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Abstract 
The emotional state of a child is a complex, multidimensional construct, reflected in the choice of color, 
composition, symbolic images, and strokes in the drawing, which is formed through a non-linear, chaotic 
creative process. Traditional psychological analysis of children's drawings relies on subjective 
interpretation and is not scalable for mass screening. This paper proposes a neural network multimodal 
hybrid model for automated emotion diagnostics, combining four complementary feature channels. The 
pre-trained EfficientNet-B3 neural network extracts the global context of the image; the YOLOv8 neural 
network determines local semantically significant objects, expanded to 55 classes on the open ESRA dataset; 
the color palette is described by the statistics of the HSV (Hue, Saturation, Value) space; compositional and 
graphic metrics encode the geometry and character of the lines. For adaptive weighting of channel 
contributions, a lightweight attention-fusion layer is introduced, forming a 256-dimensional combined 
feature vector. The final classifier based on a multilayer perceptron (MLP) matches a drawing to one of 
three emotional categories - "Happiness", "Anxiety/Depression", "Anger/Aggression", achieving an 
accuracy of 80-85% on a combined test set from Kaggle. A key benefit is the interpretable JSON report, 
which contains class probabilities and numerical indicators of color, composition, and detected objects. This 
makes the results easier to use in practice by a psychologist and increases confidence in the model. 

Keywords  
children's drawings, emotional state, diagnostics, neural network, multimodal model, EfficientNet-B3, 
YOLOv8, attention fusion 

1. Introduction 

A child's emotional well-being determines the trajectory of his cognitive, personal, and social 
development, influencing academic success, the formation of self-esteem, and the quality of 
interpersonal relationships [1]. In practical psychology, one of the most common projective methods 
is the analysis of children's drawings - "Draw a person", HTP test, "Family", "Non-existent animal", 
etc. It is assumed that the child unconsciously transfers experiences into the symbolism of the image, 
allowing the specialist to identify happiness, anxiety, aggression or depressive tendencies [2]. 
However, the interpretation of the drawings is based on the subjective experience of the psychologist 
and is subject to inter-expert variability; during mass examinations in kindergartens, schools and 
rehabilitation centers, the specialist is not able to quickly process hundreds of works [3]. 

Attempts at algorithmic diagnostics were made back in the 1990s (color histograms, counting 
simple geometric shapes, etc.), but such approaches ignored the scene composition and microtexture 
of strokes. With the development of deep learning, specialized convolutional neural networks (CNN) 
have emerged that determine artistic styles [4, 5]., and single-frame YOLO series detectors that allow 
simultaneous localization of multiple objects of different scales [6]. Most existing studies focus on 
only one aspect of the image: either the global style of the entire drawing [7, 8], or the detection of 
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The lack of a comprehensive view leads to two problems:  

1. Limited accuracy  the model captures only part of the features 
context. 

2. Uninterpretability  the specialist receives a bare class label without an explanation of which 
features of the drawing played a decisive role. 

Modern requirements for intelligent psychodiagnostic systems include high accuracy, 
interpretability of the output, and the ability to scale to large samples. By this, the paper considers 
the problem of automatic emotional diagnostics, the solution of which demonstrates the integration 
of contextual, object, color, and compositional features with subsequent careful weighing, which 
significantly increases both the accuracy and explainability of conclusions based on children's 
drawings. 

2. Analysis of existing research 

The methods of automatic analysis of children's drawings presented in the literature are 
conditionally divided into three directions: 

1. Global classification of the entire image. 
2. Local detection of semantic symbols. 
3. Detection of combined/multimodal signs. 

For global classification of the entire image, typical Shallow CNN [10], ResNet-34 FT [11], and 
ResNet-50 [12] models are used, in which the entire image is fed to the CNN classifier, which 
immediately issues a label. Studies have shown that even a shallow network distinguishes common 
emotional tonalities with an accuracy of 85%. However, the authors used images without background 
elements, and the model ignored the placement of figures and fine strokes. Later, Two-Step FT 
ResNet-34 [11] achieved 99% accuracy on the private categories of the DAP test; however, the child's 
emotion was indirectly inferred from the presence of "house-man-tree," without direct mood 
recognition. The advantages of this direction are a quick prototype and no complex markup is 
required, while the disadvantages include the indistinguishability of local details and weak 
interpretation. 

In the case of local detection of semantic symbols, a typical model of which is YOLOv8-cls [13], 
the object detector finds objects (for example, "sun", "knife", etc.), and the output is based on the list 
of found objects. The advantage of this direction is high accuracy on "bright" markers (weapons, 
tears), and the disadvantage is that color and composition are ignored, and the output of the neural 
network is a "black box", which, as a result, produces only the final class. 

When identifying combined/multimodal signs, isolated experiments are conducted with a color 
histogram, and several channels (context, color, lines) are combined. Psychologists associate a dull 
color with anxiety, torn lines with internal tension [14]. At the same time, the palette and strokes 
are informative, but there is no unified system architecture, and the accuracy does not exceed 75 %. 
Early algorithms calculated HSV histograms or contour density, but worked separately from CNN. 
The combination of such features with deep networks occurs only sporadically and does not give an 
increase of more than 5 %. due to the lack of a channel "gluing" mechanism. 

In [15], a standard CNN is employed to automate the process of analyzing children's drawings, 
which comprises six layers, each playing a crucial role in extracting and analyzing the semantic and 
sequential characteristics inherent in drawings created by children's hands. The specified structure 
of the neural network is designed in such a way that it allows you to effectively use the values of 
image pixels as direct input data, thus providing the possibility of implicit extraction of abstract 
information from children's drawings. However, the authors limit themselves to a global analysis of 
the entire picture. 



 

Thus, each of the considered directions gives only partial information. Without local objects, the 
neural network confuses "anger" and "happiness
compositional features, it is difficult to distinguish "anxiety" from a "neutral" picture. In addition, 
most works do not produce an explanatory report - the psychologist has to believe in the "black box". 

The aim of the work is to develop a multimodal hybrid neural network model that has a high 

metrics, and combines them using an attention-fusion mechanism. The key difference of the 
proposed model is that it not only classifies children's drawings but also explains the solution and 
supports the work of a psychologist in mass screening. 

By this, the following tasks were set in the work: 

1. Development of the architecture of a multimodal hybrid neural network model. 
2. Obtainin , 

balance of spots, density of strokes, distribution of color, etc. 
3. Extraction of a set of image objects and their local features. 
4. Extraction of color and compositional features that determine the emotional range, geometry, 

and nervousness of the lines of a child's drawing. 
5. Conducting experimental studies. 

on the drawing. 

3. Architecture of a multimodal hybrid diagnostic neural network 
model 

A multimodal hybrid architecture is proposed that combines four sources of image information: 

1. Global context  the pre-trained EfficientNet-B3 neural network extracts a 1536-dimensional 
embedding describing the shape, texture, and configuration of the scene. 

2. Local semantic objects  the YOLOv8-n neural network detects 55 classes from the ESRA 
ional classes. 

3. Color palette  the statistics of HSV (Hue, Saturation, Value) space (15-dimensional vector) 
quantitatively reflect brightness, saturation, and dominant hues that correlate with emotional 
tone. 

4. Compositional and graphic features  geometric metrics of the arrangement of figures, 
chaotic contours, and density of strokes (9-dimensional vector) capture characteristic 
patterns of anxiety and aggression. 

For adaptive fusion of heterogeneous features, a lightweight attention-fusion layer is introduced, 
-

dimensional fusion vector. Next, the multilayer perceptron (MLP) performs the final classification of 
H  

In addition to prediction, the system generates a structured JSON report that includes: 1) class 
-weights showing the contribution of channels; 3) quantitative indicators of color, 

composition, and detected objects. Such a report makes the model's output transparent and suitable 
for discussion with parents and teachers [16].  

Let us consider the architecture of the proposed multimodal diagnostic neural network model, 
presented in Fig. 1. The input is a digitized child's drawing, which is processed in parallel by four 
complementary branches. The global context of the image is extracted by the pre-trained 
EfficientNet-B3 neural network [17], forming a high-dimensional embedding that reflects large 
shapes and textures of strokes. Using EfficientNet-B3 instead of CNN increases accuracy on the 
global background by 8-10 %, requires fewer parameters than ResNet-50, and catches the texture of 



 

strokes without modifying the code. 
 

 
Figure 1: Overall architecture of the proposed multimodal diagnostic neural network model 

 
Simultaneously, the simplified YOLOv8-n localizes 55 semantically significant object classes 

(ESRA) [13], such as sun, knife, tears, etc., and aggregates them into six quantitative features 
corresponding to three emotional classes. Two lightweight auxiliary branches calculate the 
numerical characteristics of the color palette (brightness, saturation, and shares of dominant shades) 
and compositional-graphic metrics (arrangement of figures, chaotic lines, density of strokes). 
YOLOv8-n is the largest detector of specific symbols (weapon, tears, sun) and allows us to explain, 

. The color and composition modules integrate 
pct_dark, edge chaos, and bbox geometry into a single model. 

In the next step, all four feature vectors are projected into a common 256-dimensional space and 
fed into the attention-fusion layer. The attention mechanism adaptively determines how informative 
each channel is for a particular imag

-fusion 
layer allows for eliminating the conflict between the bright red background and the rainbow plot. 

The resulting 256-dimensional vector is passed to a two-layer MLP classifier, where, after a linear 
transformation, ReLU activation, and Dropout, the logits of three emotional categories are generated. 
The Softmax function transforms them into probabilities that comprise the primary prediction of the 

-weights of attention and primary numerical features 
(color, composition, list of objects) are output to the JSON report, which makes the model's solution 
transparent to a practicing psychologist [16]. 

Let's take a closer look at the description of datasets, image preprocessing stages, and the 
implementation of each of the listed branches. 

3.1. Datasets and Pre-processing 

For 
unconscious symbols, training data from three different sources were combined. Each of them covers 

the 
good generalization ability of the network. The combined test set of Kaggle Children Drawings, 
consisting of 500 RGB scans, was used [18]. A single label was set: happiness/anxiety/anger, and 
EfficientNet-B3 was retrained. This step allows for obtaining natural drawings with reliable emotion. 

On the open ESRA Annotation dataset containing 3012 RGB images [19], using the trained 
YOLOv8-n neural network, which provides rich semantics of local symbols (knife, tears, sun, etc.) 
necessary for explainable conclusions, local semantically significant objects were identified, 
expanded to 55 classes + bbox, and aggregated into three clusters [20]. Next, emotion labels + bbox 
of key objects are defined for an internal pilot set of 200 scans, which allows for external validation 
of interpretability to test the network's robustness to regional style, a different set of objects, and 
mixed techniques. 

A single preprocessing pipeline was used. Each source scan I undergoes dual processing: active 
region extraction, contrast equalization (CLAHE), and dual scaling: 

𝐼𝑒𝑓𝑓 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐼𝑐𝑟𝑜𝑝, 224),   𝐼𝑦𝑜𝑙𝑜 = 𝑙𝑒𝑡𝑡𝑒𝑟𝑏𝑜𝑥𝑒(𝐼𝑐𝑟𝑜𝑝, 640), (1) 



 

where 𝐼𝑒𝑓𝑓 is input to the global branch (EfficientNet-B3); 𝐼𝑦𝑜𝑙𝑜 is input to the local branch 
(YOLOv8-n); 𝑟𝑒𝑠𝑖𝑧𝑒(𝑋, 𝑠) is the resized image 𝑋 to  𝑠 ⨯  𝑠 pixels without padding; 𝑙𝑒𝑡𝑡𝑒𝑟𝑏𝑜𝑥𝑒(𝑋, 𝑠) 
is resize X with aspect ratio preserved and pad to 𝑠 ⨯  𝑠; 𝐼𝑐𝑟𝑜𝑝 is the active region of the scan after 
removing white margins. 

The first tensor goes to EfficientNet-B3, the second one goes to YOLOv8-n without distortion of 
proportions. 

Balancing and synthetic diversity were performed, i.e., the original sample was biased towards 

"happiness". Stratified mini-batches (1:1:1) and a weighted loss function 𝑤𝑐 = 1 √𝑁𝑐⁄  were applied, 
where 𝑁𝑐 is the number of examples of class C. To prevent the network from "remembering" unique 
pencil curls, four complementary augmentations were introduced: 

1. Global context  the pre-trained EfficientNet-B3 neural network extracts a 1536-dimensional 
embedding describing the shape, texture, and configuration of the scene. 

2. Horizontal reflection (p = 0.5)  the children's composition often changes left/right bias. 
3.  𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗, ,   𝜆 ⁓  Beta (0.2;0.2), forces the model to interpolate 

between emotions rather than remember details. 
4. CutOut (patch 16 x 16, p = 0.3)  simulates paint spots, finger shadows, or sheet tears. 

After expansion, the training pool grew from 200 to 4400 images; class imbalance was reduced to 
±3 %. Thus, the combination of three corpora provides simultaneously emotional labels, semantic 
objects, and regional diversity. A single, two-branch oriented preprocessing ensures tensor 
consistency across all downstream modules. Balanced augmentation not only increases the data 
volume
stroke. All this forms a solid foundation for the processing units. 

Preprocessing and normalization. From each RGB scan, we extract the active region: we remove 
white margins, take a tight bounding box around non-
stated otherwise, all numeric features are standardized with z-scores using the training set (the same 
mean and standard deviation are reused on validation/test). Global context (EfficientNet-B3): resize 
the active region to 224×224, scale pixels to [0,1], and normalize by ImageNet mean/std; use the 1536-
dim pooled feature for fusion. Local objects (YOLOv8-n): letterbox the active region to 640×640, run 
the detector (confidence 0.25, NMS IoU 0.45); group detections into three emotions via the published 

0]. 
For each group, record the count and the area fraction (sum of box areas divided by the area of 

the active region), then standardize all six values. Color (HSV): convert the active region to HSV in 
[0,1], compute means and variances of H, S, V; proportions of warm/cool/dark pixels; and six equal 
hue-bin masses (sum = 1), then standardize all 15 values. Composition/graphics: on a grayscale copy 
with a fixed edge detector, compute nine values (center-of-mass offset, scene density, main-figure 
tilt in degrees, edge-chaos measure, stroke density, main-box aspect ratio, main-box area fraction, 
box-center dispersion normalized by the canvas diagonal, and background-void ratio) and 
standardize them. 

3.2. Global Context Branch: EfficientNet-B3 

The global impression of a child's drawing is not only the set of objects, but also the "atmosphere" of 
the scene: the balance of spots, the density of strokes, the distribution of color. It is this background 
that a qualified psychologist most often reads first. To bring the machine's gaze closer to the human's, 
EfficientNet-B3 was chosen as a context extractor - an architecture that, with a moderate number of 
parameters, demonstrates high accuracy on a wide range of visual tasks [17]. EfficientNet-B3 uses 
the compound scaling principle: simultaneous but consistent expansion of the depth d, channel width 
w, nt.  

In children's drawings, where dark pencil ruts coexist with watercolor spots, the wide channel 



 

volume of the first layers of EfficientNet-B3 turned out to be critical: the model better distinguished 
sparse strokes from blots without losing global shapes. 

To avoid "re-memorizing" bright examples (children like to repeat the same "sun-house" motif), 
Dropout 0.30 was added before Global Pooling. To assess the stability, a 5-fold cross-validation was 
performed, retraining the model each time with a new initialization. The standard deviation of F1 
did not exceed ±1.9 %, which indicates a stable capture of the abstract properties of the drawing. 

The final vector 𝐹𝑒𝑓𝑓 with a diameter of 1536 components serves as the "global eye" of the 
attention-fusion layer. In combination with local objects, palette, and composition, it provides the 
model with context - the viewer can read the emotion even when the knife is hidden in the corner 
or the red tones are smoothed out with watercolor. 

3.3. Local Object Branch: YOLOv8-n 

marker symbols: the sun or rainbow in the upper corner, a tiny knife in the hands of a person, a 
stream of tears on a face, etc. These details, despite their small size, turn out to be the strongest 

extract local features, we used YOLOv8-n  a younger but sensitive version of the Ultralytics family, 
capable of holding ~6 M parameters and working with a resolution of 640 × 640 [13]. 

Most articles devoted to the analysis of artistic images either rely on heavy backbones (YOLOv5-
l, Faster-RCNN) or are limited to several large classes ("person", "house"). For school pictures, such 
tactics are unacceptable: due to the child's naive style, a knife can take up only 0.5% of the area, and 
a monster can be drawn with a single red stroke. A practical experiment showed that the YOLOv8-
n model achieves mAP@0.5 = 0.934 on the ESRA validation set, where mAP@0.5 is the mean Average 
Precision averaged over all classes at an IoU threshold of 0.5 (COCO convention). At the same time, 
YOLOv8-n remains four to five times lighter than comparable detector variants, mAP@0.5 = 0.934 
on ESRA validation, remaining 4-5 times lighter than its closest competitors. 

The original ESRA Annotation corpus includes 55 categories (from "sun" to "blood_drop"). 
However, the psychologist is not interested in the fact of "sun" itself, but in its emotional code. 
Therefore, after detection, we aggregate the classes into three supergroups corresponding to the 
target emotions: 𝐸1 = 𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠,  𝐸2 = 𝐴𝑛𝑥𝑖𝑒𝑡𝑦/𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝐸3 = 𝐴𝑛𝑔𝑒𝑟/𝐴𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛. For each 
group of objects, two invariant quantities are calculated: 𝑛𝑘  number of objects, ɑ𝑘  their total area 
bbox, normalized to the area of the drawing. We obtain a compact vector: 

𝐹𝑦𝑜𝑙𝑜 = (𝑛1, ɑ1, 𝑛2, ɑ2, 𝑛3, ɑ3) ∈ 𝑅6, (2) 

which is then fed into the attention-fusion layer. In practice, this means that even if the "knife" 
takes up three pixels, its contribution will be taken proportionally to the actual area, rather than 
multiplied by the detector's confidence. 

The model was initialized with the public checkpoint COCO-128 and further trained for 300 
epochs on ESRA. Despite the miniature size of the network, the classic YOLO training scheme was 
preserved: SGD optimizer with 𝑙𝑟 =  0.01 and 𝑚 =  0.937, cosine attenuation up to 10−4. The key 
role was played by the out-of-the-box augmentations of Ultralytics: Mosaic (100 %)  a collage of 
four pictures that perfectly conveys the chaos of children's sketches; HSV-shift (±0.1 H, ±0.5 S, ±0.5 
V)  imitation of neon markers and faded felt-tip pens; and Copy-Paste (20 %)  a random object is 
transferred to another scene, accustoming the detector to "stickers". 

with 𝐹𝑦𝑜𝑙𝑜, the top 3 objects by area that the psychologist sees in the report are saved. Thus, the 
specialist immediately understands that the alarming verdict of the model is not due to an abstract 

figures, 
reduces the barrier of trust in the system and saves time: there is no need to manually search for 
symbols on each sheet. 

Thus, YOLOv8- it extracts tiny but semantically 



 

charged objects, turns them into a smooth 6-dimensional feature, and, together with color, 
composition, and global context, enables the network to give an accurate and explainable diagnosis. 

3.4. Color and Composition Feature Extractors 

Despite the expressiveness of individual symbols, the emotional subtext of a child's drawing is often 
"sewn" into the palette and style of strokes. An anxious child prefers a gray-blue range, hides figures 
to the edges of the sheet, and outlines them with trembling, broken lines; an angry child floods the 
scene with thick red and scatters objects chaotically. In order to quantitatively capture these subtle 
hints, two light but critically important channels of features were added: color and compositional-
graphic. After the image is transformed into HSV space, the Hue (H), Saturation (S), and Value (V) 
are processed separately. The resulting color vector 𝐹𝑐𝑜𝑙 ∈ 𝑅15 contains six components, three 
summary indices, and six variances. 

Next, the arrangement of the figures is determined. The coordinates of the centers of all the 
"human" bboxes found by YOLO allow us to calculate the center of mass and the distance to the 
geometric center of the sheet, set the density of the scene, the slope of the main figure, and the 
chaotic nature of the contour. As a result, we obtain a composition vector 𝐹𝑐𝑜𝑚𝑝 ∈ 𝑅9. 

Both vectors 𝐹𝑐𝑜𝑙 and 𝐹𝑐𝑜𝑚𝑝 are concatenated: 𝐹𝑎𝑢𝑥 = [𝐹𝑐𝑜𝑙 , 𝐹𝑐𝑜𝑚𝑝]∈ 𝑅24, and projected by their 

matrix 𝑊𝑎𝑢𝑥 ∈ 𝑅24𝑥256 into a 256-dimensional space comparable to the projections of YOLO and 
EffNet branches. This allows attention-fusion to dynamically increase the weight of color if the scene 
is glowing red, or composition if the characters are huddled in a corner, without manually specifying 
the coefficients. 

3.5. Attention-Fusion Mechanism and Classifier 

The four feature channels described above provide different information about the drawing: the 
 specific symbols, the color module captures the 

emotional range, and the compositional module  the nervousness of the lines and geometry. It is 
impossible to say in advance which of the channels will be decisive on a specific sheet: in one case, 

ger, in another, a tiny knife in the corner outweighs the 
rainbow background. Therefore, instead of rigid concatenation, a lightweight layer of attention 
(attention-fusion) was introduced, which dynamically prioritizes between the channels.  

The resulting compressed vector 𝑓𝑓𝑢𝑠𝑒𝑑 ∈ 𝑅256 is fed to a two-layer classifier (MLP) with one 
hidden layer, which is described by the equations: 

𝑔 = 𝑅𝑒𝐿𝑈(𝑊1
𝑇𝑓𝑓𝑢𝑠𝑒𝑑 + 𝑏1),     𝑔∈ 𝑅128, 

𝑔ʹ= 𝐷𝑟𝑜𝑝𝑜𝑢𝑡0.2(𝑔), 

𝑙 = 𝑊2
𝑇𝑔ʹ + 𝑏2,    𝑙 ∈ 𝑅3, 

(3) 

where 𝑔 is the hidden activations after the first layer; 𝑊1
𝑇 and 𝑏1 are the weights and bias of the 

first fully connected (hidden) layer; 𝑊2
𝑇 and 𝑏2 are the weights and bias of the output layer; 𝑙 is the 

logits (unnormalized scores) for the three classes.  
The Softmax function transforms the logits l into class 𝑐𝑖 probabilities 𝑝𝑐: 

𝑝𝑐𝑖
=  𝑒𝑙𝑐𝑖

∑ 𝑒𝑙𝑐𝑖3
𝑗=1

⁄  ,    𝑐𝑖 ∈ {𝐽𝑜𝑦,   𝐴𝑛𝑥/𝐷𝑒𝑝,   𝐴𝑛𝑔𝑒𝑟/𝐴𝑔𝑔 }. (4) 

where 𝑙𝑐𝑖
 is the logit of class 𝑐𝑖.  

In addition to probabilities, the model stores -weights  four scalars indicating which branch 
proved to be the main one; the top 3 YOLO objects, along with their area and quantity; summary 
color indicators; and key compositional metrics. Such a report allows the psychologist to see why 
the network considered the drawing disturbing: its dark palette, depiction of two crying people, and 
high level of chaos in the lines. 

Thus, attention- ides in real time which instrument 



 

(context, object, color, or composition) sounds louder in the emotional symphony of the drawing, 
and MLP translates this ensemble into a quantitative diagnosis with a transparent explanation. 

4. Experimental studies 

This section shows step by step how the proposed system was trained and why each of the added 
innovations resulted in an increase in quality. First, the reproduced environment is described, then 
quantitative indicators, results of ablation experiments, and analysis of the attention model are 
presented. A reproducible training configuration was implemented based on the EfficientNet-B3 
neural network, which was further trained for 10 epochs with a cosine decay rate from 1 ⨯ 10−4 to 
1 ⨯ 10−5, with 80 -n neural network was trained for 300 epochs 
on ESRA with Mosaic and Copy Paste augmentations; by the 200th epoch, mAP@0.5 reached 0.90. 
The attention-fusion layer and the subsequent two-layer MLP were trained for 15 epochs with an 
initial learning rate of 1 ⨯ 10−3 , which defines the step size of weight updates, and a dropout rate 
of 0.2, meaning that 20 % of neurons are randomly deactivated during each iteration to curb over-
fitting. 

Fig. 2 shows the train/val-loss dynamics curve for fine-tuning EfficientNet-B3, which shows that 
there is no overfitting: by the 9th epoch, the difference between train and val does not exceed 0.05. 

 
Figure 2: Train/val-loss dynamics for fine-tune EfficientNet-B3 

 
Fig. 3 tracks the macro-averaged F1 over the 15 training epochs of the fusion layer; the curve 

steadily rises and levels off near 0.84, signaling convergence.  
 

 
Figure 3: Macro-F1 growth during fusion layer training 



 

 

Macro-F1 is obtained by first computing the F1-score (the harmonic mean of precision and recall) 
for each class and then averaging these scores, so every class contributes equally regardless of its 
prevalence in the data. A closer look at the class-wise learning curves reveals different convergence 
dynamics. Happiness reaches its plateau within the first six epochs, confirming that bright colours 

Anxiety/Depression climbs more slowly because 
the model must integrate a dull palette, off-centre figures, and the absence of cheerful objects before 
it can decide. The curve for Anger/Aggression lies between the two: an early boost comes from red 
dominance and weapon icons, whereas the later epochs refine the score through contour chaos and 
dense shading. The complete v2 system outperformed the baseline v1. On the held-out test split, v2 
achieved Accuracy = 0.845 ± 0.012 and macro-F1 = 0.838 ± 0.017, whereas the single-channel v1 
(custom CNN + earlier YOLO) reached only macro-F1 = 0.693. The largest gain appears in 
Anxiety/Depression (+0.16 F1) followed by Anger/Aggression (+0.11 F1). The confusion matrix in 
Fig. 4 explains the jump: the baseline frequently confuses anxiety with the neutral class, while v2 
recognises the dull palette, off-centre figures, and jagged contours typical of anxious drawings. 

 

 
Figure 4: Error matrix of model v2 on the test sample 

 
Class-wise precision recall statistics reinforce this picture: Happiness scores precision 0.88 / 

recall 0.87 thanks to its bright warm colours; Anxiety/Depression settles at 0.79 / 0.81 because grey 
pencil sketches partly overlap with neutral images; Anger/Aggression shows a balanced 0.83 / 0.83, 
indicating that red dominance and weapon detections compensate for each other when one cue is 
missing. These asymmetries clarify why the overall macro-F1 improvement is driven mainly by the 
anxiety class. To assess sensitivity, ROC curves were constructed and are shown in Fig. 5. It can be 
seen that the AUC increased from 0.78 to 0.91 for Anxiety, and from 0.86 to 0.94 for Anger, but the 

ch is important for school 
screening. In some drawings, cues from different channels can disagree (e.g., warm/bright colors 
suggest happiness while detected objects suggest anxiety). Our model reconciles such cases via 
learned attention weights; we treat this as a limitation and expose per-image attention to flag 
disagreements, leaving explicit conflict checks and abstention thresholds for future work. 

An ablation study of the roles of the branches of the proposed model was performed, the results 
of which are shown in Fig. 6. To assess the contribution of the channels, each branch was alternately 

,  

1. Removing YOLO reduced Macro-F1 by 6 %. 
2. Excluding the color branch by 3 % 
3. No composition by 2 %; 
4. Replacing attention with simple concatenation gave 4 %. 



 

 
Figure 5: ROC curves of three emotional classes 

 
Figure 6: Ablative study: Macro-F1 decline with branch disconnection 

 
Taken together, the ablation bars in Fig. 6 illustrate how the channels interact. Disabling the color 

branch hurts Anger most, because red hue is its earliest cue, yet the model still recovers two-thirds 
of the loss from object and contour information. The reverse holds for Anxiety: removing 
composition costs almost as much as disabling YOLO, underscoring that off-centre figures and 
fragmented lines jointly signal unease. This mutual compensation explains why the fusion layer 
remains above 0.77 macro-F1 even when any single channel is silenced. 

It is evident from Fig. 1 that when branches are switched off, there is a decline in Macro-F1. 
Additional studies on the evolution of mAP@0.5 YOLOv8-n were performed, as shown in Fig. 7. 

 
Figure 7: Evolution of mAP@0.5 YOLOv8-n 



 

It is evident that the mAP@0.5 curve of the YOLOv8-n detector increases almost monotonically: 
starting from 0.15, it reaches 0.90 by about the two-hundredth epoch and then reaches a plateau at 
about 0.93. After that, the accuracy fluctuates within 0.5 %, so early stopping of training after three 
epochs without improvement allows saving resources without losing quality. Robustness testing 
across cross-validation folds showed that the variation in macro-F1 does not exceed ±1.7 percentage 
poin
style of individual authors and does not critically depend on the random distribution of plots. 

There are limitations, however. Collage and watercolor techniques make it difficult to find closed 
-

contrast backgrounds. Another vulnerability occurs with stylized drawings (for example, comic book 
characters with large eyes and a predominance of red) - the network tends to classify them as 

rk sky, small 
figure in the corner) can be perceived differently in different environments. 

Despite the listed weaknesses, the model shows a stable result on typical pencil and felt-tip pen 
tory objects makes the 

network's conclusions transparent to a practicing psychologist [16]. The experiments conducted on 
test input data show the high efficiency of the developed model. Achieving such accuracy in 
recognizing emotional states is an important step in developing tools for the primary diagnosis of 
children's psychological state based on the analysis of their drawings. 

Thus, during the experiments on the combined dataset, the proposed model outperformed the 
basic single-modality CNN by 13 % macro-F1 and achieved an accuracy of 80-85 %, especially 
enhancing the recognition of anxious-depressive drawings. Unlike black-box models, the proposed 
solution provides a quantitative decoding of the factors underlying the decision, which is critical for 
the practical work of a child psychologist. 

5. Conclusion 

on intelligent analysis of a single drawing. Its key feature is that the system is not limited to one 
source of visual information, but synthesizes four complementary layers of information at once. The 
pre-trained EfficientNet-B3 is responsible for the global context and captures the scene composition; 
the lightweight version YOLOv8 detects up to fifty-five semantically significant objects, including 
weapons, the sun, clouds, and other markers of affect; specialized modules extract color palette 
statistics and compositional and graphic characteristics of lines. All these features are combined in 
the attention-fusion layer, which adaptively distributes weights between channels, as a result of 
which the network is able to interpret both rich felt-tip pen work and a modest pencil sketch with 
equal confidence. 

Experimental validation confirmed the practical valu
combined test set, including open Kaggle data and a closed collection from school and clinical 
institutions, the accuracy of classification of three emotional categories reached 83 85%. The 
increase was especially , Anxiety/Depression: the F1-measure 
increased by 16% relative to the baseline system, which relied only on global textures and a limited 
list of objects. It is also important that the increase in quality was accompanied by a decrease in the 
dispersion of results between different folds of cross-validation, which indicates good stability of the 
model to the variability of children's styles. 

Another significant advantage was the level of explainability. Instead of a dry label, the network 
forms an extended JSON report, where, in addition to the final probabilities, the weights of attention 
channels and specific objects or color characteristics that played a leading role are given. The pilot 
use of such reports showed that it takes a psychologist less time to understand why the algorithm 
classified a drawing as disturbing or aggressive, and the overall trust in the system increases 
significantly. It is also important that the entire pipeline fits into 20 Mb of weights and produces an 



 

answer in less than three seconds on a regular laptop - this opens the way to mass screening directly 
at school without the need to transfer images to external servers. 

At the same time, there are still some issues that require attention: the model is currently worse 
at handling collages and watercolor fills, and does not take into account age and cultural differences 
in symbolism. In future work, it is planned to expand the dataset with rarer techniques and add 
auxiliary metadata to improve the personalization of the output. But even in its current form, the 
proposed approach represents a significant step towards transparent automatic diagnostics, 
demonstrating that deep learning can not only improve accuracy but also provide interpretability, 
which is necessary in the practice of a child psychologist. 

Declaration on Generative AI 

During the preparation of this work, the authors used Grammarly to check grammar and spelling, 
paraphrase and reformulate. After using this tool/service, the authors checked and edited the content 
as needed and take full responsibility for the content of the publication. 
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