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Abstract 
The paper considers the use of topological analysis, in particular the method of persistent homology and 
Vietoris-Rips complexes, to study the structural organization of complex multidimensional systems. It is 
shown that traditional clustering methods, such as k-means, are limited in identifying only compact 
subgroups. In contrast, Topological Data Analysis (TDA) allows identifying multidimensional coalitions, 
global and local cycles, isolated subsystems and topological barriers that determine the stability and 
functional integrity of the system. The proposed approach formalizes the concepts of coalition and 
topological barrier through the analysis of persistence barcodes and diagrams, providing quantitative 
identification of critical structural invariants in technical and information networks. Based on the 
modeling of a 200-element network, the ability of persistent homology to identify stable components, 
cycles, and isolated fragments even in the presence of noise or structural changes is demonstrated. 
Comparative analysis with classical metrics and k-means clustering confirmed the advantages of TDA in 
detecting multidimensional topology and increased robustness of the cluster structure. These results 
demonstrate the potential of TDA for analyzing complex systems. 
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1. Introduction 

In modern science and technology, the study of complex multidimensional systems is of central 
importance due to the growing complexity of economic [1], electromechanical [2], sociotechnical 
[3], and medical structures [4]. Such systems, regardless of the field of application, demonstrate a 
multi-level organization, the presence of stable subsystems, dynamic coalitions, redundant and 
isolated components, which significantly affects their stability, adaptability, controllability, and 
ability to self-restore [5-7]. Identification, formalization, and quantitative analysis of structural 
invariants, such as stable coalitions, multidimensional barriers, and critical integration points, is 
essential for understanding the functioning of complex systems, ensuring their reliability, 
predicting degradation scenarios, and designing effective architectures. As the structural and 
behavioural complexity of such systems continues to grow, there is an increasing need for 
analytical methods capable of capturing high-dimensional, nonlinear, and topologically rich 
features beyond the reach of traditional approaches [8]. 

Classical network, graph, and statistical approaches provide a wide range of tools for analyzing 
local and global characteristics of systems (power distribution, clustering, centrality, modularity, 
etc.). However, these methods have fundamental limitations in the case of multidimensional 
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structures: they do not allow identifying higher-order topological patterns, such as global cycles, 
stable multi-level coalitions, complex redundant or autonomous subsystems that are not reducible 
to simple groups or nodes with increased connectivity [9-11]. In complex technical, information, or 
hybrid systems, there is a need for methods capable of detecting and quantifying multidimensional 
topological invariants that are critical to the integrity and functional stability of the entire 
structure. 

Topological data analysis (TDA) offers a fundamentally new approach to the study of complex 
systems based on the analysis of persistent topological features at different scales. With the help of 
Vietoris-Rips complexes, persistence barcodes, and persistence diagrams, this approach allows us to 
identify not only individual clusters or isolated components, but also to detect multidimensional 
co
structural elements that determine the system's resilience to disturbances, its ability to self-restore, 
functional integrity, and the presence of critical points, the destruction of which can lead to loss of 
control or fragmentation. Persistent homology, as a key TDA technique, is applied in this study 
through standard computational tools (Ripser, Gudhi), supplemented by custom scripts developed 
by authors to preprocess data and visualize persistent features relevant to the structural analysis. 

This paper focuses on the use of persistent homology to formalize and quantify key coalitions 
and subsystems in complex multidimensional structures. The problem is formulated, the 
corresponding mathematical model is constructed, simulations are performed, and the 
interpretation of the obtained topological invariants in terms of functional stability and structural 
hierarchy of the system is proposed. A comparative analysis with classical network metrics 
confirms the unique analytical capabilities of TDA, in particular its ability to identify patterns that 
remain invisible to traditional approaches.  

2. Problem statement 

In complex multidimensional systems - regardless of their physical, technical or informational 
nature - structural coalitions of components play a key role in ensuring collective functionality, 
resilience and adaptability. Such coalitions can include compact subsystems with close interaction, 
as well as isolated fragments or multi-level associations that form critical functional blocks of the 
system. Classical approaches do not allow to identify multidimensional patterns of interconnection, 
such as global cycles, stable isolated subsystems, and redundant configurations. The problem is to 
formalize, identify, and quantify such structural invariants. It is solved by using topological 
analysis (TDA), in particular persistent homology, which allows identifying and interpreting stable 
coalitions, topological barriers, and critical points of system integration based on Vietoris-Rips 
complexes and persistence diagrams. 

3. The goal of the research 

The aim of this paper is to substantiate and demonstrate the effectiveness of topological analysis, 
in particular the method of persistent homology, for detecting, classifying and quantifying stable 
coalitions, critical subsystems and multidimensional topological invariants in complex 
multidimensional systems. The main tasks are: formalization of the concepts of coalition and 
topological barrier in the context of complex networks; construction of an appropriate 
mathematical model based on Vietoris-Rips complexes; algorithmic implementation of the analysis 
of persistence barcodes and diagrams; numerical modeling of structural scenarios; comparison of 
topological characteristics with classical network metrics to assess the informational content and 
practical value of the chosen approach. 



4. Theoretical foundations of topological analysis of complex systems 

Complex multidimensional systems can be defined as a set of agents 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, between 
which there are likely to be connections of different nature (physical, informational, social, 
economic or other interactions) that determine the collective behavior of the system and its 
evolution over time. Formally, such a system is modeled as a graph 𝐺 = (𝑉, 𝐸, 𝑊), where V is the 
set of n vertices, E is the set of m edges, and = {𝜔𝑖𝑗}, 𝑖 = 1, 𝑛̅̅ ̅̅̅ is the set of edge weights, where each 
𝜔𝑖𝑗 characterizes the connection between vertices 𝑣𝑖 and 𝑣𝑗. 

The parameter 𝜖 (filtering parameter) sets the weight threshold at which vertices and their 
subsets are merged into simplices; it thus controls the density of connections at which 
multidimensional simplices (triangles, tetrahedra, etc.) are formed, reflecting coalitions, groups, 
and higher-order structures in a complex multidimensional system. Varying 𝜖 induces a filtration 
of the complex, allowing us to trace the evolution of topological characteristics. To study the deep 
structural organization and analyze multidimensional interactions in complex systems, the 
construction of simplicial complexes is used. In particular, Vietoris-Rips complexes are widely used 
[12, 13], which are formed as sets of subsets 𝜎 ⊆ 𝑉, such that for all pairs 𝑣𝑖 , 𝑣𝑗 ∈ 𝜎 the edge 

(𝑣𝑖 , 𝑣𝑗) exists in E and 𝜔𝑖𝑗 ≥ 𝜖: 

𝑉𝑅𝜖(𝐺) = (𝜎 ⊆ 𝑉: ∀𝑣𝑖, 𝑣𝑗 ∈ 𝜎, 𝜔𝑖𝑗 ≥ 𝜖). (1) 

The constructed Vietoris-Rips complexes serve directly as the foundational structure for 
computing persistent homology, allowing for the identification of topological invariants, such as 
stable coalitions, barriers, and isolated subgroups, thus achieving the goals set in this study. 

Persistent homology is a central tool for the topological analysis of complex systems and allows 
us to identify stable topological features at different scales [14, 15]. For a given filtering {𝐾𝜖}𝜖∈[𝑎,𝑏] 
of simplicial complexes, we consider the appearance and disappearance of homology classes: 
connectivity components (𝐻0), cycles (𝐻1), cavities (𝐻2), etc.  

A persistent homology is formally defined as a sequence of homology groups: 

𝐻1(𝐾𝜖1
) → 𝐻2(𝐾𝜖2

) → ⋯ → 𝐻𝑘(𝐾𝜖𝑚
), (2) 

where 𝐻𝑘 is the k-th homology group, where mappings are induced by the inclusion of 
complexes as 𝜖 increases. 

In the persistent homology framework, the structural evolution of a complex system as the 

filtration parameter t increases is encoded by a persistence diagram 𝐷𝑘 = {(𝑏𝑖, 𝑑𝑖)}𝑖=1
𝑁𝑘 , where 𝑁𝑘 is 

the number of homology classes of order k in the diagram. Here, each pair (𝑏𝑖, 𝑑𝑖) represents the 
birth time 𝑏𝑖 and death time 𝑑𝑖 of a topological feature (such as a connected component, cycle, or 
cavity) in the filtration. The interval [𝑏𝑖, 𝑑𝑖) is called the persistence interval and characterizes the 
lifetime of the corresponding feature. Thus, the persistence diagram 𝐷𝑘 is a finite multiset of points 
in ℝ2, one for each homology class of order k. 

For quantitative and statistical analysis, the persistence landscape function 𝜆𝑘(𝑡) is used. This 
function is defined for the filtration parameter 𝑡 ∈ [0, 𝑇], where T is the maximal value considered 
in the filtration (e.g., the largest connection threshold in the Vietoris Rips complex). The 
persistence landscape 𝜆𝑘(𝑡) encodes, at each scale t
features and enables the use of statistical and machine learning methods for further data analysis: 

𝜆𝑘(𝑡) = sup
𝑖
[min{𝑡 − 𝑏𝑖, 𝑑𝑖 − 𝑡, 0}]. (3) 

In addition, for further numerical analysis of persistence diagrams, the persistence images are 
used, which are vectorized representations formed by projecting topological invariants into a fixed 
lattice of the birth-death space and then smoothing them. Such a representation allows using 
classical machine learning methods (e.g., SVM, PCA, neural networks) to solve classification 
problems, identify structural patterns, and distinguish between complex multidimensional systems. 



For the quantitative comparison of topological features extracted from different states or 
versions of the system, we consider pairs of persistence diagrams 𝐷𝑘 and 𝐷𝑘

′  of the same homology 
order k, corresponding to the original and modified networks, respectively. The choice of metrics 
for determining the relationships between agents is critical for building correct simplicial 
complexes. For undirected networks, Euclidean (ℓ2 − norm), Manhattan (ℓ1 − norm), cosine, or 
other distances in the feature space of agents are often used. For further comparison of topological 
structures, in particular persistence diagrams, specialized stability metrics such as bottleneck 
distance 𝑑𝐵 and Wasserstein distance 𝑑𝑊,𝑝 are used, which take into account differences in 
the position and duration of homologous classes: 

𝑑𝐵(𝐷𝑘, 𝐷𝑘
′ ) = inf𝛾sup

𝑥∈𝐷𝑘
‖𝑥 − 𝛾(𝑥)‖∞, (4) 

𝑑𝑊,𝑝(𝐷𝑘, 𝐷𝑘
′ ) = (inf𝛾 ∑ ‖𝑥 − 𝛾(𝑥)‖∞

𝑝

𝑥∈𝐷𝑘

)

1
𝑝

, (5) 

where 𝛾 is the bijection between the points of the diagrams 𝐷𝑘 and 𝐷𝑘
′ ; ‖∙‖∞

𝑝  is the Chebyshev 
norm. 

The correct choice of metrics and filtering parameters has a critical impact on the interpretation 
of topological structures and their stability in a multivariate system model. An unsuccessful setting 
can lead to the loss of significant patterns or, conversely, to the detection of artifacts caused by 
noise or excessive data complexity. Therefore, the stage of selecting metrics, filtering threshold 𝜖, 
and scale of analysis is an integral part of valid topological modeling of complex multidimensional 
interactions. The optimal filtering parameter 𝜖 and distance metrics are typically selected 
empirically based on the stability and interpretability of persistent homology results, considering 
criteria such as persistence intervals stability and robustness against noise. In this study, these 
parameters were chosen iteratively, assessing multiple scenarios for best capturing structural 
invariants. 

5. Topological indicators of the complex systems structure 

5.1. Homology groups as indicators of structural features 

Homology groups are fundamental algebraic objects that describe the topological structure of 
multidimensional systems. Formally, for a simplicial complex 𝐾, a homology group 𝐻𝑘(𝐾) is 
defined as a factor group: 

𝐻𝑘(𝐾)  =
𝑍𝑘(𝐾)

𝐵𝑘(𝐾)
, (6) 

where 𝑍𝑘(𝐾) is the group of k-cycles (k-chains with zero boundary); 𝐵𝑘(𝐾) is the group of  
k-boundaries (boundaries of (k+1)-chains). 

Accordingly, the elements of 𝐻𝑘(𝐾) reflect: 

• 𝐻0: components of connectivity (clustering); 
• 𝐻1 ; 
• 𝐻2  

A quantitative characteristic of homology groups is the Betti numbers (𝛽𝑘), which are defined as 
the ranks of the corresponding homology groups: 

𝛽𝑘  = rank 𝐻𝑘(𝐾), (7) 



where 𝛽0 is the number of independent connectivity components, 𝛽1 is the number of 
independent cycles, 𝛽2 is the number of two-dimensional cavities, etc. 

The Betti numbers 𝛽𝑘(𝜖) for each order k are defined as the ranks of the corresponding 
homology groups for the complex at the current value of the filtration parameter 𝜖. 

In the problems of dynamic system analysis, the filtering of complexes {𝐾𝜖} at a variable 
threshold 𝜖, which produces persistent homologies, is considered. Each homology of class is 
characterized by the existence interval, which is defined by the persistence diagram for the k-th 
order 𝐷𝑘 = {(𝑏𝑖, 𝑑𝑖)}𝑖=1

𝑘 . 
Persistence intervals are powerful indicators of structural features: 

• long intervals (large 𝑑𝑖 − 𝑏𝑖) indicate stable topological features (e.g., stable coalitions or 
barriers in social networks); 

•  

The invariants allow us to formalize the topological complexity of the system, compare it with 
other structures, and identify significant deviations or stable patterns at different scales. The 
following numerical invariants are used to quantitatively analyze the dynamics and compare the 
structures of different multidimensional systems: 

• maximum value of persistence 𝜇𝑘
𝑚𝑎𝑥 = max(𝑏𝑖,𝑑𝑖)∈𝐷𝑘

(𝑑𝑖 − 𝑏𝑖); 

• average value of persistence 𝜇𝑘
𝑚𝑒𝑎𝑛 =

1

𝑘
∑ (𝑑𝑖 − 𝑏𝑖)𝑘

𝑖=1 ; 

• number of long-lived classes 𝑛𝑘
𝑙𝑜𝑛𝑔

= |{(𝑏𝑖, 𝑑𝑖) ∈ 𝐷𝑘: (𝑑𝑖 − 𝑏𝑖) > 𝜏}|, where 𝜏 is a given 
stability threshold. 

In addition, changes in Betti-numbers at different scales 𝜖 (Betti curve) are analyzed, which 
allows tracking structural transitions, the emergence and disappearance of coalitions or barriers in 
the network dynamics. 

5.2. Classification of stable pattern types 

Persistent homology, combined with numerical topological invariants such as Betti numbers, 
provides a formalized approach to detecting and classifying persistent patterns in complex 
multidimensional systems. The quantitative representation of persistence diagrams, 𝛽𝑘(𝜖) 
functions, and statistical characteristics of persistence intervals allows both interpreting persistent 
structures and automating their detection using machine learning methods. Within this 
classification scheme, three fundamentally different types of stable topological patterns can be can 
distinguished: coalitions, barriers, and isolated subgroups. 

Coalitions (connectivity components, 𝐻0) are formally identified as connected components of a 
graph or simplicial complex at a fixed filtering level 𝜖. Here, coalitions specifically refer to 
connected components identified at a fixed filtering level 𝜖. The introduction of the filtering 
parameter 𝜖 enables the identification of stable (persistent) coalitions and their changes as 𝜖 varies, 
distinguishing the approach clearly from classical definitions. The zero-order Betty number (𝛽0) is 
equal to the number of independent coalitions in the system: 

𝛽0(𝜖)  = |𝜋0(𝐾𝜖)|, (8) 

where 𝜋0(𝐾𝜖) is the set of connectivity components of the space 𝐾𝜖, and vertical dashes indicate 
its quantity (cardinality). 

The dynamics of the number of connectivity components 𝛽0(𝜖) during the filtering process 
allows tracing the processes of coalition (group unification) and fragmentation (group 
disintegration). Particular attention is drawn to the long-term coalitions that correspond to those 
components whose persistence intervals (𝑏, 𝑑) are significantly higher than the average level, in 



other words (𝑑 − 𝑏) ≫ 〈𝑑 − 𝑏〉, where 〈𝑑 − 𝑏〉 denotes the average persistence interval length, i.e., 
the mean lifetime of topological features in the persistence diagram 

Barriers (cycles, 𝐻1) are interpreted as one-dimensional topological cycles in the simplicial 
complex. They indicate the presence of structures that prevent the complete unification of 
subgroups or create isolation effects. The first-order Betti number 𝛽1(𝜖) = rank 𝐻1(𝐾𝜖) 
determines the number of independent barriers. The long-lived intervals (𝑏, 𝑑) in the persistence 
diagram 𝐷1 reflect persistent social or informational barriers that persist over a wide range of 
linkage parameters. 

Isolated subgroups appear as components of connectivity with short persistence intervals. They 
appear at small 𝜖 and quickly disappear as the threshold increases. Quantitatively, such subgroups 
can be identified through the statistics of short intervals in the persistence diagram 𝐷0: 

𝑛0
short = |{(𝑏𝑖, 𝑑𝑖) ∈ 𝐷0: (𝑑𝑖 − 𝑏𝑖) < 𝜏}|. (9) 

If, for a given order k, there are no intervals satisfying the short-lived condition, then the 
corresponding set 𝐷𝑘

short is empty, and the number of such classes equals zero. 
The classification of topological pattern types is based on quantitative analysis of persistence 

diagrams, statistical characteristics of persistence intervals (length, density, distribution), and the 
use of machine learning algorithms, where persistence images serve as vectorized features for 
automated recognition of structures in large multidimensional data. 

5.3. Phase transitions in the topology of multidimensional systems 

The analysis of phase transitions and structural transformations in complex multidimensional 
systems is a fundamental task, since such transitions are often accompanied by qualitative changes 
in the topology of connections, coalitions, distribution of influence, and information flows.  

Since a multidimensional system is modeled as a simplicial complex {𝐾𝜖} with a filtering 
parameter 𝜖 (for example, a threshold of the connection strength or similarity). A phase transition 
is defined as a region of values of 𝜖∗ in which the topological invariants undergo a sharp change: 

∃𝜖∗: lim
𝛿→0

|𝛽𝑘(𝜖∗ + 𝛿) − 𝛽𝑘(𝜖∗ − 𝛿)| ≫ 0, (10) 

or 

|
𝑑𝛽𝑘

𝑑𝜖
|

𝜖=𝜖∗
≫ 1. (11) 

Typical examples of topological phase transitions are the following scenarios: 

• With an increase in the filtering threshold 𝜖, there is a transition from a set of isolated 
components (𝛽0(𝜖) is of great importance) to the formation of a giant connectivity 
component (a sharp decrease in 𝛽0(𝜖)), which reflects the integration of most elements of 
the system into a single structure. 

• The appearance or disappearance of long-lived cycles (𝛽1(𝜖)), which signals the formation 
or destruction of stable topological barriers or cyclic structures. 

The main metrics for analyzing the trajectories of persistence landscapes are the discrete 𝐿𝑝-
distance between the k-th landscapes at two filtration levels 𝑡1 and 𝑡2 (denoted as 

𝑑𝐿𝑝 (𝜆𝑘
(𝑡1)

, 𝜆𝑘
(𝑡2)

)), the rate of the landscape change 𝑉𝑘
(𝑡), which acts as an indicator of the dynamic 

process activity, and the integral characteristic of changes over the entire period of time 𝑆𝑘: 

𝑑𝐿𝑝 (𝜆𝑘
(𝑡1)

, 𝜆𝑘
(𝑡2)

) = (∑ ∫ |𝜆𝑘
𝑚,(𝑡1)

(𝑠) − 𝜆𝑘
𝑚,(𝑡2)

(𝑠)|
𝑝

𝑑𝑠

𝑚

)

1
𝑝

, (12) 



𝑉𝑘
(𝑡)

= ‖𝜆𝑘
(𝑡2)

− 𝜆𝑘
(𝑡1)

‖
𝐿2

, (13) 

𝑆𝑘 = ∑ 𝑉𝑘
(𝑡)

𝑁−1

𝑡=1

. (14) 

Interpretation of trajectories as indicators of dynamics: 

• Stable phases are characterized by low values of 𝑉𝑘
(𝑡), which indicates the preservation of 

the topological structure of the network. 

• Phase transitions and anomalies are manifested as sharp peaks in the sequence 𝑉𝑘
(𝑡), which 

correspond to significant structural transformations. 
• The path of a landscape in a multidimensional functional space can be subjected to 

clustering, component analysis, or principal component decomposition to identify the main 
stages of evolution. 

Thus, phase transitions in multidimensional systems are manifested as abrupt changes in 

topological invariants, and metrics in the space of persistence landscapes (in particular, 𝑉𝑘
(𝑡), 𝑑𝐿𝑝 

and 𝑆𝑘) allow us to quantitatively record transformations, tracking the moments of structural 
reorganization and identifying dynamic phases of system development. 

6. Theoretical foundations of topological analysis of complex systems 

Verification of topological modeling results in complex multidimensional systems involves three 
key components: comparison with classical network metrics, analysis of the stability of invariants 
to data variations, and assessment of statistical significance. Although the paper mainly deals with 
weighted graphs, classical (unweighted) adjacency matrices are briefly mentioned here for 
completeness and better understanding of transition to weighted scenarios. In this context, the 
formalization of appropriate verification criteria that provide an objective assessment of the 
reliability, stability, and relevance of the obtained topological characteristics of the system is of 
particular importance. 

The clustering coefficient is used to assess the extent to which nodes in the network tend to 
form local clusters or clustered groups [17]. It is calculated using the following formula: 

𝐶 =
1

𝑛
∑

2𝑒𝑖

𝑘𝑖(𝑘𝑖 − 1)

𝑛

𝑖=1

, (15) 

where 𝑒𝑖 is the number of edges between the neighbors of vertex 𝑣𝑖, 𝑘𝑖 is its degree, 𝑘𝑖 ≥ 2. 
If the graph G=(V,E,W) is weighted, then the weighted clustering coefficient is used: 

𝐶𝜔 =
1

𝑛
∑

1

𝑘𝑖(𝑘𝑖 − 1)
∑(𝜔̃𝑖𝑗𝜔̃𝑖ℎ𝜔̃𝑗ℎ)

1
3

𝑗,ℎ
𝑗≠ℎ

𝑛

𝑖=1

, (16) 

where 𝜔̃𝑖𝑗𝜔̃𝑖ℎ𝜔̃𝑗ℎ are the corresponding normalized weights, 𝜔̃𝑖𝑗 =
𝜔𝑖𝑗

max(𝑖,𝑗)∈𝐸 𝜔𝑖𝑗
; 𝜔𝑖𝑗 is the 

weight of the edge between vertices i and j (element of the adjacency weight matrix). 
Modularity 𝑄 measures how much denser the connections within clusters are than expected in 

a random model with the same degree distribution. For a graph 𝐺 = (𝑉, 𝐸), which is divided into 
clusters, the calculation of 𝑄 can be performed using the formula: 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗

𝛿(𝑐𝑖, 𝑐𝑗), (17) 



where 𝐴𝑖𝑗 is an element of the adjacency matrix, 𝐴𝑖𝑗 = {
1, if (𝑖, 𝑗) ∈ 𝐸

0, if (𝑖, 𝑗) ∉ 𝐸
; 𝑘𝑖 is the degree of 

vertex i (𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗 ); m is the total number of edges in the graph, 𝑚 =
1

2
∑ 𝐴𝑖𝑗𝑖,𝑗 ; 𝑐𝑖 is the cluster 

to which vertex i belongs; 𝛿(𝑐𝑖 , 𝑐𝑗) is the delta function, 𝛿(𝑐𝑖, 𝑐𝑗) = {
1, if 𝑐𝑖 = 𝑐𝑗

0, if 𝑐𝑖 ≠ 𝑐𝑗
. 

For a weighted graph 𝐺 = (𝑉, 𝐸, 𝑊), the modularity 𝑄 can be calculated as: 

𝑄 =
1

2𝑚
∑ [𝜔𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗

𝛿(𝑐𝑖, 𝑐𝑗), (18) 

where 𝑘𝑖 is the weighted degree of vertex i, 𝑘𝑖 = ∑ 𝜔𝑖𝑗𝑗 ; m is the total sum of the weights of all 

edges in the graph, 𝑚 =
1

2
∑ 𝜔𝑖𝑗𝑖,𝑗 ; 𝑐𝑖 is the number of the community (cluster) to which vertex i 

belongs. 
The correlation between the number of long-lived cycles 𝛽1 and 𝐶 (or 𝑄) is analyzed by using 

the Pearson's coefficient 𝑟: 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

(∑ (𝑥𝑖 − 𝑥̅)2
𝑖 ∑ (𝑦𝑖 − 𝑦̅)2

𝑖 )
1
2

, (19) 

where 𝑥𝑖 and 𝑦𝑖 denote the values of two different characteristics for the same network element 
(e.g., 𝑥𝑖 = 𝛽1(𝑖), 𝑦𝑖 = 𝐶(𝑖), and the specific choice of characteristics is detailed in the 
corresponding text or figures). 

Let 𝐷(𝐴) denote the set of all (𝑏𝑖, 𝑑𝑖) points in the persistence diagram constructed for the 
adjacency matrix A. To test the stability of the invariants, the bottleneck distance (4) between the 
persistence diagrams before and after the data variations is considered: 

𝑑𝐵(𝐷(𝐴), 𝐷(𝐴′)) = inf𝛾 sup𝑥∈𝐷(𝐴)∪∆‖𝑥 − 𝛾(𝑥)‖∞, (20) 

where 𝐴 = (𝑎𝑖𝑗) is the original adjacency matrix, 𝑎𝑖𝑗 represents the connection between 
vertices 𝑣𝑖 and 𝑣𝑗; 𝐴′ is a modified version of the initial adjacency matrix A, which is obtained as a 
result of making changes to the network to test the stability of topological invariants; 
𝐷(𝐴), 𝐷(𝐴′) ⊂ ℝ2 are the corresponding persistence diagrams considered as manifolds; 
∆= {(𝑡, 𝑡)|𝑡 ∈ ℝ} is the main diagonal (added with infinite multiplicity); 𝛾 is the bijection between 
the diagrams 𝐷(𝐴) ∪ ∆ and 𝐷(𝐴′) ∪ ∆; ‖∙‖∞ is the 𝐿∞-norm. 

The bootstrap method with N replications is applied to determine statistical significance. Let 𝑟𝑘

= ∑ 𝐼{𝛽𝑘
rand,𝑖 ≥ 𝛽𝑘

obs}𝑁
𝑖=1  be the number of repetitions in which the statistic was not less than the 

observed one, and 𝐼{∙} is the indicator function. The Betti numbers 𝛽𝑘(𝜖) for each order k are 
defined as the number of independent homology classes of order k in the Vietoris-Rips complex 
constructed at the current value of the filtration parameter 𝜖. For statistical significance estimation, 
these quantities are calculated separately for each order, so the number of repetitions r and the 
probability p should also be indexed as 𝑟𝑘, 𝑝𝑘 respectively. Then, the estimates of the probability of 
an event with small samples with Laplace correction ( add-one  smoothing) are calculated by the 
formula: 

𝑝𝑘 =
𝑟𝑘 + 1

𝑁 + 1
. (21) 

The application of the Laplace correction prevents 𝑝 = 0 at a finite 𝑁. 
Modern approaches suggest using additional invariants, such as topological entropy and 

diversity persistence diagrams, which reflect the diversity and unevenness of persistent structures: 



𝐸(𝐷𝑘) = − ∑ 𝑝𝑘,𝑖 log 𝑝𝑘,𝑖

𝑛

𝑖=1

, 𝑝𝑘,𝑖 =
𝑑𝑖 − 𝑏𝑖

∑ (𝑑𝑗 − 𝑏𝑗)𝑗

, (22) 

where 𝑝𝑘,𝑖 is the normalized length of the i-th persistence interval for homology of order k, and 
n is the total number of such intervals for the chosen order. 

High entropy and diversity usually correspond to complex but stable structures, while their 
decrease signals the loss of pattern diversity under the influence of perturbations. 

To sum up, the combination of various verification criteria (from comparison with classical 
network characteristics to testing the stability of invariants and assessing statistical significance) 
provides a comprehensive and objective verification of the reliability, informativeness, and 
scientific correctness of topological modeling of complex multidimensional systems. 

7. Topological data analysis algorithms and software tools 

In modern topological data analysis (TDA), specialized algorithms and software tools play a key 
role in efficiently computing persistent homologies even for complex multidimensional systems. 
The most well-known libraries are Ripser, Gudhi, and Dionysus. Ripser is focused on the fast 
computation of persistent Vietoris-Rips homology complexes using optimized data storage 
structures and boundary matrix reduction. Formally, the homology group 𝐻𝑘 is computed by 
filtering the complexes 𝐾𝜖0

⊆ 𝐾𝜖1
⊆. . . ⊆ 𝐾𝜖𝑚

, where at each level we consider k-chains 𝐶𝑘 and 
boundary operators 𝜕𝑘: 𝐶𝑘 → 𝐶𝑘−1.  The persistence is determined by the intervals of appearance 

exible 
platform for processing various types of complexes (Vietoris-Rips, Alpha, Witness, etc.) and 
supports the visualization of persistence diagrams and barcodes. Dionysus provides an interface for 
Python and C++, allowing the integration of TDA analysis into complex network data processing 
pipelines. All of these libraries implement algorithms with computational complexity that grows 
exponentially with the increase in homology order k and complex dimension (number of vertices). 
For Vietoris-Rips complexes, the complexity is usually Ο(𝑛𝑘+1), which imposes a limit on the size 
of the analyzed networks. 

8. Practical examples and modeling 

To demonstrate the capabilities of TDA analysis, let us consider an artificially simulated social 
network of a large organization. The network consists of 200 members organized into 10 
departments (20 people in each). Most departments have strong ties within them (0.7 1.0), weak 
ties between departments (0 0.3), and include 3 leaders who maintain additional intensive contacts 
with other leaders and participants from various groups. Thus, the network structure features 
densely connected subgroups, isolated departments, and weak intergroup contacts, reflecting a 
complex hierarchy and topological heterogeneity. The main task is to identify stable coalitions, 
leadership roles, barriers to information exchange, and critical points of network transformation 
using persistent homology.  

Figure 1 presents a fragment of the weighted adjacency matrix 𝑊 = [𝑤𝑖𝑗]
𝑖,𝑗=1

200
 of the simulated 

social network, where each value 𝑤𝑖𝑗 indicates the strength of the connection between nodes i and 
j. Values range from 0 (no connection) to 1 (strong connection), with intermediate values 
corresponding to weaker ties between groups (if 𝑖 = 𝑗 then value is 0). The network modeled in the 
case study with a clear structural hierarchy and identified leaders serves as the basis for applying 
topological analysis. Below are the main results of modeling using the Vietoris-Rips complex and 
persistent homology to identify stable coalitions, barriers, and critical subgroups in the system. 



 

Figure 1: Fragment of the weighted adjacency matrix of the modeled network. 

Figure 2 shows the general structure of the modeled social network, illustrating the hierarchical 
organization, distribution of subgroups, and positions of leaders. The graph clearly identifies ten 
compact subgroups (clusters), each of which has a high internal density of connections, 
corresponding to departments with strong intragroup cohesion. The central core is formed by 

ation of clusters into 
a single communication structure. Such a topology creates the preconditions for the emergence of 
characteristic patterns of persistent homology - long-lasting components, numerous local cycles, 
and a limited number of persistent barriers. 

 

Figure 2: Global network structure: subgroups (blue) and leaders (red). 

To compare the results of the topological and classical analysis, the data was clustered using the 
k-means method after multidimensional scaling (MDS), the results are shown in Figure 3. It can be 
seen that k-means forms ten compact clusters with well-defined boundaries in the space of the first 
two MDS components, but does not identify more complex topological structures, such as 
overlapping subgroups, stable cycles, or isolated components that are revealed by persistent 
homology. This confirms that classical clustering methods work well for distributed, almost convex 
groups, but are unable to detect multidimensional and hierarchical patterns inherent in complex 
systems, unlike the proposed method (Figure 2). 



 

Figure 3: K-means clustering after MDS projection.  

The dynamics of the topological invariants of the studied network presented in the form of a 
persistence barcode for the Vietoris-Rips complex is shown in Figure 4. At low values of the 
filtering threshold, there is a large number of short-lived connectivity components (𝛽0) that quickly 
merge into a single global component - this is shown by one long red line that persists until high 
threshold values. The blue barcode (𝛽1) illustrates multiple short-
as the threshold increases, as well as the presence of separate long-term cycles that correspond to 
stable local barriers in the network structure. The second group of cycles appears only at high 
thresholds, indicating isolated clusters with internal cohesion. This configuration of the persistence 
barcode reflects the presence of both rapidly integrated subgroups and autonomous, stable 
structures in the system, which is a key feature of complex social networks with a multi-level 
topology. 

 

Figure 4: Persistence barcode for Vietoris-Rips complex of the modeled network.  

To assess the robustness of the network topology, Figure 5 shows a comparison of persistence 
diagrams for the original, noisy, and modified (where leaders are attacked) versions of the network. 
The persistence diagrams for the Vietoris-Rips complex in all three scenarios demonstrate the 
preservation of key topological invariants: one dominant connectivity component (𝐻0) and two 
groups of cycles (𝐻1) - short-lived with small birth and death, and a group of stable cycles with 



large birth/death values. The introduction of random noise does not change the spatial 
configuration of the clusters of cycles, which indicates the stability of local coalitions to 
unstructured fluctuations. Even with the targeted removal of leaders, the main topological patterns 
are preserved, although some stable cycles disappear, which quantitatively illustrates the role of 
leaders as critical nodes for the integrity of the structure. Such robustness of the persistence 
diagram is a characteristic feature of the stability of a multidimensional network and confirms the 
high cohesion of the system core. 

 

Figure 5: Persistence diagrams of Vietoris-Rips complex: original, noised and attacked network. 

To characterize the structural heterogeneity of the network in detail, the Ego-network of the 
most and least active nodes was analyzed. Figure 6 illustrates the ego-networks of the most active 
(node 37) and the least active (node 134) elements within the analyzed structure. The ego-network 
of node 37 is characterized by a high density of internal and inter-cluster connections, forming a 
network hub topology with a minimal clustering coefficient and maximal betweenness centrality. 
This indicates the integrative role of this node in ensuring the global coherence of the network. In 
contrast, the ego-network of node 134 demonstrates localization, structural isolation, and a limited 

dynamics. The observed topological contrast quantitatively confirms the stratified nature of the 
network organization and correlates with analytical findings obtained via both classical and 
topological methods for the study of complex systems. 

 

Figure 6: Ego-network of the most and least active nodes 

To compare the topological and classical characteristics of nodes, the relationship between 
degree, clustering coefficient, and betweenness centrality is shown in Figure 7. There is a strong 
negative correlation between node degree and clustering coefficient: nodes with high degree have 
low clustering coefficient, which corresponds to the role of leader hubs that connect different 



subgroups with minimal internal connections. At the same time, there is a clear positive correlation 
between degree and betweenness centrality: nodes with the highest degree demonstrate the 
highest values of betweenness centrality, acting as critical structural intermediaries for intercluster 
integration of the network. Such distributions quantitatively confirm the hierarchical organization 
and functional differentiation of nodes in the modeled social system. 

 

Figure 7: Relationship between clustering coefficient, betweenness centrality and node degree. 

To quantitatively verify the visually observed relationships between the key network metrics, 
Spearman's rank correlation was calculated for 200 sample nodes. The analysis showed a very 
strong negative association between the clustering coefficient and the node degree (𝜌 = −0.96,

𝑝 <  0.001), which confirms the tendency of high-degree nodes to lose local cohesion. At the same 
time, a very strong positive correlation was found between the node degree and the betweenness 
centrality (𝜌 = 0.94, 𝑝 <  0.001), as well as a very strong negative correlation between the 
clustering coefficient and betweenness centrality (𝜌 = −0.89, 𝑝 <  0.001). The obtained values 
remain statistically significant after the Holm correction for multiple comparisons, which indicates 
the extraordinary stability of the identified patterns. 

The modeling results show that the topological analysis of a social network allows for the 
quantitative identification of stable coalitions, isolated subgroups, and critical leaders that ensure 
the global integration of the structure. Persistence barcodes and diagrams clearly reflect the 
hierarchical, clustered, and robust organization of the network, in which central hub nodes form 
stable connections between groups even in the face of perturbations or targeted attacks. Classical 
network metrics additionally emphasize the functional differentiation of the roles of participants 
and confirm the high cohesion of subgroups and the structural heterogeneity of the system. The 
proposed approach provides an in-depth interpretation of the multidimensional network structure 
and demonstrates the high sensitivity and reliability of TDA for identifying key topological 
patterns in complex multidimensional systems. 

9. Possibilities and limitations of the topological approach 

The topological approach to analyzing complex multidimensional systems is effective for 
identifying multidimensional group interactions, complex coalitions, isolated subgroups, and 
hidden barriers to information flow. TDA methods are particularly valuable for investigating 
collective dynamics, including the formation of stable associations, identification of marginalized 
or resilient groups, and analysis of influence centers' emergence and collapse. Persistent homology, 
through topological invariants 𝛽𝑘(𝐾𝜖), facilitates tracking coalitions' and barriers' transformations 
and identifying critical points of system fragmentation or integration. 

However, practical applications of the topological approach encounter significant limitations. 
Firstly, computational complexity for Vietoris-Rips complexes typically scales as Ο(𝑛𝑘+1), 
restricting analysis primarily to moderately sized networks or lower-order homologies. For large 
networks or higher-dimensional homologies, computational resources and runtime become 



prohibitive, necessitating approximation or simplification techniques. Secondly, results are 
sensitive to parameter selection-filtering thresholds, metrics, and noise levels-leading to potential 
misinterpretations or artifacts. This sensitivity mandates careful parameter tuning, robustness 
analysis, and validation procedures. Finally, current TDA implementations lack sufficient 
scalability and adaptability for heterogeneous, dynamic, or temporal data, highlighting the ongoing 
need for optimized algorithms and hybrid methodologies integrating TDA with classical statistical 
or machine learning tools. 

10. Conclusions 

In this paper, we demonstrate the effectiveness of topological analysis, in particular, persistence 
homology and Vietoris-Rips complexes, for the detection and quantitative interpretation of stable 
coalitions, barriers, and isolated subsystems in complex multidimensional systems. The modeling 
results showed that persistence diagrams and barcodes allow us to identify not only local clusters 
but also global topological patterns: the number of independent coalitions (𝛽0), stable cycles (𝛽1), 
and multidimensional group interactions that remain unchanged even with significant 
modifications of the structure. For example, the main coalition kernels and groups of long-lived 
cycles are preserved after adding noise or removing leaders, which confirms the robustness of the 
system. Comparative analysis with k-means clustering showed that classical methods capture only 
compact groups, while TDA allows identifying complex multidimensional barriers and hierarchies. 
Statistical tests confirmed the significance of the topological findings. In general, the proposed 
approach provides a high level of interpretability and objectivity for the analysis of critical 
structural invariants in complex systems. 
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