multi-dimensional data, while advances in communication technologies have facilitated 
data transmission from remote or hard-to-access equipment locations. 

Since CBM heavily relies on data, reflecting assets' physical conditions, it is essential to 
understand the data gathering process. While extensive literature exists on advanced analytics, 
machine learning algorithms, and decision-making frameworks for CBM, there is a notable gap in 
comprehensive examination of the data acquisition systems that serve as the foundation for all 
subsequent analysis. Data acquisition systems function as the critical interface between the physical 
world of machinery and the digital realm of analysis and decision-making, yet they are often treated 
as a given rather than a subject requiring careful study. 

This paper focuses specifically on the data acquisition phase of condition-based maintenance, 
examining fundamental principles, system architectures, and design considerations that influence 
data quality and system reliability. While we acknowledge the importance of subsequent data 
processing, analysis, and decision-making phases, these topics are addressed only insofar as they 
inform data acquisition requirements. 

The paper is organized as follows: Section 2 examines CBM fundamentals, including historical 
development, standard definitions, and system architectures that establish the context for data 
acquisition in CBM. Section 3 provides an analysis of data acquisition systems, including brief 
historical evolution from purely mechanical instruments to modern digital platforms, fundamental 
principles of operation, and systematic decomposition into three core subsystems: measurement, 
conditioning, and transferring. 

2. Fundamentals of condition-based maintenance 

2.1. CBM: History overview and definition 

The condition-based maintenance approach has been around for decades. It originated in the late 
40's as a method for detecting engine's liquids leaks. The application of CBM resulted in reduced 
engine failure rate, which in turn delivered significant economic benefits [1]. 

The US Department of Defense recognized the benefits of such maintenance approach and 
adopted it in the 1950s. After that, the CBM gradually started gaining popularity among industrial 
manufacturers and facility operators [2]. With current advances in technologies, CBM has become 
easier to implement, and now we see it being used in various domains: from military to healthcare. 

Over the years there has been devised many definitions of CBM. Here we'll take a look at some 
of the definitions and will try to gain a comprehensive understanding of the concept which is 
required for further research. 

The British implementation of EN 13306:2017 Standard defines condition-based maintenance as 
preventive maintenance which include assessment of physical conditions, analysis and the possible 
ensuing maintenance actions [3]. 

CBM is a maintenance approach that emphasizes the use of data-driven reliability models along 
with data collected from monitored systems [4]. 

In work [5] authors claim that CBM is a subtype of preventive maintenance and it purpose is to 
support decision-making process utilizing information obtained through condition monitoring. 

It is evident from the provided definitions that condition assessment is a common element and 
the concept of CBM is constructed around it. Thus, retrieval of information describing these 
conditions is key part of CBM and has to be researched. 

In the following sections we will explore the structure of CBM and examine how condition 
assessment data is collected, analyzed, and integrated into maintenance decision-making processes. 

 



2.2. CBM Architecture 

Condition-based maintenance is an elaborate multi-process activity that can be functionally 
represented as shown in Figure 1. 

 

Figure 1: CBM constituent processes [6] 
 

Figure 1 represents three sequential processes comprising CBM. Data acquisition involves 
collecting relevant data representing the operational health status of a system or piece of equipment. 
Data processing step encompasses data conditioning and analysis like statistical analysis, simulations 
using different modeling approaches etc [7]. Data processing results are next used for decision-
making support. The diagram in Figure 2 shows CBM in more detail. 

 

Figure 2: Detailed CBM representation [2]. 
 

The International Organization for Standardization defines the communication architecture for 
condition monitoring and diagnostics as shown in Figure 3. This architecture specifies data-
processing functions of a condition monitoring and diagnostics system. 



 

Figure 3: Data-processing block diagram [8]. 

The architecture developed by ISO defines functional blocks that are very similar to what we have 
seen in Figure 2. And all three diagrams that have been investigated shares the data acquisition 
function. So, data acquisition can be identified as the core component that underpins condition-based 
maintenance methodology, making it a critical area for further investigation. 

The next part of this paper is devoted to the research of data acquisition systems, their structure, 
components and functions. 

3. Data acquisition systems 

3.1. Data acquisition - overall description 

Apart from maintenance applications, Data Acquisition Systems (DAS) are utilized in various fields, 
including industrial control, scientific research, environmental monitoring and more. When we will 
introduce a definition of DAS it becomes clear that variations of such systems are widely used in 
almost all aspects of human activity. 

As the name suggests, data acquisition system is used to acquire data from some type of source 
or in other words, it is a type of system that realizes the process of data acquisition. 

According to [9] data acquisition is a process of acquiring raw data in the form of electrical or 
other physical phenomena from various sources and converting them into a measurable signal 
suitable for processing. 

Another definition suggests that data acquisition is a process of gathering signals from real-world 
measurement sources and digitizing those signals for storage, analysis, and presentation [10]. 



Data acquisition is the process of capturing and measuring physical data and converting the 
results into a digital form that is further manipulated by a system [11]. 

All the provided definitions mention two functions of DAQ: 

1. Data acquisition or data capturing 
2. Data conversion (e.g. digitalization) 

But all three definitions while capturing the essential aspects of DAQ, miss one critical process 
involved that is data transfer. This omission is significant because without effective data transfer, 
even the most accurate measurements and precise conversions become meaningless if they cannot 
reach the systems where analysis and decision-making occur. 

In this work we define data acquisition as the process of measuring physical phenomena, 
conditioning the resulting signals, and transferring the acquired data to a destination system for 
further manipulations. 

Under the term manipulations  we imply storage, analysis or any other processing. We consider 
that DAQ encompasses the transformation from physical phenomenon to usable digital data, with 
storage being one of several possible endpoints rather than a mandatory component. If there are data 
processing capabilities integrated within the system that performs DAQ then such system might be 
termed as data acquisition and analysis system . 

3.2. A short history of data acquisition 

Before investigating the actual structure and constituents of data acquisition systems, we consider it 
necessary to examine such systems from a historical perspective. 

The first means for gathering data were purely mechanical. In the late 1790s James Watt 
constructed a steam engine indicator - an instrument that would graphically record the cylinder 
pressure versus piston displacement through an engine stroke cycle (Figure 4). This device might be 
considered the first automated mean for data acquisition. 

 

Figure 4: Watt  Steam Engine Indicator [12] 

The evolution from purely mechanical recording continued into the electromechanical devices 
like pressure indicator and recorder patented in 1888 by William Henry Bristol. This device was a 
chart recorder that used an electromechanical mechanism to drive a pen across paper at a steady 
rate, providing a permanent graphical record of pressure measurements over time [13]. 



Different variations of chart recorders, like the one shown in Figure 5 had been used for data 
logging until 1960s when data acquisition started shifting towards electronic means. 

 

Figure 5: Chart recorder. [Public domain], via. dicksondata.com 
(https://dicksondata.com/product/8-pressure-chart-recorder). 

The next major advancement in data acquisition came with the use of specialized computers. 
Systems like IBM 7700 or IBM 1800 (Figure 6) provided improved speed, accuracy, and automation 
in data collection. 

 

Figure 6: IBM 1800 Data Acquisition and Control System. [Public domain] via dewesost.com 
(https://dewesoft.com/blog/data-acquisition-history) 

The introduction of personal computers in the 1980s transformed data acquisition. The PC-based 
approach provided enormous advantages: costs dropped from tens of thousands to hundreds of 
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dollars, systems became easily customizable through software, and users could leverage rapidly 
improving computer performance.  

Modern DAS implementations leverage modular design principles to achieve scalability and 
adaptability across diverse application scenarios. The modular nature of contemporary systems 
enables researchers and engineers to configure parameters like sampling rates or signal conditioning 
parameters according to specific use case scenarios. The integration of programmable hardware (like 
FPGAs) makes it possible to create reconfigurable hardware components performing real-time signal 
processing. Furthermore, the adoption of standardized communication protocols such as Ethernet-
based interfaces ensures compatibility across different manufacturers and facilitates the creation of 
distributed measurement networks. This architectural flexibility, combined with comprehensive 
software frameworks that provide abstraction layers for system configuration, enables rapid 
deployment of customized acquisition solutions without requiring extensive hardware modifications 
or specialized programming expertise. 

3.3. Data acquisition architecture 

We have already defined three core actions required in order to implement data acquisition system: 

1. Measurement 
2. Conditioning 
3. Transferring 

Each of these three processes can be represented as discrete subsystems. The overall DAS 
architecture can therefore be visualized as shown in the Figure 7. 

 

Figure 7: Structural diagram of a data acquisition system 

As illustrated in the Figure 7 above, the data acquisition begins from data source which might be 
any object. In the context of maintenance data source is a piece of equipment to be maintained, for 
instance, it could be an electrical motor or CNC machine. This data source is characterized by some 
measurable physical phenomena that reflect its state. These phenomena might be mechanical 
vibrations, temperature, acoustic emissions, electrical parameters (current, voltage, power factor), 
fluid properties (in hydraulic systems), and other observable quantities that change as the equipment 
operates or degrades. 

The measurement system serves as the interface between physical phenomena and other systems. 
Measurement is performed by sensors. The term transducer  is often used alongside with sensor , 
however there are distinct differences between the two that we are determined to explain. 

A transducer is a device that transforms one form of energy to another [14]. Most frequently 
transducers are used to convert non-electrical quantities into electrical signal. 

A sensor is a type of transducer specifically designed in order to measure a physical quantity. It 
works by detecting (sensing) a desired physical quantity and transforming it into readable signals, 
typically electrical [15]. 



In summary, all sensors are transducers with the primary purpose of providing specific 
information about the physical environment, whereas not all transducers function as sensors, as they 
have a broader purpose encompassing any form of energy conversion. 

Following the measurement stage, the acquired signals undergo conditioning  a process that 
involves signal processing to optimize the acquired signal and make it acceptable for next stages. 

Conditioning includes, but is not limited to [16]: 

• Amplification/attenuation (scaling)   
• Isolation   
• Sampling   
• Filtering (noise elimination) 
• Linearization   
• Span and reference shifting  
• Mathematical manipulation (e.g., differentiation, division, integration, multiplication or 

summation)   
• Signal conversion (e.g., DC AC, AC DC, digital-analog, analog-digital, etc.) 
• Buffering   
• Digitizing   
• Impedance matching 

The specific conditioning operations required depend heavily on the characteristics of both the 
sensor output and the requirements of the subsequent processing stages. Next, we will briefly 
describe some of the most frequently performed conditioning tasks. 

Amplification is a fundamental task in signal conditioning. Usually, the magnitude of a signal 
produced by a sensor is very weak (millivolt range) the amplification is required for further 
processing [17]. The amplification is done by special devices - amplifiers. 

Filtering serves to eliminate unwanted frequency components and electrical noise that can mask 
the signals of interest. The basic filter selectively allows the desired signal to pass through it and 
blocks the undesired signal range based on the frequency [18]. In data acquisition systems, filters are 
used to preprocess signals before converting analog signal into digital, ensuring that only the 
relevant frequency components are captured. 

Signal isolation is a technique used in electronic systems, and in DAS in particular, to separate 
different parts of a circuit to prevent unwanted interactions between them. This helps to protect 
sensitive components from high voltages, noise, and ground loops. Ground loops, which result from 
potential differences between the signal source ground and the measurement device reference 
ground, generate circulating currents that can distort measured signals. When these currents become 
excessive, they may cause equipment damage [16]. 

Analog-to-digital conversion (ADC) is another important process of the conditioning subsystem. 
ADC transforms continuous analog signals into discrete values that can be processed by digital 
computing systems. 

Transferring system, as name suggests, transfers measured and conditioned values to a system 
where they will be processed. Transferring system may be realized as wired, wireless or combined 
communication system. Now, we will provide a concise overview of communication systems in 
general as the fundamental principles remain the same regardless of the specific implementation or 
application domain. 

Any communication system consists of five essential components: source, transmitter, channel, 
receiver, and destination [19]. In the context of data acquisition for maintenance, the information 
source is a sensor, while the destination is typically a computer system running condition monitoring 
software or a centralized maintenance management system. 

The transmitter prepares the data for transmission. It does so by modulating and encoding the 
signal according to specific protocols [20]. This includes adding headers, error detection codes, 



synchronization bits, and formatting the data into packets or frames. Common industrial protocols 
include Modbus, Profibus, EtherCAT, and OPC-UA, each offering different capabilities in terms of 
speed, reliability, and real-time performance. 

The channel represents the physical medium through which data travels. For wired systems, this 
includes twisted-pair cables (RS-485, Ethernet), coaxial cables, or fiber optics. Wireless channels 
utilize electromagnetic waves across various frequency bands, from short-range Bluetooth and 
Zigbee to long-range cellular and satellite communications. 

The receiver performs the inverse operations of the transmitter, extracting the original data from 
the received signal. This involves demodulation, error checking, packet reassembly, and protocol 
interpretation [19]. In maintenance applications, receivers must often handle multiple simultaneous 
data streams from numerous sensors while maintaining time synchronization and data integrity. 

4. Data acquisition system model 

4.1. Measuring subsystem model 

The fundamental measurement process can be represented as a mapping function: 

𝑀 ∶  Φ → S, (1) 

where:  

•  represents the space of physical phenomena 
• S represents the space of sensor signals 
• M is the measurement operator 

For a specific measurement at time t: 

𝑠(𝑡) = 𝑀[𝛷(𝑡)] + 𝑛(𝑡), (2) 

where: 

• 𝛷(𝑡) is the physical phenomenon at time t 
• 𝑠(𝑡) is the measured signal 
• 𝑛(𝑡) represents measurement noise 

4.2. Conditioning subsystem model 

The conditioning subsystem transforms raw sensor signals into signals suitable for further 
processing by digital systems. The conditioning process can be represented as: 

𝑌𝑐 = 𝐶𝑛 ∘  𝐶𝑛−1  ⋯ ∘  𝐶1(𝑋) , (3) 

where: 

• 𝑋 is input signal (raw sensor data) 
• 𝑌𝑐 is output signal (conditioned signal) 
• 𝐶𝑖 is conditioning operator 
• 𝑛 is total number of conditioning operators 

Alternatively, the conditioning process may be represented in a sequential notation: 

𝑋
𝐶1
→𝑋1

𝐶2
→𝑋2

𝐶3
→⋯

𝐶𝑛
→ 𝑌 , (4) 

  



4.3. Transferring subsystem model 

The transferring system can be formally represented as a tuple: 

𝛵 =  〈𝑆, 𝑇𝑥 , 𝐶, 𝑅𝑥 , 𝐷〉 , (5) 

where: 

• S is source (in this case the source is a signal conditioner) 
• 𝑇𝑥 is transmitter function 
• 𝐶 is communication channel function 
• 𝑅𝑥 is receiver function 
• D is destination system 

4.4. DAS model 

Based on the provided scheme in Figure 7 and the models of the defined subsystems, the 
generalized model of the data acquisition system can be represented as a composite function: 

𝐷𝐴𝑆 =  𝑀 ∘ 𝑌𝑐  ∘  𝑇 , (6) 

where: 

• 𝑀 sensor 
signals S 

• 𝑌𝑐 represents the conditioning subsystem that processes raw sensor signals through 
sequential conditioning operations (amplification, filtering, digitization, etc.) 

• 𝑇 represents the transferring subsystem that transmits conditioned data from source to 
destination 

This composite model demonstrates that the overall data acquisition process is the sequential 
application of measurement, conditioning, and transferring functions. The output of each subsystem 
serves as the input to the next, creating a complete pipeline from physical phenomenon to usable 
digital data at the destination system.  

Each of the defined subsystems is a complex research subject deserving separate investigation. 
The systematic decomposition we have presented establishes the foundation for more detailed 
analysis of individual components. We consider that recognition of the distinct functions and 
challenges within each subsystem is crucial for designing effective data acquisition systems for 
condition-based maintenance applications. 

Conclusion 

In this article we have tried to examine the place of data acquisition in the context of condition-based 
maintenance. It has been established that DAQ is an essential constituent of CBM as it provides data 
about equipment physical state. 

Next, there has been conducted a research on DAS on its own. We explored what data acquisition 
is and provided a definition that, as we think, clearly captures the essence of this process. Based on 
the defined functions of DAQ we then decomposed the process into three fundamental subsystems: 
measurement, conditioning, and transferring - each serving a distinct purpose in the transformation 
of physical phenomena into usable digital information. 

The measurement subsystem, through carefully selected sensors and transducers, provides the 
critical interface with the physical world. The conditioning subsystem ensures signal quality and 
compatibility through actions like amplification, filtering, isolation etc. Finally, the transferring 
subsystem delivers this processed information to analysis and decision-making systems.  



Building upon presented decomposition, we have developed a formal mathematical model of the 
data acquisition system. The model represents DAS as a composite function of three sequential 
operations: measurement (M), conditioning (𝑌𝑐), and transferring (𝑇). Understanding the defined 
subsystems and their mathematical relationships enables maintenance engineers to design, specify, 
and troubleshoot data acquisition systems that meet the demanding requirements of modern 
condition-based maintenance programs. 

While this work provides foundational knowledge for DAS design, several important research 
directions merit further investigation. In the context of maintenance, we consider that further 
researc
placement strategies, adaptive sampling rate determination, and multi-sensor data fusion techniques 
that can enhance fault detection reliability and reduce false alarms. These research directions would 
provide the practical, actionable guidance needed to advance DAS implementation in industrial 
maintenance applications, bridging the gap between theoretical frameworks and real-world 
deployment challenges. 
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