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Abstract 
The article presents the architecture of a lightweight Secure Boot mechanism specifically tailored for use 
in embedded IoT devices with limited hardware resources. Given constraints such as small memory 
capacity, lack of hardware cryptographic support, and the need to minimize power consumption, 
traditional secure boot schemes are often unsuitable for such systems. The proposed solution implements 
a multi-phase firmware integrity verification process prior to execution using the lightweight hash 
function SPONGENT-128/128/8, which offers acceptable resistance to attacks while maintaining low 
energy consumption and a compact implementation footprint. The mechanism verifies only critical 
memory regions, reducing system boot time to 21 29 ms and energy consumption to 10 11 J per check. 

and accuracy: in all test scenarios, modified firmware was successfully detected, after which the devices 
transitioned into a protected mode. Additionally, the performance and memory footprint of various 
cryptographic primitives (SPONGENT, PHOTON, BLAKE2s) were evaluated, justifying the selection of 
specific algorithms based on the hardware configuration. The developed solution does not require a 
digital signature in its basic configuration but supports it in an extended version based on ECDSA with 
160-bit curves, enabling source authentication even in the absence of a hardware trust module. The 
proposed mechanism can be integrated into practical solutions for medical, military, or industrial IoT 
systems, where balancing security, energy efficiency, and performance is critical. Promising directions for 
future research include obfuscation of the reference hash, implementation of trusted OTA updates, and 
expansion of support for emerging lightweight cryptographic algorithms. 
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1. Introduction 

The Internet of Things (IoT) is gradually transforming the concept of computing systems, shaping 
a new reality in which microcontrollers with limited hardware capabilities play a crucial role in 
mission-critical processes [1]. The embedded firmware of such devices serves as the core 
component that defines their functionality, interaction logic with the surrounding environment, 
and the overall reliability of the IoT system [2]. Compromising this layer of software opens the 
door to full control over the device and poses risks of unauthorized access, data manipulation, or 
loss of control. 

The initial boot phase is particularly vulnerable, as the embedded firmware has not yet activated 
standard security mechanisms [3]. This moment presents an opportunity for the injection of 
foreign or modified code that may go undetected without proper authenticity verification. In fully 
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featured computing systems, this problem is addressed by the Secure Boot mechanism, which 
performs cryptographic validation of the software before execution begins [4-6]. However, 
implementing a classical Secure Boot architecture in resource-constrained devices is often 
impractical due to its high demands on memory, energy consumption, and computational power. 

As the number of autonomous IoT devices continues to grow and their security increasingly 
determines the resilience of entire digital infrastructures, there is a pressing need for a tailored, 
lightweight secure boot mechanism capable of operating in resource-limited environments [7]. 

The goal of this research is to develop and experimentally validate an efficient lightweight 
Secure Boot mechanism for protecting the embedded firmware of IoT devices against unauthorized 
modification and the execution of untrusted code. 

2. Theoretical background and related works 

Protecting embedded firmware in devices with limited computational resources is a highly relevant 
research area in the context of establishing trust in a device from the very beginning of its boot 
process [8 10]. One of the key approaches in this domain is the concept of Secure Boot, which 
involves verifying the authenticity and integrity of the software before handing off control to the 
next stage of the boot process [11]. In typical architectures, this is achieved through cryptographic 
verification of a digital signature or a hash generated using a public key provided by the 
manufacturer or system administrator [12]. 

In fully featured computing systems, Secure Boot mechanisms are widely supported at the UEFI, 
TPM, and other hardware-software platform levels [13]. These systems ensure a high level of 
control and enable the implementation of a trusted boot chain (chain of trust) [14]. However, for 
IoT devices and other microcontroller-based systems such as STM32, ESP8266, or RISC-V 
platforms, traditional Secure Boot schemes cannot be directly applied due to constraints in 
memory, energy consumption, and the absence of hardware cryptographic support. 

Among existing approaches to adapting Secure Boot for such systems, the use of lightweight 
cryptographic algorithms-particularly hash functions based on BLAKE2s, SPONGENT, or 
PHOTON-stands out [15-17]. Lightweight implementations of digital signatures are also employed, 
such as those based on Ed25519 or ECDSA with shortened key lengths [18]. Research studies [19-
21] have explored the possibility of using one-way hashing without signatures, significantly 
reducing the load on the microcontroller, though at the cost of limited source authentication. Other 
approaches, as seen in [22, 23], demonstrate the feasibility of phased booting with verification 
limited to critical code segments, achieving a balance between security and performance. 

Additionally, the use of Secure Elements or Trusted Execution Environments (TEE) is being 
explored [24]. However, such solutions often exceed the capabilities of ultra-low-power devices 
performing only basic sensing or computational tasks. A persistent challenge is selecting a 
cryptographic core that ensures an adequate level of security without exceeding critical thresholds 
for energy consumption and boot latency [25]. This is especially crucial in medical and military IoT 
systems, where unpredictable delays or failures can lead to severe consequences. 

Despite ongoing efforts to adapt secure boot mechanisms to resource-constrained 
environments, there remains a lack of generalized architectures that can seamlessly integrate 
Secure Boot into common IoT platforms without sacrificing efficiency. This highlights the need for 
a new approach to designing a lightweight Secure Boot mechanism based on compact 
cryptographic primitives, streamlined verification logic, and scalability across various 
computational configurations. 

3. Technical requirements for lightweight Secure Boot 

The operation of the Secure Boot mechanism in devices with low hardware resources requires a 
rethinking of standard secure boot requirements and their adaptation to the specific nature of 
embedded systems. Unlike fully featured computing platforms, IoT devices often lack advanced 



security infrastructure, such as large non-volatile memory, dedicated hardware cryptographic 
modules, or secure key storage. In such environments, the development of a lightweight Secure 
Boot mechanism demands a clear definition of technical requirements that preserve the core 
properties of secure startup while remaining feasible under constrained conditions. 

To better understand the technical limitations under which a lightweight Secure Boot must 
operate, it is essential to analyze the computational characteristics of common microcontroller 
platforms. Figure 1 presents a comparative overview of ROM, RAM, and CPU specifications for 
three representative Internet of Things architectures.  

 

Figure 1: Resource constraints in typical IoT platforms [26]. 

As shown in Figure 1, even the most powerful microcontrollers in their class, such as the 
ESP8266, operate with limited RAM and computational capabilities, and none of the listed 
platforms provide built-in hardware cryptographic mechanisms. These limitations necessitate the 
use of lightweight cryptographic primitives and minimal verification logic during the secure boot 
process. 

First and foremost, a critical requirement is ensuring the integrity verification of the embedded 
firmware before it is executed. This involves verifying a checksum or hash of the main firmware 
against a predefined reference value. To achieve this, a lightweight cryptographic hash function 
must be used  one that offers sufficient resistance to collisions and forgery while maintaining low 
energy consumption and a compact implementation footprint. Functions such as SPONGENT, 
PHOTON, or simplified versions of BLAKE2s can be utilized on compatible microcontroller 
architectures. 

When selecting a hash function under resource-constrained conditions, it is important to 
consider not only cryptographic strength but also the technical characteristics of the 
implementation. Table 1 provides a comparison of lightweight hash functions that may be used in 
the Secure Boot mechanism on STM32 and ESP8266 microcontrollers.  

As shown in Table 1, SPONGENT has the lowest energy consumption but is less resistant to 
collisions compared to PHOTON and BLAKE2s. Meanwhile, BLAKE2s offers the highest level of 
cryptographic robustness but requires more computational resources. 

The second critical requirement is protecting the bootloader itself the component responsible 
for verifying the main firmware.  

This element should be stored in a secure memory region, preferably in non-volatile or read-
only memory. In the absence of hardware-based memory partitioning, it is important to ensure at 
least a unified trust chain verification mechanism, based on cryptographic linkage between the 
bootloader and the main firmware. 

 



Table 1 
Comparison of Lightweight Hash Functions for Secure Boot Applications 

 

Another key parameter is the available memory for implementing Secure Boot both code and 
runtime memory. On many common IoT platforms, flash memory may be limited to 128 or 256 KB, 
with RAM availability restricted to just a few kilobytes. Therefore, any algorithm or verification 
structure must be implemented compactly, with minimal overhead, and must not interfere with the 

 
Execution time and main program startup latency must also be considered. A lightweight 

Secure Boot mechanism should ensure minimal initial verification time, as even small delays can be 
critical in many real-time or sensor-based devices. The balance between security level and boot 
speed should be determined experimentally, based on acceptable timing thresholds for the specific 
application. 

Additionally, a reliable source of the reference hash or digital signature must be available and 
protected from tampering. In the absence of hardware key storage, such as a Trusted Platform 
Module or Secure Element, it is advisable to store the reference value in encrypted form or embed 
it directly into the initial bootloader. 

Figure 2 illustrates an extended architectural model of the Secure Boot mechanism for resource-
constrained microcontrollers. This model includes not only basic hash comparison but also secure 
storage, random number generation, and a public key reference, reflecting practical 
implementations in real-world IoT devices. 

 

Figure 2: Minimal components of Secure Boot for a microcontroller. 

The inclusion of secure storage for hashes and trusted keys enables authenticity verification 
without relying on heavy cryptographic modules, while a fallback path ensures resilience in case of 
tampering or hash mismatches. 

Hash 
Function 

Implementa
-tion Size 

(bytes/gates) 

Computation 
Time 

Collision 
Resistance 

Power 
Consumption 

Support on 
STM32 / 
ESP8266 

SPONGENT 2260 gates Low Moderate Very Low Yes / Partial 

PHOTON 2177 gates Medium High Low 
Yes / 

Experimental 
BLAKE2s  High Very High Medium Yes / Optimized 



A lightweight Secure Boot mechanism must meet a set of requirements that provide basic 
cryptographic verification of software authenticity while maintaining system operability within 
constrained computational, energy, and timing resources. 

4. The proposed architecture of the lightweight Secure Boot 
mechanism 

In the proposed approach, Secure Boot is implemented as a lightweight multi-phase verification of 
the integrity and authenticity of embedded firmware, tailored for IoT devices with limited 
computational resources. The architecture takes into account constraints such as minimal memory 
usage, limited processing power, and system responsiveness, while providing a basic level of 
security without the need for hardware cryptographic modules. 

4.1. Overall operation scheme 

The Secure Boot mechanism in the proposed architecture is implemented as a sequence of integrity 
verification stages for the main firmware prior to its execution. Its purpose is to ensure that only 
authentic and unmodified software is allowed to run. Immediately after power-on or device reset, 
the system initializes the bootloader, which serves as the sole entry point into the system before 
the main program is executed. 

The bootloader accesses a secure memory region where the reference hash of the main 
firmware is stored. Simultaneously, it computes the hash of the current firmware content using a 
lightweight hash function. The system then compares the reference hash with the computed hash. 
If they match, control is handed over to the main firmware. If not, the device enters a lock state 
(Safe Mode) or switches to a fallback scenario. 

Figure 3 illustrates the overall Secure Boot logic, highlighting key components and processing 
flows. Upon successful verification, the system proceeds to execute the main functional code. 

As shown in Figure 3, the proposed structure implements a multi-phase approach in which key 
verification steps are performed before the main code is executed. By relying solely on lightweight 
cryptographic primitives and verifying only critical memory regions, such as the interrupt vector 
table, initialization blocks, or data handling functions, the system minimizes computational 
overhead. Additional components, such as the random number generator, public key, and secure 
storage, are activated only when needed and are not involved in the main verification loop, which 
reduces energy consumption. 

This approach allows for flexible scalability of the architecture according to the capabilities of a 
specific hardware platform while maintaining basic authenticity and integrity checks. As a result, it 
achieves an effective balance between boot-time performance, energy efficiency, and compatibility 
with the limited resources of typical IoT devices. 



 

Figure 3: General workflow of the proposed lightweight Secure Boot mechanism. 

4.2. Cryptographic elements used 

Given the limited computational capabilities of the target devices, the SPONGENT-128/128/8 hash 
function was selected for its balance between attack resistance and compact implementation. This 
function is based on a sponge construction composed of permutation rounds and bitwise 
operations, allowing the generation of variable-length hash outputs from limited input blocks. A 
notable feature of SPONGENT is its ability to operate efficiently even on microcontrollers with 
clock speeds below 100 MHz, consuming minimal energy (less than 10 µJ per operation). The 
hashing algorithm can be represented as (1). 

𝑍 = 𝑆𝑝𝑜𝑛𝑔𝑒[𝑓, 𝑝𝑎𝑑, 𝑟](𝑀), (1) 

where 𝑓  s the internal permutation function (in SPONGENT, built from multiple rounds), 𝑝𝑎𝑑  
is the padding algorithm used to extend the message to the required length 𝑟 = 8  is the number 
of bits processed per round, 𝑀  is the input message (firmware content or its critical segments), 𝑍 

 is the resulting hash output. 
The processing sequence is as follows:  

1. Initialization of the internal state  𝑆0 = 𝐼𝑉.  
2. Absorbing rounds  𝑆𝑖+1 = 𝑓(𝑆𝑖⨁𝑚𝑖) for each input block 𝑚𝑖.  
3. Output generation: extract the first 𝑛 bits from the final state 𝑍 = 𝑓𝑖𝑟𝑠𝑡𝑛(𝑆𝑘). 

This approach enables the generation of variable-length hashes without the need for complex or 
energy-intensive operations. In critical real-time devices, SPONGENT allows integrity verification 
with minimal system startup delay. 



In cases where the device architecture supports the use of more advanced algorithms, BLAKE2s 
may be employed, offering higher cryptographic robustness and well-established implementations 
in various security libraries. PHOTON may also be used, as it demonstrates strong resistance to 
differential and linear cryptanalysis while maintaining a compact implementation suitable for 
platforms with memory constraints as low as 8 KB. 

In the basic version of the architecture, the Secure Boot mechanism does not use a digital 
signature, which helps reduce code size, the number of large-number operations, and startup delay. 
However, in scenarios where firmware source authentication is critical, an extended version is 
provided that utilizes a lightweight digital signature based on ECDSA with 160-bit curves (e.g., 
secp160r1). This type of signature requires a minimum of two elliptic curve multiplications during 
verification but can still ensure authenticity even if an attacker has access to external memory. 

The signature verification procedure in this case is carried out as follows: 

1. The message hash (firmware) is computed  𝑒 = 𝐻𝐴𝑆𝐻(𝑀). 
2. Auxiliary values are then determined  𝜛 = 𝑠−1 𝑚𝑜𝑑 𝑛 𝑢1 = 𝑒 ∙ 𝜛 𝑚𝑜𝑑 𝑛, 𝑢2 = 𝑟 ∙

𝜛 𝑚𝑜𝑑 𝑛.  
3. A point on the curve is calculated   𝑃 = 𝑢1𝐺 + 𝑢2𝑄𝑃, where 𝐺  is the base point, 𝑄  is 

the public key, and 𝑟, 𝑠𝑟  are the signature parameters. 
4. Authenticity check   𝑟 ≡ 𝑥𝑃 𝑚𝑜𝑑 𝑛. 

 
Where 𝑥𝑃  is the x-coordinate of point 𝑃, resulting from the computation. All elliptic curve 

operations are implemented using arithmetic over a prime field ppp, and the public part of the key 
may be stored in ROM, embedded in the bootloader, or securely extracted from an external source. 

The authenticity of the hash is verified using a public key, which may be stored in one of the 
following ways: 

• in non-volatile ROM memory (secured option), 
• hardcoded into the initial bootloader, 
• loaded from an encrypted source, assuming a decryption module is available. 

This approach enables the establishment of a one-way chain of trust even in the absence of a 
full-fledged TPM or Secure Element. Digital signature generation or verification is activated only 
during the update phase or when verifying the reference hash, avoiding impact on the main boot 
cycle and helping to prevent energy spikes during critical operation modes. 

4.3. Code storage and verification 

The reference hash of the main firmware is stored in a protected flash memory region, to which 
the bootloader has read-only access. In some implementations where hardware-based memory 
partitioning is available, a dedicated ROM segment is used to ensure the immutability of the 
reference value. 

A key feature of the implementation is that it does not verify the entire firmware but only its 
most critical sections, such as the initialization code, interrupt vector table, and network traffic 
handling functions. This reduces the computational load and allows verification to be completed 
within an acceptable time frame. The boot strategy is based on a fail-stop logic: if a mismatch is 
detected, execution of the main program is denied, and the device enters either a locked or fallback 
mode. 

The sequence of steps for verifying the authenticity and integrity of the software includes the 
following stages: 

1. After power-up or device reset, the bootloader is activated, performing basic system 
initialization and memory access verification. 



2. The boundaries of critical firmware regions to be verified are defined. These may include 
areas containing initialization code, the interrupt vector table, or functions responsible for 
handling network traffic. 

3. The bootloader initiates hashing of the selected segments using a lightweight hash function 
(SPONGENT, PHOTON, or BLAKE2s), adapted for low-performance environments with 
limited energy consumption. 

4. The computed hash is compared to the reference value stored in a protected memory 
region. The comparison is performed without storing intermediate copies in volatile 
memory, preventing tampering during the verification process. 

5. If the hashes match, the bootloader transfers control to the main program, which begins 
execution according to the loaded logic. 

6. If a mismatch between the computed and reference hash is detected, the system 
immediately halts the boot process and enters a secure state, such as Safe Mode, interface 
lockout, or initiates a recovery or update process from a trusted source. 

7. To enhance reliability, some implementations allow storing multiple valid hashes, enabling 
support for several firmware versions and implementing a fallback boot mechanism. 

The proposed verification sequence adheres to security principles while accounting for the 
ally limited 

resources. 

5. Experimental evaluation and performance assessment 

To evaluate the functionality of the proposed Secure Boot architecture, an experimental 
implementation was carried out on two typical IoT-class platforms: the STM32F103C8T6 (an ARM 
Cortex-M3-based microcontroller with a 72 MHz clock) and the ESP8266 NodeMCU (Tensilica L106 
processor, 80 MHz). Both microcontrollers are widely used in low-power projects and feature 
limited RAM, making them suitable candidates for assessing the mechanis
resource-constrained conditions. 

A Secure Boot prototype was implemented, which included a 5.1 KB bootloader, a SPONGENT-
128/128/8 hash computation module, secure storage of the reference hash, and a verification 
routine executed before launching the main application. A 32 KB firmware program was used for 
testing, with intentional modifications made to critical sections such as the interrupt vector table 
and data processing functions. 

Programming was done in C using the GCC compiler (for STM32) and Arduino Core (for 
ESP8266). Timing, energy consumption, and code size were measured using STM32CubeMonitor, 
an INA219 sensor (for real-time current measurement), and a Tektronix oscilloscope. Experimental 
results showed that the full verification cycle took 21.7 ms on the STM32 and 29.1 ms on the 
ESP8266. SPONGENT hash computation accounted for 18.2 ms and 25.4 ms, respectively, with 
energy consumption per verification not exceeding 10 11 microjoules. The compiled Secure Boot 
code size was 6.4 KB for STM32 and 7.1 KB for ESP8266. 

Three key metrics were used to assess efficiency: verification time, energy consumption during 

and simulating tampered code. The experimental results are presented in Table 2. 
As shown in the table, both platforms demonstrate high accuracy in detecting modified 

firmware without introducing noticeable system startup delays. The lowest values for energy 
consumption and verification time were achieved through the use of lightweight cryptographic 
primitives and limiting verification to only the most critical memory segments. This makes it 
possible to effectively integrate protection into systems that are sensitive to latency or rely on 
battery-powered operation. The results confirm the viability of the proposed architecture as a 
flexible solution for secure boot in resource-constrained devices. 



Table 2 
Experimental Evaluation of the Proposed Secure Boot Implementation 

The system successfully detected firmware tampering: in cases where control bytes were 
altered, the device entered a safe mode without executing the main application. This demonstrates 

 even in scenarios where physical 

signatures and elliptic curve cryptography, the proposed lightweight hashing variant achieved 3 4 
times faster startup and an order of magnitude lower energy consumption. 

However, the basic implementation does not address protection of the reference hash against 
direct reading, which could be critical in cases of physical compromise. Future research is planned 
to focus on integrating obfuscation techniques, the use of a Secure Element, and implementing 
trusted remote (OTA) updates with server-side cryptographic validation. The results obtained 
confirm the feasibility of deploying the mechanism in practical IoT solutions, where the 
combination of security and energy efficiency is essential. 

6. Discussion 

The experimental results confirmed that the proposed lightweight Secure Boot mechanism can be 
effectively implemented on resource-constrained microcontrollers, maintaining a balance between 
performance and a basic level of security. The use of a lightweight hash function and the 
restriction of verification to critical firmware segments enabled acceptable boot times and minimal 
energy consumption, which are particularly important for autonomous IoT devices. The successful 

counter basic threats without requiring complex hardware modules. 
However, certain limitations remain relevant. Specifically, storing the reference hash in 

plaintext even within protected flash memory leaves room for potential attacks in cases of physical 
access to the device. Additionally, the current implementation lacks a secure firmware update 
mechanism, which complicates deployment in dynamic environments with frequent updates. 
Integration with external trust sources or remote verification servers is also not addressed, which is 
essential for establishing a full chain of trust. 

Promising directions for future research include integrating encryption or obfuscation 
mechanisms for the reference hash, implementing an extended version with digital signature 
support, and using external hardware components such as a Secure Element or TPM. Special 
attention should be given to optimizing energy consumption during updates and developing an 
architecture that supports secure remote updates with server-side verification. It is also advisable 
to expand support for modern cryptographic algorithms optimized for energy efficiency and to 
include behavior monitoring tools during boot to build an adaptive, self-healing security system.  

7. Conclusions 

This article presents the architecture of a lightweight Secure Boot mechanism adapted to the 
resource-constrained conditions of IoT devices. The proposed approach is based on the use of 
lightweight cryptographic primitives, particularly the SPONGENT-128/128/8 hash function, and 

Metric STM32F103C8T6 ESP8266 NodeMCU 

Bootloader size 6.4 KB 7.1 KB 
Hashing time (SPONGENT) 18.2 ms 25.4 ms 

Full verification time 21.7 ms 29.1 ms 
Energy per verification 9.8 µJ 11.3 µJ 

Memory overhead (RAM) < 512 bytes < 768 bytes 
Detection of tampering 100% 100% 

Main firmware protection reaction Safe Mode or rollback Safe Mode or rollback 



focuses on verifying only the critical segments of the firmware to minimize energy consumption 
and startup time. The solution does not require hardware cryptographic modules and can be 
implemented on popular microcontrollers such as STM32 and ESP8266. 

The experimental implementation confirmed the feasibility and efficiency of the developed 
mechanism: the verification delay was under 30 ms, and energy consumption remained within 10
11 microjoules. All firmware modifications were successfully detected, demonstrating the 
suitability of the proposed approach for systems where both security and energy efficiency are 
critical. 

The results of this study open up possibilities for further improvement of the architecture, 
including the integration of digital signature support in the extended configuration, obfuscation of 
reference hashes, and incorporation of a secure software update module. The proposed solution is 
flexible and scalable across different device classes, making it a potential foundation for building 
trusted IoT environments. 
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