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Abstract 
Compression of imaging data has become a typical operation in image processing chain due to increasing 
size of acquired images and their number and necessity in transfer image data via communication lines 
and/or store them. This stimulated special interest to lossy compression techniques able to produce rather 
large values of compression ratio. However, in practice, a larger compression ratio results in larger 
distortions introduced into images. Then, a reasonable compromise should be found and provided. The 
situation becomes even more complex if an image subject to compression, either grayscale or color (three-
channel), is noisy. Then, distortions due to lossy compression are introduced to both image content and 
noise, which occurs to be partly suppressed. In such a situation, one has to solve a task of setting parameter 
that controls compression (PCC) in a smart (adaptive) manner to reach optimum between positive 
phenomenon of noise removal and negative fact of information contamination. In this paper, we show how 
this can be done for a better portable graphics (BPG) coder, which has shown itself to be one of the best 
modern coders, using a new and efficient quality metrics called HaarPSI able to take into account human 
visual attention in images. We demonstrate that optimal operation point (OOP) might exist for compressed 
images according to the metric HaarPSI where probability of OOP existence depends on noise intensity and 
image complexity. For color images, we show the possibility of OOP existence for all three modes of the 
BPG coder operation, 4:4:4, 4:2:2, and 4:2:0, where the former mode provides slightly larger HaarPSI values 
in OOP and the latter mode produces the largest compression ratio. If OOP does not exist (this can be 
predicted in advance), the recommendations on PCC setting are given. Using test images of different origins 
and complexity, we demonstrate that the proposed approach to smart lossy compression of noisy images is 
quite general. 
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1. Introduction 

The amount of images of different origins acquired by various imaging systems rapidly increases 
nowadays. The obtained images are employed in ecological monitoring, medical diagnostics, non-
destructive control, agriculture, mine detection, etc. [1-4]. The acquired images have to be processed, 
stored, often transferred via communication lines, classified and/or disseminated. In conditions of a 
limited bandwidth of communication lines and/or memory for image data storage, compression has 
to be applied to decrease the data size [5-7]. 

The known methods of compression can be divided into two large groups of lossless [5, 6] and 
lossy [7] ones. Although there are applications where lossless compression is still used, lossy 
compression finds more and more applications nowadays. One reason is that lossy compression is 
able to provide a considerably larger compression ratio (CR) than any lossless technique. Another 
reason is that CR and quality of compressed images can be varied in wide limits depending on a 
parameter that controls compression (PCC) for a given coder (e.g., quality factor (QF) for JPEG or 
bits per pixel (BPP) for JPEG2000). A general tendency in compression of many images is that a larger 
CR (that corresponds to smaller QF for JPEG and smaller BPP for JPEG2000) leads to larger 
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distortions introduced and, thus, worse quality of compressed images according to both traditional 
metrics, e.g., peak signal-to-noise ratio (PSNR), or visual quality metrics, e.g., feature similarity index 
measure (FSIM [8]). 

The aforementioned tendency is valid for noise-free images for which quality of compressed 
images becomes worse if CR increases for practically all coders and the task then is to find a proper 
compromise and to provide it in practice [9-12]. However, it happens quite often that acquired 
images are noisy, where we mean that noise is visible. There are numerous reasons that noise can 
be quite intensive: bad conditions of image acquisition [13], principle of image formation [14-16], 
etc. If an image to be compressed is noisy, its lossy compression might have two specific features 
[17-19]. The first feature is a specific noise filtering effect due to lossy compression observed for 
different coders and different types of noise [17-19]. The second feature is possible existence of the 
so-called optimal operation point (OOP) for which a compressed image is closer (according to a 
certain metric or similarity measure) to the noise-free (true) image than the original (noisy, 
uncompressed) image [17-19]. Then, if OOP exists, it is reasonable to compress a given noisy image 
in OOP neighborhood. If OOP does not exist, a CR smaller than for potential OOP s PCC has to be 
used [18, 19].  This means that the lossy image compression procedure has to be intelligent, so that 
it has to take into account various factors (in particular, OOP existence) to provide the best result to 
meet the user's requirements. This also means that the general approach to lossy compression of 
images presumes solving a set of particular tasks: 1) What compression method to use? 2) How to 
get a priori information concerning does OOP exist for a given image to be compressed or no? 3) 
What PCC value to use if OOP exists, and what should be PCC if OOP does not exist? 4) What metric 
should be used to characterize image quality? 5) What is the influence of noise type and 
characteristics on PCC in OOP and how noise type and characteristics can be measured and taken 
into account?    

Then, a complex of studies is needed to answer the aforementioned questions. Not all questions 
have got answers yet. However, some important answers have been already obtained.  

For the case of additive white Gaussian noise (AWGN), the better portable graphics (BPG) coder 
[20, 21] has recently demonstrated certain benefits compared to both JPEG and modern coders (such 
as AVIF and HEIF) in the sense of providing a larger PSNR (for compressed image with respect to 
the corresponding true image) for the same CR in the neighborhood of OOP [22]. The authors of this 
study have also shown that the BPG coder can perform better than other coders in the situation of 
complex image compression when OOP is absent; in such cases, the BPG coder produces higher 
PSNR values for a wide range of CRs. Other advantages of the BPG coder for the considered 
application is that OOP existence for it can be quite easily and accurately predicted [19] under 
condition of a priori known noise type and characteristics. Note that methods and algorithms for 
blind estimation of noise type and characteristics exist nowadays [23, 24]. This allows determining 

OOP for the BPG coder for the cases of AWGN and signal-dependent noise [25]. Note 
that QOOP for the BPG coder can be determined without any iterative compression/decompression 
needed for AVIF and HEIF coders. These facts explain our interest to the BPG coder in this paper.      

However, not all tasks for lossy compression of noisy images by the BPG coder are solved. The 
main attention has been previously addressed by us to analysis based on the PSNR metric. 
Meanwhile, it is known that PSNR is surely not the best metric in characterizing visual quality of 
compressed images [26]. Visual saliency and the corresponding metrics (for example, HaarPSI) have 
attracted recent attention of researchers in visual information processing [27, 28]. Thus, in this paper, 
we analyze performance of the BPG coder for compressing grayscale and color images corrupted by 
AWGN using the HaarPSI metric. The paper novelty deals just with employing this metric.  

2. Image/noise model and compression performance criteria 

Performance characteristics of image lossy compression depend on many factors including a used 
coder, image and noise properties, number of image channels (components), etc. Since performance 
depends on image complexity, it is nowadays common to analyze a set of images having different 



properties (complexity). Taking this into account, in our experiments, we have employed five color 
images and five grayscale images obtained as intensity images of color ones. Two of them are given 
in Fig. 1 in color versions. As seen, images are of different origin where the images Lena, Peppers, 
and Baboon are typical optical test images whilst Frisco and Diego are remote sensing ones. The 
images Peppers and Frisco are simple structure ones whilst Baboon and Diego are complex structure 
images. 
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Figure 1: Examples of color images: Frisco (a) and Diego (b). 

We assume that the considered test images are corrupted by AWGN with zero mean and variance 
equal to 2. If one deals with color images, noise is supposed to be independent in RGB color 
components [29]. These are quite typical assumptions, although idealized. 

For color image lossy compression, the BPG coder has three modes: 4:4:4 (without color 
component downsampling), 4:2:2 (set by default), and 4:2:0 (both with color component 
downsampling). Fig. 2 presents dependencies of CR on Q for two values of 2 (64 and 196) for 4:4:4 
and 4:2:0 modes. As expected, CR monotonically increases if Q increases. However, there are some 
peculiarities of behavior for the considered dependencies. First, CR values are quite small if Q<29 for 

2=64 and if Q<33 for 2=196. After this, for larger Q, CR starts to grow quickly. This phenomenon 
can be explained as follows. 

Until the coder does not efficiently filter noise (this happens if Q>29 for 2=64 and if Q>33 for 
2=196), a lot of bits are spent on noise preservation  since the coder considers  this noise to be 

useful information. Another observation is that CR values can differ a lot for the same Q. In 

for complex structure images by several times.  
It is also seen that, for Q approaching the upper limit (maximal possible Q equals to 51 for the 

BPG coder), the CR values are hundreds for any complexity image and any variance of AWGN and 
compression mode. They are larger for the mode 4:2:0 than for the mode 4:4:4 by a few percent. For 
small Q, the difference is larger. The results for the 4:2:2 mode are intermediate between the 4:4:4 
and 4:2:0 modes.   

Consider now the case of lossy compression of the noise-free color images where HaarPSI is 
calculated between original (noise-free, ideal) and compressed images. Recall that HaarPSI for two 
identical images is equal to unity and this metric becomes less if images are more dissimilar. Also, 
differences in two images become visible (noticeable, also treated as just noticeable point (JND) # 1 
[30  

dependencie
image visual quality easily for perfect and good quality of compressed data. For Q>32, the 
dependencies start to diverge where, for the same Q, the visual quality of compressed complex 
structure images is the worst. 
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Figure 2: Dependencies of CR on Q for the mode 4:4:4, 2=64 (a), 4:2:0, 2=64 (b), 4:4:4, 2=196 (c), 
4:2:0, 2=196 (d) 
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Figure 3: Dependencies HaarPSI on Q for five test color images for 4:4:4 (a) and 4:2:0 (b) modes. 

Figures 2 and 3 present two typical dependencies studied for lossy image compression: the 
dependence of CR on PCC and rate/distortion curves, i.e., dependencies of a metric characterizing 
image quality on PCC (HaarPSI on Q in the considered case). However, in lossy compression of noisy 
images, one more type of rate/distortion curves is important  dependencies of a metric calculated 
between the compressed noisy and noise-free (true) images on PCC. One can argue that in practice 
it is impossible to calculate such metrics since one does not have true images and only their noisy 
versions are available. In the next Section, we show that it is possible to obtain such dependencies in 
simulations by adding noise to noise-free images artificially and then compressing them for different 
PCC values. Then, knowing the basic properties of such dependences, it becomes clear what to do in 
practice [18, 19]. 

3. Lossy compression of noisy images 

So, consider the dependencies HaarPSItc(Q) where the index tc relates to true and compressed. The 
curves for 2=64 are presented in Fig. 4. As seen, there are global maxima of HaarPSItc(Q=31) 
observed for all three modes for the image Frisco. This means that, under certain conditions, OOPs 
can exist. There are also local maxima of HaarPSItc(Q=31) that take place for the test images Peppers 



and Lena. For the complex structure images Baboon and Diego, the dependencies are monotonically 
decreasing, i.e., OOPs do not exist. Similar phenomena depending image complexity were earlier 
found for other coders [18] and other quality metrics [19]. 

For small Q (<28 for the considered 2=64), HaarPSItc(Q) practically do not change and they are 
in the limits from 0.92 to 0.97 depending on image complexity (smaller for simpler structure images). 
This indicates two phenomena. First, noise is less visible in the complex structure images due to the 
fact that textures mask the noise. Second, quality of compressed images remains practically the same 
in a wide range of Q variation since noise filtering effect is negligible and distortions introduced to 
image content are negligible too. Note that similar effects have been observed in the previous Section 
for noise-free images.  

Let us call Q for which OOP might exist for, at least, one test image as potential QOOP (later we 
will show how it can be determined). From analysis of data in Fig. 3, we can state that the main 
effects are observed in the potential OOP neighborhood, i.e., for QOOP- OOP+3. For Q>QOOP+3, 
image quality rapidly decreases with Q increasing in any case. Thus, our analysis shows that, if QOOP 
exists, it is reasonable to compress this image using QOOP, otherwise, it is expedient to use smaller Q, 
for example, Q=QOOP-3 (for complex structure images, this leads to maximal CR provided practically 
without visual quality reduction). It is interesting that the curve behavior depends on image 
complexity but not on its origin.  

Finally, the results for all three modes are very similar. The only difference is that, for the mode 
4:2:0, the values of HaarPSItc are slightly smaller than for the modes 4:2:2 and 4:4:4. 

The observations and rules presented above have been based on the analysis of only one value of 
noise variance. Then, let us consider the case of 2=100. The obtained dependencies are represented 
in Fig. 5. OOPs are observed again, but in this case they are observed for two out of five test images 
(Frisco and Lena) and QOOP shifts towards larger values. Meanwhile, QOOP is practically the same for 
both test images for all three modes.  

Again, nothing happens  for Q<QOOP-3, i.e., quality of compressed images remains practically the 
same. Similarly, steady degradation of visual quality takes place for Q>QOOP+3. Local maxima of 
HaarPSItc(Q) are possible  this time they are observed for the test image Peppers. For complex 
structure images, Baboon and Diego, the dependencies are still monotonously decreasing and the 
reasonable practical solution is to set Q=QOOP-3 or slightly less for compressing such images.  
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Figure 4: Dependencies of HaarPSItc on Q for 2=64 for the modes 4:4:4 (a), 4:2:2 (b), 4:2:0 (c)  



For small Q, HaarPSItc(Q) are in the limits from 0.88 to 0.92, i.e., their quality is worse than in the 
previous case (since noise is more intensive and texture masking effect is less). HaarPSItc(QOOP) are 
less than 0.98. This means that, even in OOP, the distortions are visible in the lossy compressed noisy 
images. HaarPSItc(QOOP) for 2=100 are less than HaarPSItc(QOOP) for 2=64, i.e. worse quality of 
original (noisy) image leads to worse quality of the corresponding compressed image for 
approximately the same conditions of compression, e.g. for the same Q=20 or for the corresponding 
potential QOOP. 
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Figure 5: Dependencies of HaarPSItc on Q for 2=100 for the modes 4:4:4 (a), 4:2:2 (b), 4:2:0 (c) 

Let us now consider one more value of the noise variance: 2=196. The obtained results are 
presented in Fig. 6. Their analysis shows the following.  

First, OOPs are observed for three test images (Frisco, Lena, and Peppers) for all three modes. 
OOP has shifted to larger values (compared to previous two cases) and now it is observed for QOOP

The dependencies for the most complex structure images (Diego and Baboon) still do not have OOP 
and are monotonically decreasing. Then, it is reasonable to compress the latter two images using Q= 
QOOP-3 to avoid too large distortions.  

Second, for Q<QOOP-3, the compressed image quality almost does not depend on Q (although CR 
increases if Q increases). For Q>QOOP+3, radical reduction of compressed image quality takes place 
with Q increasing even if OOP exists. Then, one has to avoid noisy image compression using 
Q>QOOP+3.  

Third, original image quality is not high due to the noise, the quality of compressed images, even 
if they are compressed in OOP, is such that distortions are clearly visible (HaarPSItc is smaller than 
0.9). Thus, even if the image quality is improved due to lossy compression in OOP, it remains not too 
high. In other words, the noise in the original image has its negative impact on quality of compressed 
images. Note that the results for all three modes are, in general, quite similar, although compressed 
image quality is the worst for the mode 4:2:0 (but this mode provides the largest CR). So, the mode 
choice depends on priority of requirements to lossy compression  is it more important to provide a 
better quality or a larger CR. A user can decide what to do for each particular situation.  

One positive feature of the BPG-based compression of color noisy images is that, for all images 
having OOP, this OOP according to the metric HaarPSI is observed for the same Q. Moreover, the 



same effect was earlier observed [19] for the metrics PSNR and PSNR-HVS-M. Furthermore, the 
earlier obtained formula for finding QOOP=12.9+20log10( ) is valid for the metric HaarPSI considered 
in this study. This means that, knowing AWGN  in advance or having its accurate estimate, one 
can easily determine the potential QOOP. 
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Figure 6: Dependencies of HaarPSItc on Q for 2=196 for the modes 4:4:4 (a), 4:2:2 (b), 4:2:0 (c) 

The presented dependencies and their properties (QOOP=12.9+20log10( )) allow formulating the 
requirements to accuracy of estimation of noise variance or standard deviation if they are not known. 
To get the estimate of potential QOOP in the neighborhood [QOOP-3; QOOP+3], the estimate of est should 
not differ from its true value true by more than 1.4 times (20log10( est/ true 10( est/ true

est/ true
0.15). We have also analyzed the influence of noise realization on the main characteristics 

of the rate/distortion curves like those in Figures 4-6. It has been established, e.g., that mean square 
error of HaarPSI in QOOP is about 1×10-6 for the considered images of the size 512×512 pixels, i.e. noise 
realization has a very small impact on the main characteristics of rate/distortion curves, at least, for 
the studied model of AWGN.   

One important moment in automation of lossy compression of noisy images is prediction of OOP 
existence since, if OOP exists, we recommend compressing this image in OOP whilst, if OOP does 
not exist, we propose to compress the image using Q=QOOP-3. Our studies in [19] have shown that 
OOP existence can be predicted in advance for PSNR and visual quality metric PSNR-HVS-M. We 
compared the results for the metrics PSNR-HVS-M and HaarPSI and the conclusions is that, if OOP 
exists according to PSNR-HVS-M, it also exists for HaarPSI with a very high probability. Then, it is 
possible to apply the prediction procedure designed for PSNR-HVS-M to predict OOP existence for 
HaarPSI. Therefore, the automatic smart procedure of lossy compression is the following: 1) estimate 
AWGN variance if needed; 2) calculate QOOP; 3) predict OOP existence for this QOOP; 4) apply 
compression using QOOP if, according to prediction, OOP exists or employ Q=QOOP-3, otherwise.   

Above, the case of AWGN is considered with identical noise variance in RGB components. In 
practice, noise can be signal-dependent and/or have not identical characteristics in components of 
multichannel images. In such situations, it is possible to apply proper variance stabilizing transforms 
[25, 31, 32] and normalization procedures to reach the additive nature of the noise and its identical 



variance in all components. Then, all recommendations on Q setting occur to be valid. The 
corresponding inverse variance stabilizing transforms have to be carried out after decompression. 

4. Lossy compression of grayscale noisy images 

In the previous Section, lossy compression of color (three-channel) noisy images has been 
considered. Meanwhile, an acquired image can be single channel  for example, this can be a single 
channel synthetic aperture radar (SAR) image [15] or an infrared image. There are also practical 
situations when several (a few percent) of component images in multispectral or hyperspectral 
images that are characterized by low input PSNR [14, 18] have to be compressed component-wise 
with taking into account noise properties whilst other components are compressed without taking 
noise into account with, possibly, channel grouping.  
     Thus, peculiarities of single-channel (grayscale) noisy image lossy compression by the 
corresponding version have to be studied. Note that earlier studies have demonstrated that potential 
QOOP, in this case, is approximately equal to 14.9+20log10( ) if the noise is additive white and Gaussian 
with variance 2 for the single-component BPG coder available at [20] for 8-bit image representation. 
The formula QOOP=14.9+20log10( ) was shown to be valid for the metrics PSNR and PSNR-HVS-M. 
We desire to check whether it is valid for the considered metric HaarPSI. For this purpose, we have 
used grayscale versions of the five test images used above. Some obtained dependencies are 
presented in Fig. 7. As seen, similarly to three-component cases, OOP is observed only for one test 
image for 2=64 (Fig. 7a) and for three test images for 2=196. Local maxima of dependencies 
HaarPSItc(Q) are observed in some cases. The dependencies for complex structure images are 
monotonically decreasing.  
     If noise variance increases, QOOP shifts towards larger values, and the formula 
QOOP 10( ) is valid for the metric HaarPSI. The difference for color and grayscale cases in 
formulas for determination of QOOP is explained by the fact that the color system conversion from 
RGB to YCbCr is carried out for the three-channel case before component-wise compression of 
decorrelated data. Such a conversion changes noise variance (it is smaller in Y, Cb, and Cr 
components than originally in R, G, and B components). 
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Figure 7: Dependencies of HaarPSItc on Q for grayscale images for 2=64 (a), 2=100 (b), 2=196 (c) 



If noise is not additive in grayscale images, variance stabilizing and normalizing transforms can 
be applied before compression [25] and inverse transforms should be used after decompression. This 
has been successfully tested for Poisson noise [25] but has not yet been tested for other types of 
signal-dependent noise. 

5. Some examples 

Let us present some examples. First of all, Fig. 8a presents the noisy color image Peppers, where 
noise is clearly visible in practically all fragments of this image since its intensity is high ( 2=196). 
The compressed images obtained for Q=QOOP=36 for the modes 4:4:4 (Fig. 8b), 4:2:2 (Fig. 8c) and 4:2:0 
(Fig. 8d) show that the noise is suppressed considerably. The edges and details are preserved quite 
well although some distortions that appear due to both noise in original image and its lossy 
compression are visible as well. Visual comparison also indicates that the images compressed for the 
three studied modes look quite similarly and have approximately the same visual quality.  
     Fig. 9a represents the noisy grayscale image with the same noise variance ( 2=196). Noise is seen 
well and it seems even more intensive than in color image (Fig. 8a). The image compressed in OOP 
(in this case Q=QOOP=39) is presented in Fig. 9b. Again, the noise is suppressed well while details and 
edges are preserved well enough. Specific (not annoying) artifacts can be noticed. This shows that 
for the considered case of very intensive noise the joint impact of the noise in original image and its 
lossy compression leads to certain negative outcomes. But the positive effects of noise suppression 
and attaining quite large CR evidence in favor of lossy compression of noisy images in OOP. A similar 
example for the image Frisco is given in Fig. 10 where Fig. 10a shows the noisy image and Fig. 10b 
presents the image compressed in OOP. Good noise suppression is observed although some smearing 
and artifacts are introduced.    
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Figure 8: Noisy color image with 2=196 (a) and compressed image (Q=36) for the modes 4:4:4 (b), 
4:2:2 (c), 4:2:0 (d) 
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Figure 9: Noisy grayscale image with 2=196(a) and compressed image (Q=39) (b) 
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Figure 10: Noisy grayscale image Frisco with 2=196(a) and compressed image (Q=39) (b) 

6. Conclusions and future work 

We have demonstrated that OOP is possible according to the visual attention metric HaarPSI for 
noisy color and grayscale images compressed by the BPG coder. Obvious advantages of this coder 
are the following: 1) for a given AWGN variance, OOP (if it exists) is observed for the same QOOP for 
all images and all adequate metrics including HaarPSI that simplifies setting the recommended Q for 
practical situations; 2) OOP existence is more probable for more intensive noise and less complex 
images; OOP existence can be predicted in advance for known or accurately pre-estimated AWGN 
variance; 3) this allows automatic setting of Q for a given noisy image according to the offered 
recommendations and the proposed procedure; 4) CR for simpler structure images is usually 
considerably larger for simpler structure images although it also depends on noise intensity; 5) the 
procedures for signal-dependent noise are proposed that allow taking noise characteristics into 
account; 6) the main observations are general meaning that they do not depend on origin of an image 
to be compressed; for optical and remote sensing images the main dependencies are on image 
complexity and noise intensity. The obtained results can be used to develop intelligent lossy 
compression methods that can compute image parameters and use them to predict OOP or quality 
metrics to automatically configure and adjust the PCC parameter according to the requirements. 

In the future, we plan to analyze the cases of spatially correlated noise and other than Poisson 
types of signal-dependent noise typical for SAR and ultrasound images. The research has been 
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