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Abstract 
The paper treats the application of the bithreshold approach in the design of neural network classifiers. A 
novel hybrid 3-layer neural network model is proposed whose first hidden layer consists of bithreshold 
neurons, and the second hidden layer employs the softmax activation function. This model is intended to 
solve multiclass classification tasks. A supervised synthesis algorithm is designed for this neural network 
architecture. It consists of two stages. During the first stage a given training pattern is separated from 
representatives of other classes using single-threshold neurons, which are gradually converted into 
bithreshold neural units. In the second stage, the network design procedure reduces the size of network 
hidden layers in order to simplify the network and enhance the recognition ability. The 
performance of the proposed model is compared with that of several popular machine learning classifiers 
on a real-world dataset. Simulation results on optical recognition of handwritten digits  benchmark 
demonstrate that the developed neural network model is suitable for multiclass classification tasks. 
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1. Introduction 

Neural networks play a leading role in modern machine learning due to their ability to model 
complex, non-linear relationships [1, 2]. They have become the foundation of many state-of-the-art 
systems in image recognition [3], natural language processing [4], game playing [5] and forecasting 
[6]. Their flexible architectures [1, 7] and capacity to learn from large datasets [8] have made them 
essential tools in advancing artificial intelligence [9, 10]. 

Activation functions are crucial for introducing non-linearity into neural networks [1, 11], 
allowing them to solve complex tasks [12]. They determine how signals are transformed and 
propagated through the network [1]. The choice of activation function can significantly impact the 
performance and convergence of a model [13, 14]. Without activation functions, neural networks 
would behave like simple linear models [15]. 

Multithreshold approach in neural computation arose as one of the first attempt to enhance the 
ability of classical activation functions (such as the Heaviside or sign functions [1] by using two or 
more thresholds [16, 17]. Modern applications concern smoothed continuous modification of 
multithreshold activations [18], which can outperform modern activations such as ReLU [3], Swish 
[14, 19] etc. 

Multithreshold approach was developed for the binary classification of multidimensional patterns 
[17, 20, 21]. Binary valued bithreshold neurons [22] as well as their multithreshold generalizations 
[21] are capable to increase the recognition ability of a neural network [21] by the proper use of 
additional thresholds [23]. Moreover, the application of multithreshold neural networks in pattern 
classification may significantly reduce the network complexity [3, 12]. 
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It should be noted that all known approaches to the learning or synthesis multithreshold multi-
layer neural models have relied on offline or batch learning modes. The objective of the present re-
search is the design of the model of bithreshold neural network (NN) suitable for the online learning.  

2. Related works 

First studies on binary-valued multithreshold neural units were conducted by D. R. Haring [16] and 
lead to the development of the so-called multithreshold logic (see [24 26] for further references). 

The initial motivation for multithreshold units stemmed from the belief that multiple thresholds 
could considerably 16], a hypothesis later confirmed 
by counting arguments in [20] and [17]. However, early research lacked practical training methods, 
and only few heuristics were proposed. Learning binary multithreshold models proved difficult due 
to NP-hardness, even for bithreshold systems [23, 26]. 

Interest in multithreshold approaches re-emerged two decades later, driven by the development 
of multi-valued neurons and formal definitions of multithreshold functions [17, 21, 25]. Key 
contributions by Z. I. Parberry, A. Ngom, and M. Anthony gave theoretical justification 
of online learning algorithms based on incremental correction [21], followed by improved both 
online and offline methods using relaxation techniques [23]. Note that these algorithms were 
designed for the learning of a single multithreshold neural unit. 

Recent works [11, 27] explored network architectures with multithreshold hidden layers, showing 
strong performance in classification tasks thanks to offline synthesis algorithms [22, 27]. Hybrid 
models combining multithreshold, bithreshold, WTA, and single-threshold units further boosted 
accuracy [11]. Using two thresholds offers a balance between expressive power and synthesis 
simplicity [22], though more recent studies expanded to models with multiple thresholds and multi-
valued outputs [23]. Generalized versions of these models were applied to pattern classification [12]. 

The multithreshold paradigm also includes hardware implementations, such as those by T. Gowda 
[33] and M. Nikodem [28, 29]. Applications in regression are relatively rare, as discrete-valued 
activation are better suited to classification tasks. However, both binary- and continuous-valued 
multithreshold-based regressors have recently been proposed. The model of neural network 
regressor that uses binary-valued bithreshold units was designed in [30], whereas its continuous-
valued generalization within the gradient-based learning framework was proposed in [18]. 

3. Models and methods 

3.1. Explanation of the bithreshold approach 

3.1.1. Model of a bipolar-valued bithreshold neural unit 

The key feature of the proposed classifier model is its hidden layer consisting of binary-valued 
bithreshold neurons. Let us consider a model of such a neuron. It is a binary-valued computational 

unit [22] with a weight vector ( )1, , n

nw w= w R and two thresholds ( )1 2 1 2,t t t t , whose single 

bipolar output y is obtained by applying the following activation function 

( )
1 2

1 2
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1, if ,

1, otherwise
t t

t s t
f s
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= 
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 (1) 

to the weighted sum 1 1 ... .n nw x w x = + +w x  Note that in the case t2 behaves like a 

sign function (applied to the w  x  t1). Therefore, the single-threshold linear neural unit is a 
particular case of the bithreshold neural unit. Equation (1) gives the simplest kind of multithreshold 
activation function, which is a particular case of the general model of multithreshold activation 

function considered in [26]. The short notation BN ( )1 2, ,t tw  will be used for such a neural unit. It 

should be mentioned that the use of bipolar range of function { 1, +1} instead of more usual binary 



outputs is intentional, because it allows us to avoid the need for an additional normalization level in 
the networks used in [11]. 

Consider geometrical concepts related to the performance of bithreshold neural unit. The pair of 
two parallel hyperplanes 

1 1 1... n nw x w x t+ + =  and 1 1 2... n nw x w x t+ + = divide n-dimensional space Rn 

by three parts. Thus, the activation function (1) allows us to distinguish all points located in the 
middle region (i.e., between hyperplanes) from all other points of the space. This induces so-called 
bithreshold separable sets in the space Rn. Therefore, a bithreshold neural unit can act as a simple 
binary classifier. It is evident that the classification capacity of a single bithreshold neuron is very 
limited. It is unable to solve relatively simple classification task related to dichotomies of small finite 
set of n-dimensional patterns. Furthermore, the general multiclass classification tasks are more fre-
quent and usual than binary ones. This implies that binary-valued bithreshold neuron must be 
combined within a neural network in order to solve real-world problems. 

Let  1 1( , ), ,( , )m mS y y= x x  denote a training sample containing m training pairs (xi, yi), where 

xi is an n-dimensional real vector (xi   Rn) feature vector, yi is a non-negative integer label be-
K}, where i = m, and K is the number of classes. In practice, S contains 

the part of an available dataset, because its remainder can be reserved for special purpose, e.g., for 
the test set.  

3.1.2. Illustration of the idea behind the performance of a bithreshold classifier 

Let us consider an example how bithreshold neurons can be useful for multiclass classification. 
Consider a simple example of ternary classification in two dimensions (K = 3, n = 2). Figure 1 shows 
three pairwise linearly non-separable classes of 2-dimensional patterns C1, C2 and C3 as well as 12 
representative patterns, which form training sample along with their labels and are con-
secutively fed on the learner input (in Figure 1, for brevity, patterns are referred only by their labels 

, instead of full notation x1 x12). 

 

Figure 1: Example of ternary classification 

Let us consider how these patterns can be separated using bithreshold neurons. Note that in two 
dimensions the notion of a hyperplane coincides with a line. It is evident that patterns 1 and 2 are 
member of different classes and are linearly separable. Third pattern belongs to class C1, as does the 
first one. We can properly separate these three patterns using a single BN1 as shown in Figure 2. 

The bithreshold unit BN1 is defined by a pair of parallel lines l11 and l12. It is evident that pattern 4 
cannot be correctly classified using BN1, because it lies in the same region as pattern 3 (actually, the 
pattern 1 lies in the same region with respect to the output of BN1). Thus, an additional line is 
necessary to separate it from patterns 1 and 3. A possible solution is illustrated in Figure 3. Note that 
a single (dotted) line l2 is used, corresponding to a single-threshold neuron TN2. 



 

Figure 2: Proper separation of first three points using a single BN1 

Let us assume that a new point always falls within the positive half-plane defining by a single 
separating line. Assume that single lines, like l2, can be later complemented with another parallel line 
in order to form a full bithreshold neuron instead of single-threshold one. This strategy provides 
benefits in terms of memory capacity in the general n-dimensional case for large n, as it requires a 
single additional scalar parameter for another threshold, rather than of n + 1 new parameters in the 
case when a new complete hyperplane is employed. Note that this approach enabled us to obtain the 
second line l12 with intention to extend a single-threshold neuron corresponding to the line l11 of the 
bithreshold neuron BN1. 

 

Figure 3: Separation of first four points using BN1 and line l2 

Consider pattern 5. It belongs to the same plane region as pattern 4. Thus, it must be separated 
by an additional line. This cannot be done by using a line parallel to l2, i.e., by extending TN2 to some 
bithreshold unit. Let this line be l3, as shown in Figure 4. This line corresponds to some single-
threshold unit TN3. Pattern 6 falls in the same region as pattern 5. Thus, no additional separation is 
required. Pattern 7 belongs to class C3 but lies in the same region as the previous two patterns. 
Therefore, we need to separate pattern 7 from them. A possible solution involves a new line, l4, as 
shown in Figure 5. 

 



 

Figure 4: Separation of first six points using BN1 and two lines l2 and l3 

 

Figure 5: Separation of first seven points using BN1 and lines l2, l3 and l4 

Pattern 8 conflicts with pattern 2. They can be separated by drawing the line l42, which is parallel 
to l4, as shown in Figure 6. This does not affect the separability of patterns 5 and 6 from patterns 7. 
Thus, the pair of parallel lines l41 (l4 in Figure 5) and l42 defines the bithreshold neuron BN4. 

 

Figure 6: Separation of first eight points using BN1, BN4 and lines l2, l3 



Consider the last three patterns. Notice that when dealing with the separation of many patterns, 
it is not always easy to determine whether these patterns are properly separated using bithreshold 
neurons. This problem can be solved by analyzing the output of all neurons involved in the sepa-
ration process. The outputs of the neurons from Figure 6 are presented in Table 1. 

Table 1 
Outputs of neurons 

Pattern Class 
Outputs 

BN1 TN2 TN3 BN4 

1 C1 1 1 1 1 
2 C2 1 1 1 1 
3 C1 1 1 1 1 
4 C3 1 1 1 -1 
5 C2 1 1 1 1 
6 C2 1 1 1 1 
7 C3 1 1 1 1 
8 C1 1 1 1 1 
9 C3 1 1 1 1 
10 C1 1 1 1 1 
11 C3 1 1 1 1 
12 C2 1 1 1 1 

 
In the case of proper pattern separation, no two identical output rows correspond to patterns 

from different classes. It is true for the first eight patterns. The output row for pattern 9 is unique. 
Hence, this pattern is correctly separated. The same is true for pattern 10. Consider pattern 11. Its 
row of outputs is identical to the row corresponding to pattern 4. However, it is acceptable because 
both patterns belong to the same class C3. Note again time that these patterns fall into different 
regions of the plane in Figure 6, but these regions are identical with respect to the outputs of neurons. 
This apparent ambiguity arises from the fact that both the first and third region, induced by a single 
BN, produce the same output 1. 

Consider the last pattern. It belongs to class C2 and shares identical outputs with pattern 10, which 
represents class C1. Thus, an additional line is required to separate these two patterns. This can be 
done by extending one of single-threshold neurons, TN2 or TN3. Let us extend TN3 into BN3 as shown 
in Figure 7. 

 

Figure 7: Separation of all patterns using BN1, TN2, BN3 and BN4 



Note that the replacing of TN3 with BN3 results in the change of the output table. The values in 
the column BN3 are negated for patterns 2, 4, 5, 6, 7, 8, 9, and 11. The updated outputs are presented 
in Table 2.  

Table 2 
Updated outputs of neurons 

Pattern Class 
Outputs 

BN1 TN2 BN3 BN4 

1 C1 1 1 1 1 
2 C2 1 1 1 1 
3 C1 1 1 1 1 
4 C3 1 1 1 1 
5 C2 1 1 1 1 
6 C2 1 1 1 1 
7 C3 1 1 1 1 
8 C1 1 1 1 1 
9 C3 1 1 1 1 
10 C1 1 1 1 1 
11 C3 1 1 1 1 
12 C2 1 1 1 1 

 
It is evident from Table 2 that the above changes do not cause any new conflicts, whereas patterns 

10 and 12 have different rows of outputs. 
All neurons obtained during the separation phase are potential candidates for use in a future 

classifier (as we will see later, they are useful in the first hidden layer of the corresponding neural 
network). However, the set of neurons obtained during the separation may be redundant. This means 
that some subset of neurons may performs the same separation as the full set does. Let us return to 
our example. Suppose that BN1 is excluded from the separation process. This results in the removal 
of the corresponding column from Table 2. The result is shown in Table 3. 

Table 3 
Output table after removal of BN1 

Pattern Class 
Outputs 

TN2 BN3 BN4 
1 C1 1 1 1 
2 C2 1 1 1 
3 C1 1 1 1 
4 C3 1 1 1 
5 C2 1 1 1 
6 C2 1 1 1 
7 C3 1 1 1 
8 C1 1 1 1 
9 C3 1 1 1 
10 C1 1 1 1 
11 C3 1 1 1 
12 C2 1 1 1 

 
It is easy to verify that there are no equal rows for patterns belonging to different classes. Thus, 

it is possible to remove BN1 without the loss of separability of all patterns presented in the training 
sample (the redundancy of this neuron follows from the fact that it separates only patterns 1 and 3 



from pattern 2, but BN4 also does it). The other three neurons are significant because their removal 
breaks the valid separability. 

The table of outputs can be used in order to produce a classifier, but it requires simplification to 
reduce its size. 

Let us remove the duplicate rows of outputs (in the table corresponding to a valid separation, 
such rows are possible only for patterns that are members of the same class). There are four pairs of 
identical rows highlighted in Table 3: namely, 3, 8 for C1; 4, 11 for C3; 2, 12 and 5, 6 for C2. Thus, it is 
possible to safely remove rows 6, 8, 11, and 12 without loss of information. The result is presented in 
Table 4, where patterns are grouped by class. 

Table 4 
Output table after removal of 4 redundant rows 

Pattern Class 
Outputs 

TN2 BN3 BN4 
1 C1 1 1 1 
3 C1 1 1 1 
10 C1 1 1 1 
2 C2 1 1 1 
5 C2 1 1 1 
4 C3 1 1 1 
7 C3 1 1 1 
9 C3 1 1 1 

 
Note that Table 4 contains all eight 3-dimensional Boolean vectors. Therefore, it can be used to 

classify any new 2-dimensional pattern P. To do so, we simply compute the outputs of TN2, BN3 and 
BN4, respectively, and assign the pattern to the class whose representative in Table 4 shares the same 
output as P. The plane partition performed by this classifier is shown in Figure 8. For the given P, 
outputs of neurons are (1, 1, 1). This vector matches the penultimate row of Table 4, which corres-
pond to the representative of class C3. Therefore, our classifier would assign pattern P to class C3. 

 

Figure 8. Separation of the plane using TN2, BN3 and BN4 after simplification 

It is clear from Figure 8 that the resulting class boundaries are only a rough approximation. Con-
sequently, corresponding classifier may perform with low accuracy. This can be explained by the 
small size of training sample (only 12 patterns were used for illustration purposes) as well as certain 
properties of bithreshold activation function (1). These issues will be discussed later. 



3.2. Hybrid 3-layer neural network classifier with hidden bithreshold layer 

3.2.1. Architecture of classifier 

Consider a neural-like multilayer feed-forward model of 3-layer classifier, whose principles of ope-
ration were described in the previous subsection. It is evident that the first hidden layer (i.e., the first 
network layer after its input layer, which is not taken into account) must consist of neurons that 
provide the desired separation of training patterns. This layer contains bipolar-valued bithreshold 
nodes as well as single-threshold ones. Let N be the number of these nodes. Then, the first layer 
performs a mapping from Rn to { 1, 1}N. 

The second hidden layer contains M nodes and serves as a bridge between the bithreshold and 
the output layers. It is constructed using the output table that is associated with the first hidden layer 
and can be considered as an M × N bipolar matrix V consisting of unique rows v1 vM, where M is 
a number of rows each of which is an N-dimensional bipolar vector containing outputs of all first-

layer neurons. It is evident that  min ,2 .NM m  Let us assume that first M1 rows of matrix B cor-

respond to class C1, next M2 rows to class C2 MK rows to class CK, where 1M +  

, 1, 1, , .K iM M M i K+ =  =  Let Ik denote the set of indices of all rows corresponding to class Ck 

as, where k = K. For the sake of brevity, assume that all redundant patterns have already been 
removed from the training sample, so that M = m. Assume that ith unit in the second layer cor-
responds to the vector bi and can recognize the input pattern xi, with the class label yi. Therefore, 
this unit may compare the output vector z = z(x) from the first layer with the vector vi and activate 
himself only in the case z = vi and transmit its activation to the next layer. However, this exact-
match approach cannot be applied in practice. This is caused by two reasons: 1) there is no guaranty 
that for each of 2N possible bipolar vectors z there exists a corresponding training 
sample; 2) for large datasets the size of the first layer N may be so large that the use of the second 
layer consisting of 2N units is not feasible. Thus, the relationship between z and vi should use the 
proximity instead of the equality. Therefore, only a unit will be activated for which the distance 
between z and vi is minimal. If the distance is defined as Euclidian distance, such behavior can be 
implemented using a layer of neural units with an appropriate activation. It follows from the fact 
that 

2 2 2
2 2 2 .i i i iM− = −  + = − z v z z v v v z  

In the last equation, we used that squared Euclidian norm of M-dimensional bipolar vector is equal 

to M. Therefore, the minimization of i−z v  is equivalent to the maximization of the dot product 

i v z . Thus, it is possible to use a layer with weight matrix V and WTA activation mode for this 

purpose, in which the maximum layer output is transformed to 1, and all others set to 0. An alterna-
tive approach consists in the use of the softmax activation mode instead of WTA, which provides a 
smoothed continuous version of WTA. This mode preserves the possibility of the membership to 
numerous classes for patterns lying near the decision boundaries of the classifiers. Let s(z) = (s1(z), 

sM(z)) denote the output of second layer given the input z. Then, 

( )
( )

( )

exp i

is
S


=

v z
z

z
, where ( ) ( )

1

exp , 1, , .
M

i

i

S i M
=

=  =z v z  (2) 

The (third) output layer of classifier traditionally contains as many nodes as the number of dis-
tinct classes. It uses the linear neural units without biases and activation functions. The last layer 
weight matrix U = (uki), (k = K, i = M) is predefined as follows: 



1, if ,

0, otherwise.

k

ki

i I
u


= 


 (3) 

Thus, from (2) and (3) we may conclude that 

( ) ( ) ( ) ( )
1 1

( ) ( ) , 1, , , 1.
k

M K

k ki i i k

i i I k

y u s s k K y
=  =

= = = =  x z x z x  

It follows from the last equation that kth output node indicates the predicted probability of the input 
x to be a member of class Ck for k = K. 

3.2.2. Network synthesis algorithm 

Consider how to synthesize the neural network classifier described in 3.2.1. The key question is the 
construction of the network first layer providing the desired separation of training patterns. 

The synthesis algorithm consists of two stages. The first stage is most important and consists in 
the separation of the representatives of every class. During this stage, the current input pattern xi 
(i = 2 m) must be separated from the patterns that belong to other classes and have already been 
processed during the synthesis procedure. The conceptual scheme of this process is illustrated in 
Figure 9. 

 

Figure 9: Flowchart of the main operation of the first stage of the synthesis 

The process begins by computing the output vector zi, which consists of the outputs of all neurons 
that have already been included in the first layer. If no conflict occurres (i.e., zi  zj for all j such that 
1  j < i and yj  yi), then no changes are required. Otherwise, an additional action are necessary to 
resolve conflicts for some patterns xi and xj such that zi = zj and yj  yi. First, the synthesis system 
attempts to resolve conflict between ith and jth patterns without inserting new nodes in the first 
layer. It checks whether there exists a single-threshold neural unit LN(w, t) that can be extend to a 

BN ( )1 2, ,t tw  with some new threshold t1 and t2, in such way that 
1 2 1 2, ,( ) ( )t t i t t jf f  w x w x  and the 

replacement of LN(w, t) with BN ( )1 2, ,t tw  does not cause any conflict among already separated 

patterns 1 1, , .i−x x  If it is impossible, then the algorithm proceeds by adding a new single-threshold 

neuron LN(w, t) in the layer, where.  

( )
22

2 ,i j i jt= − = −w x x x x  (4) 

Such choice ensures consistent separation, because i jt   w x w x . The last inequalities follow 

from the fact that 
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2 2 1

2 2 0, .
2

i j i j i j i jt −  = − = −  =  + w x w x x x x x w x w x  

Note that if the input patterns have integer coordinates, then both w and t in (4) are also integer, 
which may be advantageous for certain implementation purposes [31]. 

The second stage of the synthesis algorithm aims to simplify the first layer of the network by 
eliminating redundant neurons and duplicate rows in the output matrix V. This stage results in an 
N × n real matrix W weight matrix of the first network layer, as well as in M × N bipolar matrix V  
weight matrix of the second network layer. The binary K × M weight matrix U of the output layer is 
defined by (3). 

4. Experiment 

The performance of proposed 3-layer neural network classifier was compared with the performance 
of several popular classifiers in order to estimate its ability to solve the classification task on the 
opdigits dataset, which is considered as small-sized benchmark in pattern classification [32]. This 
dataset contains 1797 8 × 8 images of one of 10 handwritten digits, with no missing values. This is a 
copy of the test set of the UCI ML hand-written digits dataset [33] with reduced dimensionality and 
some invariance to small distortions. All 64 input attributes are integers in the range 0  16. A more 
detailed description of the model is available in [32]. 

During the simulation the performance of following 4 popular and 3 bithreshold-like models was 
compared. Popular classifiers were: decision tree, random forest (averaging algorithms based on 
randomized decision trees) [32], LinearSVC (support vector machine with linear kernel) [32] and 
MLPClassifier (multilayer perceptron classifier) [1]. 

The Scikit Learn library [32] implementations of popular classifiers were used with recommended 
parameter settings. The 2-layer bithreshold NN classifier [22] was studied as well as the 3-layer NN 
classifier described in the third section. The 2-layer model was tested with different values of its 
hyperparameter . Two versions of 3-layer classifier were studied. The first of them used only single-
threshold neurons in first hidden layer. The second version used both single-threshold and 
bithreshold neurons in this layer.  

Main classification metrics were used: accuracy, precision, recall, and F1 score [1]. Last three 
metrics were calculated for each label, and their unweighted means were found. This strategy is quite 
reasonable, as there was no significant imbalance between class sizes in the training sample [33]. 5-
fold cross-validation [1, 32] was applied in order to obtains representative results. The simulation 
results will be presented and discussed in the following section. 

5. Results and discussion 

Simulation results are shown in Table 5. 

Table 5 
hand-written digits  

Regressor 
Mean metric value 

accuracy precision recall F1 score 
Decision tree 68.1 72.92 66.53 68.13 
Random forest 81.64 81.99 81.3 81.91 
Linear SVC 98.33 98.39 98.32 98.35 
MLP classifier 98.38 98.43 98.39 98.4 
2-layer bithreshold NN 74.05 72.13 73.37 72.74 
3-layer single-threshold NN 79.17 79.31 78.42 78.86 
3-layer bithreshold NN 92.77 93.6 92.86 92.88 

 

https://scikit-learn.org/stable/modules/tree.html#tree


By analyzing simulation results, it is possible to conclude that: 

1. All but one model demonstrated higher level of precision compared to other metrics, but, in 
general, the difference between different metric scores was not significant. 

2. Neural-based models outperformed other classifiers. MLP classifier achieved the best results 
by all four main metrics. 

3. 3-layer bithreshold NN was third best by all metrics. 
4. The results of the random search techniques showed that   1 is preferable. Larger values 

of did not provide the improvement of the performance. 
5. Both 3-layer networks overperformed 2-layer one. 
6. The use of the bithreshold neurons in the second network layer resulted in the significant 

improvement of performance. Moreover, 3-layer bithreshold NN has in average 19% fewer 
neurons in the first layer as well as the size of its second layer was approximately 41% smaller 
compared 3-layer single-threshold NN. 

The 3-layer NN classifier design employs the synthesis approach. As a result, the sizes of the 
hidden layers depend on the specific dataset used, and even on the order in which the patterns are 
selected during synthesis. Experiment results show that the second network layer is quite acceptable 
(e.g., few dozens of units for digits dataset, typically in the range 21..40). 

It seems that the main drawback of the proposed model of classifier is the large size of its second 
layer, which was enormous for single-threshold version (over 1,000) and also excessively large in the 
case of bithreshold modification. This is due to the fact that the number of duplicate rows was not 
very large (between 109 and 816). Therefore, second layer may remain very large. 

Note that second stage (network simplification) does not significantly impact the performance of 
classifier during the experiment (it caused decrease in accuracy by 1% 12%). The reasons for such a 
performance degradation are unclear and require further investigation. 

The comparison of 2-layer bithreshold NN model proposed in [22] and the current 3-layer model 
is also noteworthy. The results of the above experiment showed that 3-layer model had better 
prediction accuracy on new data. Nevertheless, the 2-layer model is much more compact and can be 
used for larger datasets compared to 3-layer one. Unlike the 2-layer model, the computational 
complexity of the proposed synthesis algorithm has not yet been analyzed and remains an open 
question. 

The experiment also showed that the second stage of the synthesis algorithm can be significantly 
more expensive than the first separation stage. This is due to the need to search for identical rows in 
the output table, which can be large enough. The simplest implementation uses two nested loops and 
can be very slow. This limitation can be partially bypassed by applying the hashing to the set matrix 
rows. 

6. Conclusions 

The applications of the neural systems based on the bithreshold approach in neural computation 
have been considered in the paper. The model of the hybrid 3-layer neural network has been designed 
whose first hidden layer consists of both single-threshold and bithreshold neural units. The second 
hidden layer of the network contains neural units, which serve as memory cells, and uses the softmax 
activation principle. The last layer consists of K neurons with predefined weights, where K is the 
number of classes of the particular classification task for which the neural network is designed. 

The proposed classifier employs a model-based approach to synthesis, using the first layer as a 
compressed, encoded representation of the training sample. The synthesis algorithm can be 
considered as an online algorithm because during the one step of the synthesis process only the 
current pattern is analyzed. The simulation results obtained on optical recognition of handwritten 
digits  dataset demonstrated that proposed NN model is concurrent compared to popular machine 



learning classifier and outperforms the 2-layer bithreshold NN synthesized using the offline algo-
rithm from [22]. 

As it was mentioned in the discussion section, the proposed model of classifier is not flawless. 
Further studies are necessary to improve the structure of the second hidden layer, as well as reduce 
the impact of the order of training pairs on the size of the network and its performance. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 
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