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Abstract 
This research is dedicated to enhancing the efficiency of a system for tracking objects of complex shapes 
through the integration of movable cameras and a neural network-based motor position controller. The 
aim of this work is to ensure accurate and reliable real-time object tracking. In this study, a system for 
tracking objects of complex shapes was developed and investigated, utilizing a camera mounted on an 
electric motor, with and without neural network-based motor position controller. A key aspect of the 
research is the training of a neural network model based on electric motor position data during tracking. 
The model's output data are used to predict the electric motor's position, enabling proactive motion 
correction and improved tracking accuracy. A distinctive feature of this research is the adaptation of the 
neural network-based motor position controller for localized use in a system for tracking objects of 
complex shapes, specifically designed to address current challenges faced by regional industrial 
enterprises. The practical value of this work lies in the potential application of the developed system in 
industry and educational processes to enhance technical safety. The system's flexibility allows for its use 
with or without a neural network-based motor position controller, ensuring rapid configuration and 
adaptation to various conditions. The current prototype utilizes a 2MP camera, and while the integration 
of an LSTM-based motor position controller showed a minor reduction in the standard deviation of 
positioning errors (from 168.88 to 164.11), future work will focus on incorporating higher-resolution 
cameras with improved low-light performance and further optimization of the neural network 
architecture and training dataset to enhance tracking accuracy. 
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1. Introduction 

In modern automated systems and robotics, object tracking plays a pivotal role, finding 
applications in various domains ranging from video surveillance to automated production control. 
Precise tracking, especially of objects with complex shapes, necessitates continuous and real-time 
correction of movable mechanism positions. Electric motors are a crucial component of such 
systems, providing high-precision positioning, yet their stable operation requires the use of 
sophisticated control algorithms capable of mitigating diverse external influences and errors [1]. 

Current approaches to electric motor control include the use of traditional controllers, but to 
ensure high accuracy and adaptability in unpredictable environmental changes and object 
variations, more advanced methods such as neural network-based controllers are essential. Neural 
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Network-Based Controllers, built upon neural networks, demonstrate the ability to adapt to 
changing conditions, optimizing control parameters in real time. They enable the reduction of 
noise, positional estimation errors, and other unforeseen factors that arise during the tracking of 
objects with complex geometries. This minimizes static and dynamic positioning errors, enhances 
system resistance to external influences, and ensures optimal real-time operation. 

The task of tracking complex-shaped objects in the context of regional industrial enterprises is 
particularly relevant, where the accuracy and reliability of video surveillance systems are critical 
for ensuring the safety and efficiency of production processes. In this context, the development of a 
tracking system utilizing a Neural Network-Based Controller capable of predicting object motion 
and proactively adjusting the camera position is not only a scientific but also a practical necessity. 

The foundation of this research is the development concept that combines computer vision with 
an actuator that adjusts the camera position based on object movement, integrated with a neural 
network model. The study is based on the principles of stacking, adaptive learning, and neural 
network control, allowing the integration of computer vision capabilities with precise actuator 
control. The research emphasizes the creation of a model for predicting signals several seconds 
ahead, enabling preemptive activation of the stepper motor. The scientific novelty of this work lies 
in adapting a well-established scientific approach to localize the use of neural network control in a 
tracking system to address specific challenges faced by regional industrial enterprises. 

The aim of this research is to enhance the operational efficiency of computer vision models by 
implementing movable cameras and a tracking system with neural network control, thereby 
ensuring more accurate and reliable real-time tracking of complex-shaped objects. 

To achieve this goal, the following research tasks were defined: 

1. Develop a tracking system with and without a neural network-based controller, capable of 
independent operation. 

2. Conduct an experimental study for comparative analysis of the effectiveness of both 
systems. 

2. Analysis of existing scientific approaches 

Early prototypes of tracking systems were implemented on Arduino controllers [2]. The software 
involved object detection followed by tracking. This technology enhances tracking accuracy 
through the use of cascaded classifiers [3]. Over time, the hardware and software have actively 
evolved and transformed into an integrated ecosystem incorporating artificial intelligence. 

Artificial intelligence tools continuously learn from specific data, thereby updating the model 
[4]. Therefore, contemporary research is oriented towards developing new artificial intelligence 
models to address specific tasks. The process of model parameter identification is frequently 
considered [5]. This allows for the discovery of new parameters and enhances prediction accuracy. 

Prediction accuracy is also improved by creating neural network controllers, as exemplified in 
[6]. A notable feature of the proposed solution is the existence of a real-world model from which 
data is collected and fed into the artificial intelligence model. This work is among the pioneering 
efforts that have unlocked new possibilities for artificial intelligence applications. In addition to 
developing models that predict the position of actuators, the selection and integration of other 
equipment, particularly video cameras, with the control system is crucial. Study [7] proposes a PTZ 
camera control system that automatically detects and tracks moving objects in real-time, utilizing 
their center, direction of motion, distance, and speed, regardless of the camera's focusing function. 
Implemented on a TI DM6446 DSP processor, this system demonstrates high efficiency in tracking 
high-speed vehicles. The study also highlights the limitations of software camera focus, 
underscoring the necessity for a motor-driven movement system. 

Article [8] focuses on the development of Complementary metal-oxide semiconductor image 
sensor and its applications in aerospace, medical and automotive fields. The sensor can be created 
in specialized software and manufactured at the enterprise. Such sensors can expand the 



capabilities of computer vision systems in interaction with other equipment, primarily cameras. 
Therefore, this study expands on previous work [7]. 

For construction applications, [9] proposes an automated tracking system for construction 
machinery on unmanned construction sites, combining image processing and machine learning 
techniques to improve accuracy and reliability. This system utilizes a platform that adjusts 
direction as needed, but via manual command. Although the algorithm provides stable and 
continuous imaging, it is hampered by the issue of manual control. Research [10] introduces a 
novel Position Alignment Method (PAM) that automatically, accurately, and rapidly aligns 
coordinate systems, ensuring error-free calibration in remote camera control. Experimental 
comparisons show that PAM outperforms manual methods in terms of accuracy, stability, and 
operational speed, and is more flexible for use in telerobotic camera control. 

The use of motors increases the camera's range of motion, but in [11], an algorithm for 
automatic detection, tracking, and zooming of active targets using a camera with an already wide 
range of motion is presented, improving the resolution of distant objects. The proposed system 
optimizes disk space usage by stopping recording when no targets are present and provides 
adaptive tracking of multiple objects with motion prediction to minimize image quality loss and 
reduce the need for camera movement. Study [12] demonstrates a developed automatic position 
correction module for an image inspection system, which enables the camera to adjust its pose and 
position based on detected object displacement or rotation errors. Results show that the system 
with position correction significantly enhances productivity by automating the optical quality 
inspection process. 

Any platform movement destabilizes the camera, reducing image quality and tracking accuracy. 
The visual tracking system for mobile robots proposed in [13] stabilizes images during motion 
using a combination of feedforward control from gyroscope and encoder data (VOR) and periodic 
feedback correction (OKR). Study [14] presents a visual tracking system for a mobile robot that 
uses stereo camera and motion sensor data to maintain a line of sight to a stationary target. Vision-
based compensation is applied to correct motion measurement errors, activated when the robot 
stops or moves slowly, ensuring high tracking accuracy without overloading the system. The 
background suppression algorithm, considering camera motion to minimize the impact of its 
oscillations caused by wind or heavy transport vibrations, which is especially critical at high focal 
lengths, is presented in [15]. During motor movement, the proposed data processing-based 
stabilization approach to compensate for camera rotation in real-time in [16] improves tracking 
accuracy of features and estimation of independent camera motion. Experiments show that 
stabilization increases accuracy by 27.37% for feature tracking and 34.82% for independent motion 
estimation, and reduces processing time by 25%. 

The use of motors is also necessary for calibrating installed cameras. Study [17] proposes a 
rotation-based camera and gyroscope calibration method that eliminates the need for targets and 
accurately estimates intrinsic camera parameters and extrinsic system parameters. The method is 
verified on real data from a low-cost platform, making it suitable for lightweight robotic platforms 
equipped with cameras and gyroscopes. 

The developed camera stabilization control system on a gimbal for unmanned aerial vehicles 
(UAVs), used for tasks such as target tracking, surveillance, and aerial photography in [18], shows 
that traditional PID control is less effective compared to PID control with settings tuned by the 
PSO algorithm. 

In the context of enhancing the reliability and efficiency of data processing systems, it is crucial 
to use methods that ensure error resistance and high performance [19]. In this context, Residue 
number systems (RNS) can play a key role. Prior studies [20] and [21] analyze the impact of 
Residue Number Systems on error resistance and the efficiency of computer systems, particularly 
in the context of error diagnostics in data processing devices. 

Considering the advantages of RNS in providing parallel computations and error resistance, 
their application in tracking systems can enhance data processing speed and reliability, especially 



in industrial settings where speed and accuracy are critical. Further research will focus on 
integrating RNS into tracking systems to improve their performance. 

3. Tools for development of a neural network-based motor position 
controller in a system for tracking objects of complex shapes 

This research was conducted using a Raspberry Pi single-board computer, a Nema 17 stepper 
motor, a TB6600 stepper motor driver, and an HD 2MP video camera, as illustrated in Fig. 1. 

 

Figure 1: Prototype of the investigated electrical circuit equipment based on the Raspberry Pi 
single-board computer. 

Two approaches to action strategies were considered. The first action strategy involved 
developing an object tracking system with camera movement when the tracked object reached the 
edge of the graphical interface. The second action strategy involved developing an object tracking 
system with camera movement controlled by a neural network when the tracked object reached 
the edge of the graphical interface. 

As neural networks, Facebook Prophet [22] and Long Short-Term Memory (LSTM) [23] were 
studied. To determine the signal shape and train the neural network, a single video sequence was 
used, and the tracking object's movement data were recorded in a .csv file for in-depth analysis. 
The input data included the object's displacement from the center of the graphical interface and 
time in seconds, which were recorded in a Table 1. 

Table 1 
Comparative analysis of the displacement of the investigated area's position and stepper motor 
operating time 

No. 
 

Without neural network-based 
controller 

With neural network-based controller 

Displacement of the investigated 
area's position 

Time, 
seconds 

Displacement of the 
investigated area's position 

Time, 
seconds 

1 -70 0.10867 -70 0.10867 
300 120 83.682 120 83.553 

 Standard deviation 168.88 Standard deviation 164.11 
 
Justification of the neural network model selection required the use of a test video sequence 

(self-created) to capture the signal shape, as shown in Fig. 2. 



 

Figure 2: Signal shape of object tracking during object movement along the x-axis left and right 
for neural network selection. 

In the research process, the Python programming language [24] and external libraries installed 
in the single-board computer's environment, myenv, were used, as depicted in Fig. 3. 

 

 

Figure 3: Setting up the Prophet neural network library. 

The primary video stream processing library was cv [25]. The gpiozero library [26] was used for 
stepper motor control. The analysis of accumulated data involved several standard libraries, 
including pandas, numpy, and matplotlib, which are implemented in the programming language 
[24]. Neural networks required the use of the sklearn [27] and tensorflow [28] libraries. In addition 
to these library packages, the Prophet library [22] was used. To build the models, the methodology 
was used [27], [28]. 

The configuration of the Prophet library, with the prior installation of additional libraries 
necessary for Prophet to function, particularly plotly [29] for graphical interpretation of the results, 
is shown in Fig. 3. 

The developed models were saved in a .h5 file for use on the Raspberry Pi. Thus, the basic tools 
for conducting the research were prepared. 



The main idea of tracking is to maintain the tracked object, especially during camera movement 
by the stepper motor. For this purpose, an interface with specific functionality was created. The 
buttons included settings for region of interest (ROI): w for forward, s for backward, a for left, d for 
right, enter to start tracking, +/- for scaling, q to end tracking, r to start recording offset and time, 
and t to finish recording. Key elements of the tracking system are the tracking algorithms, which in 
this study included Channel and Spatial Reliability Tracker, Kernelized Correlation Filters, 
Minimum Output Sum of Squared Error Filter, and Multiple Instance Learning. 

The development of the tracking or object following system was carried out according to the 
following subtasks: 

1. The ROI should appear in the center of the graphical interface, and upon ending tracking 
(button q), the ROI should return to the center position. 

2. The operator selects the tracking area and adjusts the ROI scale. 
3. Upon starting tracking, the program should determine the distance from the ROI to the left 

and right boundaries and to the center of the graphical interface. 
4. If the distance between the ROI and the boundary is less than 20 px, the camera should 

move 1 step left or right (depending on the ROI position). 
5. When the distance from the ROI to the edge of the interface is too large, the stepper motor 

should perform one step at a time to avoid losing the detected object. 
6. Do not accelerate the stepper motor's movement, even when the ROI is close to the edge of 

the graphical interface. Limit the number of steps. 
7. Display information about the ongoing action on the interface. 
8. Use the gpiozero library to control the stepper motor. Stepper motor configuration: dirPin = 

16, stepPin = 12, MAX_ANGLE = 30 # -30 to +30 degrees, STEP_ANGLE = 1.8 # Stepper 
motor step in degrees (e.g., 200 steps per revolution -> 1.8 degrees per step). 

9. To determine the stepper motor's rotation direction, self.direction.value = 0, use the 
condition if direction > 0 else 1 (1 for clockwise rotation, otherwise counterclockwise). 

The software also had requirements for debugging the implemented program texts. During 
debugging data recording, if the object is lost, recording should stop, and resume when the object 
reappears in the frame. If the object is lost and cannot be found, the operator should exit tracking 
mode, reconfigure tracking mode, and continue data recording.  

Comparative analysis of the studied values was carried out using the standard deviation 
criterion (see Table 1). 

4. Results of modeling a neural network-based motor position 
controller in a system for tracking objects of complex shapes 

4.1. Development and debugging of the basic functionality of object tracking 
without a neural network controller 

According to the research program, the primary step involved the implementation of software for 
object tracking with a video camera displacement system upon the tracked object reaching the 
extreme position of the graphical interface. The software implementation was carried out in 
several files, specifically import_cv2.py, import_cv2-1.py, import_cv2- -4-1.py. 

During the debugging of the proposed solution, implemented in the import_cv2.py file, certain 
errors arose, notably the selection of an excessive number of stepper motor steps. This led to a 
technical loss of the detection object, as the camera rotation angle was too large. Introducing the 
camera's limitation during the discussion of the initial hardware setup and early challenges makes 
sense. It provides context for potential issues encountered during the debugging phase, even if 
those specific issues weren't directly caused by the camera resolution. It is important to note that 
the system at this stage utilized a 2MP camera, the resolution of which, while sufficient for initial 



testing, presented an inherent limitation in capturing fine details and could potentially impact 
tracking accuracy, especially for distant or small objects. 

The subsequent version of the software implementation, import_cv2-1.py, addressed the 
aforementioned issues. For instance, a decision was made to create a bounding box, 10% smaller on 
the left and right sides than the main graphical interface. Upon approaching the region of interest 
to the frame, the stepper motor with the camera was to be activated and adjust the camera 
position. However, this idea was also imperfect, as upon the region of interest approaching the 
frame, if the tracking object moved beyond the video stream, it was lost. 

In the import_cv2-2.py version, the number of stepper motor steps for camera movement per 
unit time was reduced. To enhance control over camera movements, the detection threshold of the 
bounding box of the studied area was increased to 15%. Text messages regarding the stepper motor 
speed and the tracking object position were added to the interface. Consequently, the following 
limitations were observed: if the detection object moves along the X-axis and exits the study area, 
the stepper motor does not rotate the camera. If the detection object is in the center of the study 
area, the motor rotates the camera by a specified step. These and other contradictions were 
addressed in subsequent software versions, with the desired result achieved only in import_cv2-4-
1.py, as shown in Fig. 4. 

 

 

Figure 4: Results of the proposed solution in laboratory conditions, command line (left), graphical 
interface of the tracking system (right). 

As shown in Fig. 4, the graphical interface has a classic layout. Control commands are 

located in the lower part, and status messages are displayed in the upper part. The tracking 

object is in the center of the frame. 

4.2. Rationale for selecting models of a neural network controller for tracking 
objects of complex shapes and their construction 

The subsequent part of the research was dedicated to the development and selection of an optimal 
neural network controller model, where two models, Prophet and LSTM, were compared. To verify 
the functionality of the Prophet model on a single-board computer, the first simple program was 
implemented (Fig. 5).  

As shown in Fig. 5, the model functions. At the next stage of the research, according to the 
research program, data accumulation was performed. As can be seen from the graph, the signal is 
close to sinusoidal, so a sinusoidal signal form was generated for 300 seconds (Fig. 6). The main 
goal of creating the model is to predict the signal a few seconds ahead, so that the stepper motor is 
activated in advance. 
 



 

 

Figure 5: Testing the functionality of the Prophet model on a Raspberry Pi single-board computer. 

 

Figure 6: Rationale for selecting the Prophet artificial intelligence model based on a theoretical 
dataset. 

Despite various ways of using the Prophet model, it does not reproduce the input signal in the 
form of a sinusoid, so it will not work adequately in the system being developed. Attempts to 
represent the new record Facebook Prophet=g(t⸱х1)⸱s(t⸱х2) ⸱h(t⸱х3)⸱noise as a mathematical 
notation and implement it programmatically did not show the desired result. Additionally, Auto 
Regressive Integrated Moving Average tools were used [30], but it has limitations on the number of 
variables. Further, the LSTM model with the Adam optimizer was used, training was performed on 
50 epochs, with batch_size=16. Before training the network, the classic steps of its construction 
were performed [31]. The sample was differentiated into training/test in a ratio of 75/25. The 
criteria for the quality of the model construction were the coefficients of determination on both 



subsamples and the value of loss='mse'. The actual and predicted values using LSTM model as 
shown in Fig. 7. 

 

 

Figure 7: Rationale for selecting the LSTM artificial intelligence model based on a theoretical 
dataset. 

As can be seen from Fig. 7, the actual and predicted values almost coincide, as evidenced by the 
calculated data. The coefficients of determination on the training/test samples are 0.98/0.98, which 
indicates the absence of overfitting, with loss: 0.0038 - val_loss: 0.0054. 

5. Experimental research and practical application 

Following the theoretical modeling, experimental modeling of the tracking system was 
conducted. For this purpose, a dataset was accumulated, as shown in Fig. 8. 

 

 

Figure 8: Example of experimentally accumulated data submitted to LSTM model for training. 

The data in Fig. 8 were initially examined for gaps, analyzed, and fed into the neural network, as 
shown in Fig. 9. 



 

Figure 9: Example of prediction using LSTM. 

The constructed model does not exhibit signs of overfitting, as evidenced by R2 values of 0.99 
for both subsamples. The graphical interpretation of the stepper motor displacement prediction 
result indicates high accuracy, as the actual and predicted data coincide. This is also confirmed by 
the training error loss: 0.0011 - val_loss: 0.0023. 

Based on the comparative analysis using the standard deviation criterion, the tracking system 
without a neural network controller demonstrates a standard deviation of 168.88, while the system 
with a neural network controller shows a standard deviation of 164.11. This allows for predicting 
the motor activation time for camera displacement depending on the position of the studied 
detection object. Let us apply the created solutions to practical tasks. The tracking distance was 
investigated from 0 to 300 meters. Algorithms such as Channel and Spatial Reliability Tracker, 
Kernelized Correlation Filters [32] and others do not detect images at a distance of 200-300 meters 
with a region of interest size of 30x30 px, even with image zooming. However, various factors 
influence this, including the object size. The quality of daytime object tracking correlates with 
natural factors (sunlight entering the camera lens), the object rapidly changing its trajectory, and 
tracking losing the object. As practice shows, the proposed solution works at a distance of up to 50-
60 meters in daylight. For example, a car of any color is tracked in daylight, as shown in Fig. 10. 

 

 

Figure 10: Example of testing the operating range of the tracking system (distance 50-60 meters). 

As shown in Fig. 10, the system tracks the car and person even in the presence of obstacles, 
such as trees. The solution can be used in industry or education for safety support. 

6. Analysis of limitations and shortcomings of the system 

The developed system for tracking objects of complex shapes, while demonstrating high efficiency 
under certain conditions, has a number of limitations that need to be considered for its further 
improvement and practical application. 



At this stage, the development does not include a specialized case for transportation, which 
limits its mobility and usability in field conditions. To expand the scope of application of the 
system, it is necessary to develop a reliable and convenient case that will ensure the protection of 
components during transportation and rapid deployment on-site [33]. To assess the economic 
feasibility and reliability of the system, it is necessary to conduct a detailed analysis of the cost of 
its components (camera, single-board computer, electric motor) and study their resistance to 
external influences [34]. Differentiation of components will allow determining the optimal ratio 
between cost and quality. The effectiveness of the system can vary significantly depending on the 
lighting level and the type of objects being tracked. To ensure stable operation of the system in 
different conditions, it is necessary to conduct experiments with different lighting levels (day, 
night, artificial) and different detection objects (people, vehicles, industrial parts). 

At this stage, the system is controlled using a keyboard, which limits its convenience and the 
possibility of remote control. To expand the functionality of the system, it is necessary to 
implement remote control using radio signals, Wi-Fi, or other wireless technologies, such as Mesh 
Networking [35]. To ensure autonomous operation of the system in field conditions, it is necessary 
to use specialized power modules, such as batteries or solar panels. The choice of power module 
should take into account the power consumption of the system components and the duration of 
autonomous operation. The effectiveness of using a neural network controller depends on the 
quality and volume of training data. To ensure adequate functioning of the system in different 
scenarios, it is necessary to pre-train the neural network on a large dataset that reflects different 
types of movements and observation conditions. 

Considering these limitations and shortcomings, further research will focus on their elimination 
and expansion of the functionality of the developed system. 

7. Conclusion 

The findings of this research demonstrate the successful development of a system for tracking 
complex-shaped objects within a 50-60 meter range under daylight conditions. The system 
effectively employs a 2MP camera and a stepper motor for automated camera position correction 
based on object movement at the interface edges. The implementation allows for operation both 
with and without an LSTM-based neural network controller, enabling a comparative analysis of 
their effectiveness. A comparative analysis of the tracking system with and without the LSTM-
based neural network revealed a marginal reduction in the standard deviation (164.11 vs. 168.88), 
suggesting a potential for enhanced positioning accuracy; however, it necessitates further rigorous 
optimization of tracking parameters, filtering, and signal smoothing. Optimization of operation is 
also possible by using more powerful equipment, such as video cards or acceleration.  

Future work will focus on a detailed experimental setup refinement, expanding system 
functionality through remote control and autonomous power, developing a protective 
transportation case, and a thorough investigation into cost-effectiveness and reliability across 
diverse lighting conditions and object types. Critically, upcoming research will prioritize enhancing 
the neural network's performance through experimentation with various architectures (e.g., CNN-
LSTM hybrids), increasing the size and diversity of the training dataset, and applying advanced 
optimization techniques to improve the motor position prediction accuracy. 
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