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Abstract 
This paper investigates the issues of strengthening business security during digital transformation. The 
authors demonstrate that the expansion of digitalization processes necessitates a reevaluation of the 
economic security concept. It is substantiated that in order to strengthen business resilience to risks and 
threats to digital security, it is necessary to implement a number of measures aimed at protecting the 
confidentiality, integrity and availability of information. A study of cyber threats to national economic 
entities and citizens was conducted, including with the use of artificial intelligence tools. This made it 
possible to identify a priority area of data protection  improving the RSA cryptosystem. This research 
details the development of efficient information processing strategies for reducing the latency of RSA 
cryptographic functions. To accelerate RSA cryptographic transformations, this study introduces methods 
for high-speed information processing. The core of suggested method involves the realization of a cyclic 
shift mechanism utilizing modular arithmetic, entirely implemented by the residue number system (RNS). 
The application of RNS demonstrates its effectiveness in structuring the process of implementing modular 
integer arithmetic operations for accelerating public-key cryptographic transformations. 
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1. Introduction 

The concept of ensuring economic security of Ukrainian business in active digital 
transformation has undergone a significant rethinking. Despite the unprecedented challenges and 
threats posed by Russia's military invasion, government regulatory measures to support all sectors 
of the national economy [1] continued with a new vector to increase business resilience by 
accelerating digital transformation. Digitalization has become a key tool in overcoming war risks 
and ensuring the adaptability of business entities in the face of uncertainty. At the same time, the 
digital economy is raising the issue of countering digital security threats [2]. 

Ukrainian business remains particularly vulnerable to digital security risks in the constant 
growth of cyberattacks from the aggressor country. Digital security incidents have significant 
economic and social consequences, including damage to reputation, financial losses, recovery costs, 
etc. [3]. Cyber incidents threaten the availability, integrity, and confidentiality of information and 
systems. In this context, the need to improve the level of digital security of business is undeniable. 

One of the most relevant areas is the improvement of cryptographic information security 
systems. 
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Contemporary public-key cryptosystems commonly employ transformations based on algebraic 
curves, including elliptic curves (EC), hyperelliptic curves (HEC) [4, 5], Picard curves (PC), and 
superelliptic curves (SEC) [6], alongside traditional RSA systems. A prevailing direction in 
cryptographic information processing research focuses on extending key lengths. However, this 
approach inherently leads to a reduction in the processing speed of public-key cryptosystems [7, 
8]. This slowdown is particularly problematic when implementing EC-based cryptosystems in 
resource-constrained environments, such as specialized systems and devices where the use of high-
performance, multi-precision computers is not feasible [9]. Consequently, there is a pressing need 
for the development of techniques that enhance the efficiency, reliability, and security of 
cryptographic transformations [10]. The proposed approach, which leverages the residue number 
system (RNS), offers a significant advantage over existing hardware implementations of RSA by 
fundamentally altering the arithmetic operation paradigm. Unlike traditional positional number 
systems that rely on sequential digit processing and suffer from inter-digit carry propagation; RNS 
enables highly parallel execution of modular arithmetic operations. This inherent parallelism, 
particularly for modular multiplication and squaring which dominate RSA computations, allows for 
a substantial reduction in latency and an increase in throughput, making it a promising solution for 
high-speed crypto accelerators in real-time applications. For a comprehensive evaluation of novel 
cryptographic acceleration methods, comparative performance indicators against established 
techniques are essential for objectively assessing their practical utility and superiority. 

2. Analysis of the problem of cryptographic information protection to 
strengthen business security in a digital transformation 

Since the beginning of Russia's full-scale invasion, the number of cyberattacks against Ukraine has 
been steadily increasing [11]. According to official data from Forbes Ukraine, the losses caused by 
cybercrime to Ukrainian businesses in 2022 increased by 96% compared to 2021. Their absolute 
value amounted to UAH 1 billion (EUR 24 million) [12]. Average losses per cyberattack increased 
by 49% to UAH 7,900 (EUR 190). According to the Ministry of Digital Transformation of Ukraine, 
the problem of information security increased by 14% in 2021-2023. In 2022, 60% of the adult 
population and every 8 out of 10 adolescents experienced a data security breach [13]. 
Unfortunately, official data on the frequency and type of digital security incidents after the full-
scale Russian invasion are not available. However, data collected prior to this period shows an 
increase in the vulnerability of Ukrainian businesses to digital security threats. 

During the war, cybercriminals scaled up their criminal business using artificial intelligence [14, 
15]. One of the most common types of crimes is the issuance of loans for missing military 
personnel and citizens who have traveled abroad [16], including through the forgery of an 
electronic digital signature. Accordingly, the issue of cryptographic protection of information to 
strengthen the security of business and citizens is relevant and supported by existing research and 
development. 

A comprehensive examination of techniques aimed at enhancing the efficiency of scalar 
multiplication (SC) within the Jacobian of hyperelliptic curves (HEC) provides both theoretical and 
empirical justification for the dependence of SC operation performance on several key factors. 
These factors include: the implementation modality of cryptographic transformations (software, 
hardware, or hybrid); the specific algorithm employed for HEC divisors; the underlying base field 
over which the curve is defined; the curve's type and coefficient values; the chosen coordinate 
system for representing Jacobian divisors (affine, projective, weighted, or hybrid); and the selected 
arithmetic transformation method within the Jacobian. 

Existing methodologies for implementing scalar multiplication algorithms, such as the Kantor 
divisor addition method, the Koblitz method, various arithmetic transformation methods for HEC 
Jacobian divisors, weighted divisor addition techniques, the Karatsuba method for modular 
multiplication and polynomial function field reduction, and methods leveraging aspects of the 
Chinese Remainder Theorem, often fail to meet the stringent efficiency requirements of modern 



cryptographic applications. Conversely, the literature [17, 18] highlights the substantial advantages 
of modular arithmetic codes, specifically the RNS, for accelerating digital information processing 
tasks, including digital filtering, Fast Fourier Transform (FFT), and Discrete Fourier Transform 
(DFT) implementations. 

This context underscores the critical importance and timeliness of developing novel approaches 
to improve the performance of cryptographic transformations, particularly RSA, through the 
utilization of RNS. The RSA system, initially proposed in 1977, remains the most prevalent public-
key cryptosystem in use today [19-21]. 

The primary goal of the studies documented in [22, 23] is to formulate a method for rapid 
execution of public-key cryptographic transformations and to design a structural model for the 
operating unit (OU) of a high-speed cryptographic coprocessor, leveraging the capabilities of RNS. 
The research [24] presents a modified stream cipher cryptographic processor equipped with 
specialized instructions based on the VLIW architecture. The proposed system utilizes a distributed 
(clustered) memory structure and is designed for efficient execution of stream cipher operations. 
Such architecture ensures high performance in processing stream cryptographic algorithms. 

Research in [25] investigates the impact of fundamental properties of the modular number 
system (MNS), such as remainder independence, equality, and the presence of low-order digits, on 
the architecture and operational principles of crypto accelerator systems utilizing MNS. 
Specifically, it highlights that the presence of low-order digits in modular representations allows 
for a wide array of system and technical design choices when implementing integer modular 
arithmetic operations. 

There are four primary methodologies for performing arithmetic operations within RNS: the 
summation method (utilizing low-order bits of binary adders modulo RNS); the table lookup 
method (employing read-only memory); the direct logical method, which involves defining and 
implementing modular operations at the switching function level to generate result values (systolic 
arrays, programmable logic matrices, and programmable logic devices (PLDs) are suitable hardware 
platforms for this approach) [26]; and the ring shift mechanism (RSM), which leverages cyclic shift 
arrays (CSA). 

A significant and highly advantageous characteristic of RNS, when based on modular 
multiplication algorithms, is the absence of inter-remainder carry propagation during 
cryptographic transformations within the cryptographic coprocessors employing the ring shift 
mechanism (RSM). While intra-remainder carries exist between binary digits within each modulus 

np , the elimination of carry propagation between remainders during modular operations [27] 

presents a key benefit. 

3. Methodological approach to improving the RSA cryptosystem 

In a positional number system (PNS), arithmetic operations necessitate sequential digit processing 
due to operation-specific rules, preventing completion until all intermediate results, reflecting 
inter-digit dependencies, are determined. Consequently, PNS, prevalent in contemporary high-
speed crypto accelerators (HSCA), suffers from inherent inter-digit connections that complicate 
arithmetic operation implementation, demand complex hardware, compromise computational 
reliability, and limit cryptographic transformation speed [28]. Therefore, a number system devoid 
of inter-digit dependencies is desirable. The RNS offers this advantage, possessing a unique 
property: the independence of remainders based on the chosen base [29]. This independence 
facilitates the development of novel machine arithmetic and fundamentally new HSCA 
architectures, thereby expanding the applicability of machine arithmetic. Numerous studies [30-32] 
suggest that adopting non-traditional data representation and parallel processing in digital systems 
enhances computational efficiency, particularly in modular arithmetic, which exhibit maximum 
internal parallelism during information processing. RNS falls within this category. 

Several factors support the effective utilization of RNS in HSCA: HSCA, like RNS, processes 
only integer data; HSCA primarily performs modular arithmetic operations; RNS excels in 



executing modular multiplication and squaring operations, which constitute over 95% of RSA 
cryptosystem operations, particularly in modulus np ; as the word length ( )W  of HSCA processors 

increases, a trend in modern RSA system development, RNS application efficiency improves; the 
widespread use of CSA in HSCA for RSA transformations; the limitations of PNS in achieving 
significant HSCA efficiency and reliability gains; and promising preliminary results demonstrating 
RNS's effectiveness in enhancing real-time HSCA performance and reliability [33]. 

Research presented in [34] elucidates the operational principle of integer residual arithmetic, 
specifically the ring shift mechanism (RSM). This mechanism is distinguished by its ability to 
determine the result of arithmetic operations, such as ( )modn n ny u p , for any modulus np  

within the RNS base set { } ( 1,  )np n q= , without necessitating the computation of partial sums nS  

or carry values nC  from binary adders in PNS. Instead, the result is derived through cyclic shifts of 

a predefined digital structure. This approach is grounded in Cayley's theorem, which establishes an 
isomorphism between the elements of a finite abelian group and those of a permutation group [35]. 

From Cayley's theorem, it can be inferred that the action of abelian group elements on the 
group of integers is homomorphic [36]. This property enables the organization of arithmetic 
operation result determination in RNS through the application of RSM. Thus, an operand in RNS is 

represented as a set of q  remainders { } ( 1,  )ny n q= , obtained by successively dividing an initial 

number Y  by n  pairwise prime numbers { }np . In this context, the collection of remainders { }ny  

directly corresponds to the sum of q  simple Galois fields ( )nGF p  [37]. 

An algebraic system ( )A  consists of a plural ( )P  and a set of operations ( )F  defined on this 

set. This system is denoted as A ,( P,F )=  where P  is a non-empty plural of integers ( )Z ; F  is a 

set of binary operations (specifically, in RNS implementation, the operations executed in a single 
clock cycle are the arithmetic operations: , ,+ −  ) [38]. That is, F  is the set of operations addition 

(+), subtraction (− ), multiplication ( ) for any n ny , u  Z ,  n ny u ,+  n ny – u ,  n ny u  also belong 

to .Z  It is important that the operations be closed on the plural P, that is, the result of the 
operation on elements from P  also belongs to P . Therefore, it is very important that the range of 

representation of numbers in the MSN 
1

q

n

n

D p
=

=  overlaps the set P , that is, that the elements a 

and b themselves, and the result of the arithmetic operations , ,+ −  , lie in this range. In 
cryptography, where information security is a key aspect, the use of large numbers becomes 
necessary to ensure the reliability and robustness of cryptographic systems. The larger the number 
of bits, the more difficult it is to break a cryptographic algorithm, as the number of possible 
combinations grows exponentially. Asymmetric cryptography algorithms, such as RSA, DSA, and 
ECC, are based on the use of large prime numbers to generate cryptographic keys [39]. The key 
operations in these algorithms are modular multiplication and exponentiation, which are 
performed on large-bit numbers. Given the increasing requirements for the speed of cryptographic 
systems, the optimization of these operations is a relevant area of research. In this context, the goal 
of our research is to develop and analyze a method for ultrafast execution of the modular addition 
operation in RNS, which can serve as an effective replacement for the modular multiplication and 
exponentiation operations, ensuring increased performance of cryptographic transformations [40]. 

Algebraic systems A  is a plural P  with operations F  forming an algebraic system, for 
example, a group, ring, or field. Groups, rings, and fields are fundamental structures in abstract 
algebra, each defined by a set of axioms that specify the properties of operations. These structures 
are used to model a variety of mathematical objects and processes, from simple arithmetic 
operations to complex cryptographic algorithms. 

One of the important directions in the study of algebraic systems is the study of factor 
structures, which allow us to build new algebraic objects based on existing ones. In particular, in 
the case of rings, we can construct a ring of subtraction classes, or a factor ring, which is a 



powerful tool for analyzing the structure of rings and their properties. 
Let us consider in more detail the process of constructing a ring of subtraction classes. Let R  be 

a ring with the operations of addition (+) and multiplication ( ) defined on it, and J  be an ideal of 
the ring R . The ideal J  is a subset of R  that satisfies certain conditions that allow us to partition 
R  into subtraction classes. The subtraction class containing an element ny R  is defined as the 

set  n ny J y j | j J+ = +  . The set of all subtraction classes forms a new ring, called the 

subtraction class ring or factor ring, and is denoted by / .R J  The operations of addition and 
multiplication in /R J  are defined in terms of the operations in R , allowing us to inherit many 
properties from the original ring. 

Subtraction class rings are an important tool for studying the structure of rings and their 
applications in various fields of mathematics and computer science, including cryptography, 
number theory, and algebraic geometry. 

The factor ring /R J  can be expressed as / nZ p , where V  represents the set of integers. When 

np , the base of the RNS, is a prime number, / nZ p  forms a finite field. Given the methodology for 

performing arithmetic operations within the RNS, it is advantageous to focus on an arbitrary finite 
Galois field ( )nGF p , where n  remains constant, corresponding to a specific defined residue 

system. Leveraging the aforementioned properties, modular addition and subtraction operations in 
RNS can be implemented without inter-digit carry propagation using the RSM through q  CSAs 

with a range of with a range of elements representation D , effectively achieved through ring shifts 
of digit representations utilizing bit shift registers [41]. 

4. Method for cryptographic transformation implementation 

Based on the RSM proposed in the research, a method for performing arithmetic operations within 
the RNS is introduced, namely the binary remainder representation technique (BRRT). This 
approach, grounded in the principles of RNS, which originates from the Chinese remainder 
theorem [42], facilitates efficient execution of arithmetic operations, including addition, 
subtraction, and multiplication, on large-bit numbers. A key feature of BRRT is the utilization of 
binary representations for remainders [43], which allows for the substitution of complex 
multiplication and exponentiation operations with simpler shift and addition operations. This 
significantly enhances the speed of arithmetic computations, a critical factor for cryptographic 
algorithms where computational efficiency is paramount. Furthermore, BRRT enables parallel 
processing, further accelerating operation execution. These advantages render the proposed 
method highly promising for cryptographic systems that demand high performance and reliability 
[44]. Utilizing this approach, the primary (foundational) digital structure of the CSA for each 
modulus np  of RNS is represented by the initial row (column) of the Cayley addition table, 

specifically ( )modn n ny u p+ , as illustrated in Fig. 1. 

 

Figure 1: Primary digital structure of the CSA for modulus np  in RNS 



The primary digital structure of the CSA content for each modulus np  can be expressed as:  

( )0 1 1_ _ || _ || ... || _ ,
nn pB p B y B y B y −=

 
(1) 

where symbol ||  denotes the concatenation operation (combining, merging); _ jB y  is a m-bit 

binary representation of the number jy  (while jy  iterates from 0 to 1np − ) for modulus np .  

The bit width m of the binary code of the primary digital structure of the CSA is determined by:  

 2log ( 1) 1 ,n nm p= − +  
(2) 

where square brackets [x] denotes the integer part of x, discarding the fractional part. 
Given a specific modulus 7np = , the primary digital structure of the CSA content, derived from 

mathematical expression (1), is as follows:  

( )_ 7 000 || 001|| 010 || 011||100 ||101||110 .B =   

Therefore, leveraging CSA, which are prevalent in binary PNS, especially within cryptography, 
facilitates the straightforward implementation of addition operations in the RNS. The degree k of 
cyclic displacements (shift) is established through the following expression, as per structure (1): 
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(4) 

It is noteworthy that 0 1 1_ || _ || ... || _ 
n

n

p

pB y B y B y −
 
  , implying that when nk p= , all elements 

of the ordered set { _ }jB y  remain in their original positions. 

For the practical realization of this approach, the first term ny  indicates the quantity of CSA 

digit positions that hold the result of the modular operation ( )modn n ny u p+ , while the second 

term nu  indicates the number k shifts CSA applied to the primary CSA content (1), as defined by 

expressions (3)-(4). The number of shifts equals the product of the second term nu  and the bit 

width nm  of the CSA's primary digital structure binary code, i.e. n nu m   the total binary digit 

displacement in a positive direction within the CSA Figure 2 depicts a potential operational 
architecture for the HSCA operating unit (OU) within the RNS. 

 

Figure 2: HSCA OU operation scheme for arbitrary RNS 



For a comparative analysis of the execution time of integer addition in binary PNS and the RNS, 

it is necessary to determine the time required to add two numbers ( )1 2|| || ... || || ... ||n qY y y y y=  and 

( )1 2|| || ... || || ... ||n qU u u u u= , within the SRC utilizing the RSM. In the RSM, the time   for modular 

addition of two remainders ny  and nu , specifically in the circuit that calculates ( )modn n ny u p+  

( 1,  )n q= , is primarily governed by the time   needed to shift the primary contents of CSA digit 

positions (hereafter, we assume  = ). The time of a single bit shift (trigger activation time) of the 

digital contents of CSA digit positions is given by the expression: 

3 ,t =   (5) 

where t    switching time of a single logic gate (an AND, NOT, or OR gate). 
Building upon prior research [45], the processing time for the modular addition of remainders 

ny  and nu , specifically ( )modn n ny u p+ , within the RNS can be expressed by the ensuing 

expression:  

,RNS n nV m =    
(6) 

where nV   the second term nu  in the modular addition ( )modn n ny u p+ , which indicating the 

quantity of CSA digits cyclically shifted counterclockwise from the CSA's initial state, i.e. 

0, 1n nV p= − . 

Thus, based on expressions (5) and (6), for an arbitrary modulus np  of RNS, the addition time of 

two remainders ny  and nu  modulo np  is defined by: 

 2log ( 1) 1 3 .RNS n nV p t =  − +  
 

(7) 

In this case, the maximum possible value of expression (7) for the arbitrary modulus im  of RNS 

is defined by: 

 _ max 2( 1) log ( 1) 1 3 .RNS n np p t = − − +  
 

(8) 

However, for the specified RNS, the maximum addition time of two numbers 

( )1 2|| || ... || || ... ||n qY y y y y=  and ( )1 2|| || ... || || ... ||n qU u u u u=  is determined by the maximum value 

of modulus qp : 

_ max 2( 1) log ( 1) 1 3 .RNS q qp p t   = − − +     
(9) 

In general, the addition time of two numbers ( )1 2|| || ... || || ... ||n qY y y y y=  and 

( )1 2|| || ... || || ... ||n qU u u u u=  in RNS is determined by the time (8) of realization of module operation 

( )modn n ny u p+  in n-th arithmetic processing unit (APUn), i.e. in HSCA, in which instance n nV m  

is reaches its peak ( max)n nV m =  across all ( 1, ; )eAPU e q n e=  . 

Previous studies [29, 45], focused on the optimization of the RSA cryptographic algorithm 
through the utilization of the RNS, have thoroughly examined the implementation of modular 
addition for one- and two-byte digit numbers. A simplified OD scheme for a one-byte HSCA 
processor in RNS is presented in Fig. 3. 



 

Figure 3: Simplified HSCA OU scheme of low-bit representation of numbers in RNS [45] 

However, given the substantial range of number representation required for ensuring the 
robustness of the RSA cryptographic algorithm, there arises a necessity to investigate the 
effectiveness of RNS in processing large data arrays. A comprehensive analysis and illustrative 
examples demonstrating the advantages of employing RNS for modular addition of large-digit 
numbers will be presented.  

Cases where operand sizes reach values typical for contemporary cryptographic applications 
will be considered, and results will be compared with conventional computational methods. This 
will enable the evaluation of the practical value of RNS for enhancing the performance of 
cryptographic systems.  

Concrete example of implementing the addition operation for two numbers within the RNS are 
presented, utilizing the following set of moduli: 1 11p = , 2 13p = , 3 15p = , and 4 19qp p= = , 

which provides a number representation range from 0 to 
1

11 13 15 19 40755
q

n

n

D p
=

= =    =  in the 

RNS. According to equation (8), the modular addition operation's execution time depends on the 
second addend and the modulus np  of the respective nAPU , under the condition that 

maxn nV m = . 

Example 1. If the second number 10( 95)U =  is equal to 2(111||100 ||101|| 000)RNSU = =  

10(7 || 4 || 5 || 0)= , then it is necessary to find the APU with the largest product value n nV m , 

therefore: 
In the 1APU  with modulus 1 11p = , the following values are obtained: 1 7V = , 

   1 2 1 2log ( 1) 1 log (11 1) 1 4m p= − + = − + =  and 1 1 7 4 28V m =  = .   

In the 2APU  with modulus 2 13p = , the following values are obtained: 2 4V = , 

   2 2 2 2log ( 1) 1 log (13 1) 1 4m p= − + = − + =  and 2 2 4 4 16V m =  = .  
In the 3APU  with modulus 3 15p = , the following values are obtained: 3 5V = , 

   3 2 3 2log ( 1) 1 log (15 1) 1 4m p= − + = − + =  and 3 3 5 4 20V m =  = .  

In the 4APU  with modulus 4 19p = , the following values are obtained: 4 0V = , 

   4 2 4 2log ( 1) 1 log (19 1) 1 5m p= − + = − + =  and 4 4 0 5 0V m =  = .  

It is evident that the maximum binary digit shift, amounting to 28, is observed within the first 
arithmetic processing unit (APU1). Consequently, the execution time for the addition of two 
numbers Y and U, represented in the RNS utilizing the ring shift mechanism, is determined by the 
value of the second term U and is equivalent to: 

 1 2 1log ( 1) 1 3 7 4 3 84 .RNS V p t t t   =  − +   =    =   

Example 2. If the second number 10( 78)U =  is equal to 2)000(001|| || 011|| 010RNSU = =  

10(1|| 0 || 3 || 2)= , then it is necessary to find the APU with the largest product value n nV m , 



therefore: 
In the 1APU  with modulus 1 11p = , the following values are obtained: 1 1V = , 

   1 2 1 2log ( 1) 1 log (11 1) 1 4m p= − + = − + =  and 1 1 1 4 4V m =  = .   

In the 2APU  with modulus 2 13p = , the following values are obtained: 2 0V = , 

   2 2 2 2log ( 1) 1 log (13 1) 1 4m p= − + = − + =  and 2 2 0 4 0V m =  = .  
In the 3APU  with modulus 3 15p = , the following values are obtained: 3 3V = , 

   3 2 3 2log ( 1) 1 log (15 1) 1 4m p= − + = − + =  and 3 3 3 4 12V m =  = .  

In the 4APU  with modulus 4 19p = , the following values are obtained: 4 2V = , 

   4 2 4 2log ( 1) 1 log (19 1) 1 5m p= − + = − + =  and 4 4 2 5 10V m =  = .  

It is evident that the maximum binary digit shift, amounting to 12, is observed within the third 
arithmetic processing unit (APU3). The execution time for the addition of two numbers Y and U, 
represented in the RNS utilizing the RSM, is equivalent to: 

 3 2 3log ( 1) 1 3 3 4 3 36 .RNS V p t t t   =  − +   =    =   

An analysis comparing the time required to perform the addition of two numbers Y and U 
between PNS and RNS is provided. The addition time of numbers Y and U in PNS is: 

(2 1) 3 (16 1),PNS r t l  =   − =   −  
(10) 

where 8r l=    the number of bits for an l-byte data unit; 3 t =    the summation time in 

the (n+1)th binary place of the positional adder for partial sum values 1nS +  and carry values 1nC + . 

Recognizing that an existing method achieves a two-fold shortening of the maximum operation 
time for modular addition in RNS, the following applies to RSM: 

_ max _ max / 2.RNS RNS  =
 

(11) 

The ratio of addition operation execution times in PNS and RNS will be represented by a 
coefficient, namely: 

_ max

2

2

/

(16 1) 3 2

( 1) log ( 1) 1 3

2 (16 1)
.

( 1) log ( 1) 1

PNS RNS

q q

q q

l

p p

l

p p

  





= =

 −   
= =

 −  − +   

  −
=

 −  − +   

(12) 

The computational assessment and comparative evaluation of arithmetic operation execution 
times during cryptographic transformations demonstrated the significant effectiveness of the BRRT 
method, which utilizes the RSM within the RNS, when contrasted with a method employed in PNS 
(see Table 1).  

It is important to note that Table 1 specifically presents a comparative analysis of the modular 
addition operation within the RNS versus the PNS. While these results highlight the efficiency 
gains at the fundamental arithmetic level, a direct comparative analysis of the overall RSA 
cryptosystem's performance using the proposed RNS-based acceleration against other established 
RSA acceleration methods (e.g., Montgomery multiplication, Karatsuba algorithm, or dedicated 
hardware implementations) is a complex task that requires specific experimental setups and is 
beyond the scope of this initial theoretical and methodological paper. 

The presented data are derived without the inclusion of supplementary algorithms, which, if 
implemented, could expedite the execution of modular arithmetic operations. The resulting 
mathematical expressions (7) (9) and (12), along with the determined operational times for 
arithmetic operations in RNS, can be utilized for evaluating and comparing the computational 
complexity of RSA cryptographic transformation algorithms. 



Table 1 
Data of comparative analysis of time of addition operation 

 ( )l r  
PNS RNS  

% 
/ 3PNS t   qp  qm  _ max / 3RNS t    

4 (32) 63 19 5 48 31.25 
8 (64) 127 30 5 75 69.33 

 

5. Conclusion 

Economic security of businesses undergoing digital transformation necessitates a paradigm shift in 
our conceptual approach. In the face of martial law threats, Ukraine's national economy has 
demonstrated a commendable level of cyber resilience. However, to bolster business resilience 
against evolving digital security risks, the current approach requires augmentation. Specifically, 
enhancing the RSA cryptosystem is crucial. 

This paper introduced a novel method for accelerating cryptographic transformations within 
Galois fields, focusing on improving the efficiency of RSA cryptosystems with public keys. The 
proposed method leverages the RNS. By exploiting the fundamental theoretical properties of RNS, 
we have effectively streamlined the execution of modular operations essential for cryptographic 
tasks. 

Furthermore, we have presented a practical method for realizing arithmetic operations in RNS 
based on a ring shift mechanism, namely the binary remainder representation technique. The 
efficiency analysis and concrete technical implementation examples of modular arithmetic 
operations substantiate the practical feasibility of this approach. This method of information 
processing is highly recommended for crypto accelerators enabling real-time security surveillance 
and secure authentication. 

The application of the proposed method significantly reduces the execution time of operations, 
which is critical for ensuring real-time security. The obtained results confirm the practical value of 
RNS in enhancing the performance of cryptographic systems, particularly when processing large 
data arrays, which is typical for modern cryptographic applications. 

The research findings offer significant potential for application in systems and devices designed 
for high-throughput, real-time digital information processing. Practical examples confirm its 
feasibility for real-time applications, strengthening digital security infrastructure, especially in 
dynamic environments. The implementation of this method not only improves the speed of critical 
cryptographic processes, but also enhances the overall security posture of digital systems. 
Moreover, while this study specifically focuses on RSA, the core principles of RNS-based modular 
arithmetic and the cyclic shift mechanism are inherently adaptable to other cryptographic 
algorithms that heavily rely on modular exponentiation and multiplication, such as ElGamal, 
Diffie-Hellman, and various elliptic curve cryptography (ECC) schemes. The parallel processing 
capabilities offered by RNS make it a versatile foundation for accelerating a broad spectrum of 
public-key cryptographic operations beyond RSA. As such, it represents a substantial advancement 
in the field of secure computation. By enhancing the speed and efficiency of cryptographic 
operations, this method contributes to strengthening the digital security infrastructure, particularly 
critical in dynamic and challenging environments. 

Future work will focus on a comprehensive experimental evaluation of the proposed RNS-based 
RSA acceleration method against state-of-the-art hardware and software implementations of RSA, 
including detailed comparative performance indicators such as throughput, latency, and resource 
utilization. This will provide a more objective and complete assessment of its practical advantages 
and potential for real-world deployment. 
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