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Abstract 
This paper presents an intelligent system for hyperspectral image classification based on an enhanced 
generative adversarial network with embedded label conditioning. The proposed architecture enables 
effective augmentation of limited training datasets with class-specific synthetic spectral samples. Key 
components include label embeddings, spectral regularization, and tailored loss functions designed to improve 
class separability in the feature space. Experiments on benchmark hyperspectral datasets demonstrate 
improved classification accuracy, even under scarce supervision. The approach shows strong potential for 
precision agriculture and vegetation monitoring applications. 
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1. Introduction 

The agricultural sector faces mounting challenges due to rapid population growth, climate variability, 
and diminishing natural resources. In response, precision agriculture has emerged as a promising 
paradigm that leverages advanced technologies to optimize crop production and resource utilization 
[1]. 

Among these technologies, hyperspectral imaging (HSI) stands out for its ability to capture 
highresolution spectral profiles across hundreds of contiguous bands. This rich spectral detail enables 
early detection of crop stress factors such as nutrient deficiencies, pest infestations, and water stress 
[2, 3]. When combined with thermal imaging, HSI provides complementary information to enhance 
crop monitoring during critical phenological stages. 

Conventional field-based monitoring methods, although accurate, are labor-intensive, time-
consuming, and inadequate for large-scale, real-time decision-making [4, 5]. In contrast, artificial 
intelligence (AI) models have demonstrated strong capabilities in processing high-dimensional remote 
sensing data efficiently, particularly when applied to data collected from satellites, unmanned aerial 
vehicles (UAVs), and ground-based platforms [6, 7, 8, 9]. 

Each platform has inherent trade-offs: satellites provide broad area coverage with lower spatial and 
temporal resolution [10], UAVs offer high-resolution imagery but are constrained by limited flight 
duration and operational cost [11], while ground systems provide precise, localized measurements 
with limited scalability [5]. 

Despite these limitations, the integration of satellite HSI data with AI-based analysis and sensor 
fusion has shown promise as a scalable and cost-effective solution for real-time agricultural 
monitoring over large areas. This study builds upon this foundation, focusing on enhancing 
hyperspectral image classification through deep generative modeling. 
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2. Hyperspectral and Multispectral Imaging 

Hyperspectral imaging (HSI) captures detailed reflectance information by collecting hundreds of 
narrow, contiguous spectral bands, spanning visible to short-wave infrared (SWIR) wavelengths. This 
enables detection of subtle physiological variations in crops, such as water stress, chlorophyll 
deficiency, or early disease presence [2, 13]. 

By contrast, multispectral imaging (MSI) acquires data in a limited number of wide spectral bands 
(typically 3 15), often corresponding to red, green, blue (RGB), near-infrared (NIR), and red-edge 
ranges. While MSI supports widely used vegetation indices such as NDVI and EVI, it lacks the spectral 
resolution needed to distinguish between spectrally similar vegetation types [5]. 

This rich spectral-spatial structure makes HSI suitable for classification, target detection, and 
anomaly identification tasks [18]. However, its high dimensionality also introduces computational and 
statistical challenges. Specifically, it increases memory consumption and training time, and 
exacerbates overfitting in machine learning models. 

To mitigate these issues, dimensionality reduction methods such as Principal Component Analysis 
(PCA), Independent Component Analysis (ICA), and deep autoencoders are often applied prior to 
classification [7, 15]. 

Modern approaches to HSI classification rely on deep learning architectures such as 2D/3D CNNs 
and hybrid transformers that jointly capture spatial and spectral features [9, 8]. Still, they face 
difficulties stemming from spectral redundancy, class imbalance, and limited labeled data. 

These limitations motivate the use of generative models to augment the training set with synthetic 
but realistic hyperspectral samples, particularly in low-resource settings. 

3. Generative Modeling for HSI Classification 

Hyperspectral image (HSI) classification is often hindered by two critical limitations: the scarcity of 
labeled data and the significant imbalance between common and rare classes. These issues are 
especially problematic in agricultural monitoring, where data collection is costly and class boundaries 
are often spectrally ambiguous. 

To alleviate these challenges, Generative Adversarial Networks (GANs) have emerged as a viable 
solution. A classical GAN consists of a generator that synthesizes realistic data samples and a 
discriminator that distinguishes real from synthetic inputs. When extended with a class-conditioning 
mechanism via an auxiliary classifier, this framework forms the Auxiliary Classifier GAN (AC-GAN) 
[11], capable of producing labeled synthetic spectra. 

However, training GANs in high-dimensional spectral domains is prone to instability and mode 
collapse. The Wasserstein GAN with Gradient Penalty (WGAN-GP) introduces improvements by 
replacing the Jensen Shannon divergence with the Wasserstein-1 distance, while enforcing the 
Lipschitz constraint through gradient penalty [12]. This modification enhances convergence and 
training robustness. 

By combining both approaches, the AC-WGAN-GP model provides a promising foundation for 
hyperspectral classification. It enables stable conditional generation by feeding the generator with 
Gaussian noise, PCA-reduced spectral vectors, and one-hot encoded class labels. The discriminator 
learns to distinguish real from fake samples, while the auxiliary classifier encourages semantic 
consistency in generated outputs. 

Nonetheless, several shortcomings remain unresolved. One-hot labels do not capture inter-class 
 

generator is often underutilized, particularly in class-overlapping or data-sparse regions. Moreover, 
the architecture does not explicitly mitigate class imbalance, resulting in under-representation of 
minority categories. 

To address these limitations, we propose a series of architectural and training refinements to the 
AC-WGAN-GP model. These include replacing one-hot labels with learnable class embeddings to 
reflect semantic proximity, incorporating residual deconvolution and cross-attention in the generator 



for enhanced spectral fidelity, and upgrading the discriminator with Layer Normalization and 
minibatch discrimination for better generalization. The classifier is restructured to jointly process both 
spectral features and label embeddings, enabling more discriminative and robust feature learning. 

The following section presents the full specification of the improved model, along with a training 
strategy designed to avoid data leakage and promote effective representation of rare or spectrally 
ambiguous classes. 

4. Problem Formulation of Hyperspectral Image Classification Using 
AC-WGAN-GP 

In hyperspectral image classification tasks involving generative models, evaluation metrics play a 
crucial role in objectively comparing model performance and quantifying improvements resulting 
from architectural modifications. In this study, we employ three widely adopted metrics: Overall 

𝜅), which are standard in 
hyperspectral classification research [21, 20, 18]. 

While global metrics like OA, AA, and 𝜅 assess overall performance, per-class metrics Precision, 
Recall, and F1-score reveal how well individual classes are classified. 

Overall Accuracy (OA) is a standard metric in HSI classification that measures the proportion of 
correctly predicted samples among all test samples: 

𝑂𝐴 =
1

𝑁
∑ ℎ𝑖𝑖

𝐶̅

𝑖=1

, (1) 

where 𝑁 is the total number of test samples, 𝐶̅ is the number of classes, and ℎ𝑖𝑖 represents correctly 
classified samples of class 𝑖 (confusion matrix diagonal). 

Average Accuracy (AA) evaluates classification performance across all classes equally, regardless 
of class size. It is calculated as the mean of per-class accuracies: 
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1
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where 𝐶̅  is the number of classes, ℎ𝑖𝑖 the correctly classified samples for class 𝑖, and 𝑁𝑖 the total 
test samples in class 𝑖. 

The Kappa coefficient (𝜅) measures agreement between predicted and true labels while accounting 
for chance. Unlike OA, it reflects class distribution, making it suitable for imbalanced datasets [21, 20]. 
It is computed as: 
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where 𝑁 is the total number of test samples, 𝐶̅  the number of classes, ℎ𝑖𝑖 correct predictions, ℎ𝑖+ 
actual counts, and ℎ+𝑖 predicted counts per class. 

Precision is the proportion of correctly classified pixels of a given class among all pixels that the 
model has predicted as belonging to that class. The metric is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
ℎ𝑖𝑖

ℎ+𝑖 
, (4) 

where ℎ𝑖𝑖  number of samples of class 𝑖 correctly classified as class 𝑖; ℎ+𝑖  total number of 
samples predicted as class 𝑖 (regardless of their true class). 

Recall is the proportion of correctly classified pixels of a given class among all actual samples of 
that class. The metric is defined as: 



𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
ℎ𝑖𝑖

ℎ𝑖+
, (5) 

where ℎ𝑖𝑖  number of samples of class 𝑖 correctly classified as class 𝑖; ℎ𝑖+  total number of 
samples that truly belong to class 𝑖 (ground truth labels). 

The F1-score is the harmonic mean of precision and recall. It provides a balanced assessment of the 
class  
metric is defined as: 

 

𝐹1𝑖 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
, (6) 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  precision for class 𝑖; 𝑅𝑒𝑐𝑎𝑙𝑙𝑖  recall for class 𝑖. 

5. Proposed Method 

The proposed model builds upon the AC-WGAN-GP framework by introducing targeted 
improvements aimed at enhancing class-aware sample generation, increasing spectral diversity, and 
stabilizing training. The network still comprises three main components  generator (G), 
discriminator (D), and classifier (C)  but their internal architectures are modified to address key 
challenges such as class imbalance, spectral overlap, and limited supervision.  

The overall structure of the proposed architecture is illustrated in Figure 1, highlighting the internal 
connections between the generator, discriminator, and classifier modules. 

 

Figure 1: Enhanced architecture of the AC-WGAN-GP. 

To capture more informative conditional inputs, we introduce a Class-aware Sampling and Label 
Embedding (CS+LE) module. Labels are encoded as dense vectors and concatenated with PCA-
transformed spectral features and Gaussian noise. This allows the generator to operate in a more 
structured latent space, facilitating the creation of class-specific and spectrally consistent samples. 

The generator architecture is extended with ResNet-style Deconv1D blocks and a cross-attention 
mechanism that aligns spectral and label embeddings with intermediate features. Spectral Dropout is 
applied to improve generalization by randomly zeroing entire spectral bands, mimicking sensor noise 
or occlusion. 

In the discriminator, Batch Normalization is replaced with LayerNorm, ensuring stable gradients 
under gradient penalty regularization. To encourage diversity and mitigate mode collapse, a Minibatch 
Discrimination layer is included, allowing the model to detect and penalize overly similar samples. 



The auxiliary classifier is redesigned with a deeper convolutional stack and uses embedded labels 
to better reflect inter-class relationships. It outputs both classification scores and internal features used 
in contrastive and alignment-based losses, promoting more compact and discriminative feature spaces. 

To guide training, the loss functions for each module are expanded beyond standard adversarial 
objectives. The generator incorporates cosine similarity with class PCA centers, categorical loss, and 
alignment between features and label embeddings. The classifier combines class-weighted cross-
entropy, contrastive separation, cosine alignment, and embedding regularization. These terms are 
weighted by tuned hyperparameters to ensure balanced optimization across classes and objectives. 

All synthetic samples are generated in online mode and selected via spectral clustering from real 
training data. Only the most representative samples are used in training, maintaining separation from 
test data and ensuring reliable evaluation. 

5.1. Architectural Comparison of Baseline and Improved Models 

Tables 1 and 2 summarize the architectural differences between the baseline and improved AC-
WGANGP models. They detail the input/output dimensions, layers, normalization, and activation 
functions for each module (G: Generator, D: Discriminator, C: Classifier). 

Table 1 
Improved architecture of AC-WGAN-GP with embedded labels and residual blocks 

Module  Input Size Layer BN/LN Stride Padding Activation 

G 

1 Z+PCA+embed Dense + Reshape BN   ReLU 
2 1/8H×1×256 Cross-Attn + Concat     

3 1/8H×1×320 
ResNet Deconv1d 

(3×1×320×256) 
BN 2×1 SAME ReLU 

4 1/4H×1×256 
ResNet Deconv1d 

(3×1×256×128) 
BN 2×1 SAME ReLU 

5 1/2H×1×128 
ResNet Deconv1d 

(3×1×128×64) 
BN 2×1 SAME ReLU 

6 H×1×64 
Upsampling+Conv1

D (3×1×64×1) 
  SAME Tanh 

D 

1 H×1×1 Conv1d (3×1×1×64)  2×1 SAME LeakyReLU 

2 1/2H×1×64 
Conv1d 

(3×1×64×128) 
LN 2×1 SAME LeakyReLU 

3 1/4H×1×128 
Conv1d 

(3×1×128×256) 
LN 2×1 SAME LeakyReLU 

4 1/8H×1×256 
Conv1d 

(3×1×256×512) 
LN 2×1 SAME LeakyReLU 

5 1/16H×1×512 
Minibatch 

Discrimination 
    

6 1/16H×1×512 Flatten + Dense (1)    Linear 

C 

1 H×1×1 Conv1d (5×1×1×64) BN 1×1 SAME ReLU 

2 H×1×64 
Conv1d 

(3×1×64×128) 
BN 2×1 SAME ReLU 

3 1/2H×1×128 
Conv1d 

(3×1×128×256) 
BN 2×1 SAME ReLU 

4 1/4H×1×256 Flatten     

5 1/4H×256 
Dense + Label 

Embed 
BN   ReLU 

6 128 Dense (C)    Softmax 



Table 2 
Baseline architecture of AC-WGAN-GP 

5.2. Sample Selection and Label Smoothing 

To improve training stability and class balance, we implement a selective sampling approach for 
synthetic data. For each class, real samples are clustered using KMeans, and synthetic samples are 
selected based on cosine similarity to cluster centers. Both central and peripheral samples are chosen 
to ensure diversity. Labels are smoothed using a fixed coefficient . 

Input: Real data 𝒟, synthetic data 𝒢, classes 𝐶, smoothing 𝜀, ratio 𝑟 
Output: Filtered samples 𝒳, smoothed labels 𝒴 
for each class 𝑐 = 1 to 𝐶 do 

Cluster 𝒟с into 𝐾 clusters; 
foreach cluster do 

Measure similarity between 𝒢𝑐 and center; 
Select 𝑟% most and (1 𝑟)% least similar samples; 
Append to 𝒳 with label 𝑐; 

end 
end 
foreach label 𝑦i in 𝒴 do 

Smooth: 𝑦𝑖
𝑠𝑚𝑜𝑜𝑡ℎ =  (1 − 𝜀)  ∙  𝑦𝑖 +  𝜀/(𝐶 −  1); 

end 
return 𝒳,𝒴 

Algorithm 1: Simplified sample selection and smoothing. 

5.3. Loss Functions of the Improved AC-WGAN-GP 

The improved AC-WGAN-GP architecture employs a multi-component loss formulation to enable 
efficient and stable training across all network modules. Each component of the loss not only 
incorporates core adversarial objectives common to classical GANs but also introduces domain-
specific terms tailored to the challenges of hyperspectral classification. 

5.3.1. Generator Loss 

Unlike in traditional GANs, the generator in AC-WGAN-GP is optimized not only through 
adversarial feedback from the discriminator but also by enforcing alignment with class conditions and 
spectral context. 

The basic Wasserstein loss component for the generator is given by: 
𝐿𝑊𝐺𝐴𝑁 = −𝐸𝑧,𝑐[𝐷(𝐺(𝑧, 𝑐))], (7) 

Module  Input Size Layer BN Stride Padding Activation 

G 

1 100+30+class Dense + Reshape Yes --- --- ReLU 
2 1/16H×1×512 Deconv1d (3×1×512×256) Yes 2×1 SAME ReLU 
3 1/8H×1×256 Deconv1d (3×1×256×128) Yes 2×1 SAME ReLU 
4 1/4H×1×128 Deconv1d (3×1×128×64) Yes 2×1 SAME ReLU 
5 1/2H×1×64 Deconv1d (3×1×64×1) No 2×1 SAME Tanh 

D 

1 H×1×1 Conv1d (3×1×1×64) No 2×1 SAME LeakyReLU 
2 1/2H×1×64 Conv1d (3×1×64×128) Yes 2×1 SAME LeakyReLU 
3 1/4H×1×128 Conv1d (3×1×128×256) Yes 2×1 SAME LeakyReLU 
4 1/8H×1×256 Conv1d (3×1×256×512) Yes 2×1 SAME LeakyReLU 
5 1/16H×1×512 Flatten + Dense No --- --- Linear 

C 
1 H×1×1 Conv1d (15×1×1×64) No --- SAME Tanh 
2 1/15H×1×64 Flatten + Dense No --- --- Softmax 



where 𝐸𝑧,𝑐 is the expectation over all possible combinations of latent noise z and conditional class 
label c; 𝑧 denotes the latent noise vector; 𝑐 is the conditional class label; 𝐺(𝑧, 𝑐) is the generated spectral 
sample; 𝐷(𝐺(𝑧, 𝑐  

1. Cosine Similarity with PCA Vectors (Cosine PCA Loss)  ensures that the generated spectrum 
aligns with the average PCA vector of its target class: 

 
𝐿𝑃𝐶𝐴 = 𝐸[1 − 𝑐𝑜𝑠(𝑥, 𝑥𝑃𝐶𝐴)], (8) 

where 𝑥 denotes the generated spectral sample and 𝑥𝑃𝐶𝐴 is the PCA-transformed class vector. 
 
2. Cosine Alignment Loss  𝑓 to align with 

the class embedding vector 𝑒: 
 

𝐿𝑎lign = 𝐸[1 − 𝑐𝑜𝑠(𝑓, 𝑒)], (9) 

where 𝑓 denotes the feature obtained from the classifier, and 𝑒 is the class embedding. 
3. Categorical Cross-Entropy  penalizes the generator if the classifier fails to recognize the correct 

class of a generated sample: 
 

𝐿ce = 𝐸𝑧,𝑐[−log𝑃𝑐𝑙𝑠( 𝑐 ∣∣ 𝐺(𝑧, 𝑐) )], (10) 

where 𝑃𝑐𝑙𝑠 denotes the probability predicted by the classifier for class c. 
The full generator loss is then defined as: 
 

𝐿𝐺 = 𝐿𝑊𝐺𝐴𝑁 + 𝜆𝑃𝐶𝐴 ∙ 𝐿𝑃𝐶𝐴 + 𝜆𝑎lign ∙ 𝐿𝑎lign + 𝜆ce ∙ 𝐿ce, (11) 

where , , and  are weighting coefficients that control the contribution of each loss 
component. These are tuned empirically based on data characteristics, class imbalance, and desired 
classification performance. 

5.3.2. Discriminator Loss 

In the AC-WGAN-GP framework, the discriminator functions as a critic that estimates the divergence 
between real and generated spectral samples. Unlike in classical GANs, where the discriminator 
performs binary classification, the WGAN formulation approximates the Wasserstein distance 
between real and synthetic distributions. 

The discriminator loss is defined as: 
 

𝐿𝐷 = 𝐸𝑥̃~𝑝(g)[𝐷(𝑥̃)] − 𝐸𝑥~𝑝(𝑥)[𝐷(𝑥)] + 𝜆 ∙ 𝐿gp, (12) 

 
𝐿gp = 𝐸𝑥~𝑝(𝑥)[(∥ ∇𝑥𝐷(𝑥) ∥2− 1)2], (13) 

where 𝑝𝑔 is the distribution of generated samples (from the generator); 𝑝data  is the distribution of 
real training samples; 𝑥̃ is a generated spectrum 𝐺(𝑧, 𝑐); 𝑥 is a real spectral sample; 𝑥 is a linear 
interpolation between 𝑥 and 𝑥̃; 𝜆 is a hyperparameter controlling the weight of the gradient penalty 
term ℒgp that ensures 1-Lipschitz continuity. 

 
 

5.3.3. Classifier Loss 

The auxiliary classifier in AC-WGAN-GP is responsible for both class prediction and learning 
discriminative features for regularization. Its loss function comprises several components aimed at 
maximizing classification accuracy while structuring the feature space. 



1. Categorical Cross-Entropy (Class-Weighted) This standard classification loss is weighted to 
compensate for class imbalance: 

 
𝐿ce = −𝐸𝑥,𝑦[𝜔𝑦 ∙ log𝑃𝑐𝑙𝑠(𝑦 ∣ 𝑥)], (14) 

where 𝑥 is the spectral sample, 𝑦 is the true class label, 𝑃𝑐𝑙𝑠 (𝑦 | 𝑥) is the predicted probability, and 
𝜔𝑦 is the inverse class frequency weight. 

2. Contrastive Loss This term promotes closeness of features from the same class and separation 
between features from different classes: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝐸𝑖,𝑗 {
‖𝑓

𝑖
− 𝑓

𝑗‖
2

,                          𝑖𝑓   𝑦
𝑖

= 𝑦
𝑗
  

max(0, ‖𝑓
𝑖

− 𝑓
𝑗‖ − 𝛿)2,    𝑖𝑓   𝑦

𝑖
≠ 𝑦

𝑗
  
, (15) 

where 𝑓𝑖 , 𝑓𝑗 are feature vectors and 𝛿 is a margin parameter. 
3. Cosine Alignment Loss Aligns the feature vector with the corresponding class embedding: 
 

𝐿𝑎lign = 𝐸𝑥,𝑦[1 − 𝑐𝑜𝑠(𝑓(𝑥), 𝑒𝑦)], (16) 

where 𝑓(𝑥) is the feature vector from the classifier and 𝑒𝑦 is the embedding of class 𝑦. 
4. Embedding Divergence Loss Regularizes class embeddings to prevent their collapse in latent 

space: 

𝐿𝑑𝑖𝑣 = ∑
1

‖𝑒𝑖 − 𝑒𝑗‖
2

+ 𝜀𝑖≠𝑗

, (17) 

where 𝑒𝑖, 𝑒𝑗 are embeddings of different classes, and 𝜀 is a small positive constant to avoid division 
by zero. 

Total Classifier Loss: 

𝐿С = 𝐿𝑐𝑒 + 𝜆𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∙ 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + 𝜆𝑎𝑙𝑖𝑔𝑛 ∙ 𝐿𝑎𝑙𝑖𝑔𝑛 + 𝜆div ∙ 𝐿𝑑𝑖𝑣 , (18) 

where 𝜆𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡, 𝜆𝑎𝑙𝑖𝑔𝑛, 𝜆div are hyperparameters controlling the contribution of each 
regularization component. These are selected empirically based on task complexity and class 
imbalance. 

6. Results 

6.1. Experimental Setup and Execution Specifics 

All experiments were conducted using PyCharm Community Edition 2024.3.4 with Python 3.9 and the 
TensorFlow 2.19.0 framework. The development environment ran on Windows 10 and local machine 
specifications were as follows: 

• Processor: Intel Core i3-10110U CPU 
• RAM: 8 GB 

Synthetic samples were generated in online mode without being saved to disk, reducing memory 
usage and preventing data duplication. Spectral vectors were reduced to 𝐻 = 30 components using 
Principal Component Analysis (PCA). The training and test splits were performed with strict class 
separation, eliminating potential data leakage.  

6.2. Analysis of Incremental Improvements in AC-WGAN-GP 

Table 3 presents the stepwise impact of architectural enhancements in AC-WGAN-GP on 
hyperspectral image classification quality. Each modification step (from the baseline model to the 



inclusion of cosine alignment and embedding divergence loss functions) progressively improves OA, 
AA, and 𝜅 metrics across all datasets. 

The most significant improvement is observed on the challenging Indian Pines dataset, where the 
introduction of the CSLE module (Step 2) raises OA to 67.74%. Adding ResNet-style deconvolutions 
with Spectral Dropout (Step 3), Minibatch Discrimination and Layer Normalization (Step 4) enhances 
training stability, particularly on KSC, where accuracy increases to 90.12%. 

Incorporating Contrastive Loss (Step 5) and the final loss terms (Cosine Alignment + Embedding 
Divergence) delivers the highest performance, notably OA = 90.55% on Salinas and 𝜅 = 63.63 on Indian 
Pines. This confirms the effectiveness of the proposed systemic enhancements to both architecture 
and loss design. 

Table 3 summarizes the incremental improvements achieved through architectural modifications. 

Table 3 
Impact of stepwise improvements on classification performance (Training ratio: 5%) 

 

6.3. Analysis of Incremental Improvements in AC-WGAN-GP 

6.3.1. Classification Results Analysis: Salinas 

Table 4 presents the classification results on the Salinas dataset using 1%, 5%, and 10% of training 
samples. A consistent improvement in metrics is observed with increasing training set size: OA 
increases from 88.70% to 91.27%, AA  from 92.90% to 95.36%, and 𝜅  from 87.41 to 90.07. 

Table 5 reports per-class classification metrics for the Salinas dataset using 5% of training samples. 
The highest F1-scores (above 99%) were achieved for classes with well-defined spectral structures  
Stubble, Broccoli, Vineyard soil. In contrast, classes with high spectral variability, such as Untrained 
vineyard and Untreated vineyard, show lower results (F1 = 78.63% and 70.49%, respectively). 

As shown in Figure 2, the classification results for the Salinas dataset visually confirm the 
effectiveness of the model, especially on classes with clear spectral signatures. 

Table 4 
Overall classification results (Salinas) 

 
 

 

 
 
 
 
 
 
 

Step Improvement Salinas Indian Pines KSC 
OA AA 𝜅 OA AA 𝜅 OA AA 𝜅 

1 Baseline AC-WGAN-GP 89.54 94.46 88.49 66.30 54.48 61.11 89.76 84.61 88.50 
2 CSLE 89.73 94.78 88.46 67.74 56.61 63.10 89.81 84.26 88.64 
3 ResNet+Spectral Drop. 89.76 94.83 88.54 67.89 56.82 63.28 90.05 85.53 89.18 
4 Minibatch Disc. + LN 90.09 95.01 89.05 68.08 56.25 63.36 90.12 85.57 89.27 
5 Contrastive Loss 90.44 95.13 89.45 68.10 56.31 63.56 90.16 86.18 89.42 
6 Cosine Align. + Diverg. 90.55 95.20 89.50 68.60 58.09 63.63 90.62 86.30 89.55 

Train/Test OA (%) AA (%) 𝜅 
1% 88.70 92.90 87.41 
5% 90.55 95.20 89.50 
10% 91.27 95.36 90.07 



Table 5 
Per-class classification metrics (Train 5%) 

 

Figure 2: Prediction map for the Salinas dataset (OA = 91.09%). Left to right: original spectral band, 
ground truth (GT), classification result. 

6.3.2. Classification Results Analysis: Indian Pines 

The Indian Pines dataset is one of the most challenging due to strong spectral overlap between classes 
and significant class imbalance. Table 6 shows a steady improvement in accuracy as the training set 
size increases: overall accuracy (OA) rises from 54.15% to 77.54%, average accuracy (AA) from 43.24% 
to 71.15%, and the kappa coefficient (𝜅) from 46.78 to 74.35. 

Table 7 shows per-class classification performance for Indian Pines with 5% training data. High F1-
scores were achieved for classes with well-defined spectral profiles: Hay-windrowed (92.05%), Wheat 
(85.97%), Woods (88.80%), and Grass-trees (83.52%). In contrast, classes with a low number of training 
samples, such as Oats, Alfalfa, and Grass-pasture-mowed, showed lower F1 performance, ranging from 
15% to 65%. Figure 3 demonstrates the prediction performance on the Indian Pines dataset, where 
spectral overlap and class imbalance make classification particularly challenging.  

 Class Precision (%) Recall (%) F1 (%) Train Test 
1 Brocoli green weeds 1 100 99.63 99.82 100 1909 
2 Brocoli green weeds 2 99.63 99.89 99.76 186 3540 
3 Fallow 94.59 99.63 97.04 98 1878 
4 Fallow rough plow 98.13 99.17 98.65 69 1325 
5 Fallow smooth 98.43 98.35 98.39 133 2545 
6 Stubble 99.92 99.79 99.85 197 3762 
7 Celery 98.69 99.41 99.05 178 3401 
8 Grapes untrained 82.33 75.25 78.63 563 10708 
9 Soil vinyard develop 98.89 99.90 99.39 310 5893 
10 Corn senesced green weeds 96.06 94.70 95.38 163 3115 
11 Lettuce romaine 4wk 98.01 92.41 95.13 53 1015 
12 Lettuce romaine 5wk 95.86 99.78 97.78 96 1831 
13 Lettuce romaine 6wk 98.39 98.28 98.33 45 871 
14 Lettuce romaine 7wk 97.35 93.90 95.60 53 1017 
15 Vinyard untrained 66.81 74.58 70.49 363 6905 
16 Vinyard vertical trellis 99.24 98.54 98.89 90 1717 



Particularly difficult were the Corn and Soybean-clean classes, where F1 did not exceed 40 50% 
due to spectral similarity with nearby crop types. At 5% of training data, the improved model achieves 
OA = 68.60%, AA = 58.09%, demonstrating stable classification for well-separated classes but with 
limitations on spectrally overlapping ones. 

Table 6 
Overall classification results (Indian Pines) 

 
 
 
 
 
 
Table 7 
Per-class classification metrics (Train 5%) 

 

Figure 3: Prediction map for the Indian Pines dataset (OA = 68.96%). From left to right: original 
spectral channel, ground truth (GT), classification result. 

6.3.3. Classification Results Analysis: KSC 

The KSC dataset is characterized by clearly defined spectral differences between classes, which 
facilitates high classification performance. As shown in Table 8, even with only 5 % of training samples, 

Train/Test OA (%) AA (%) 𝜅 
1% 54.15 43.24 46.78 
5% 68.60 58.09 63.63 
10% 74.07 63.82 70.24 
15% 74.88 65.14 71.13 
20% 77.54 71.15 74.35 

 Class Precision (%) Recall (%) F1 (%) Train Test 
1 Alfalfa 50.00 9.09 15.38 2 44 
2 Corn-notill 58.40 62.27 60.27 71 1357 
3 Corn-mintill 59.20 44.87 51.05 41 789 
4 Corn 57.14 21.24 30.97 11 226 
5 Grass-pasture 88.30 69.06 77.51 24 459 
6 Grass-trees 77.76 90.20 83.52 36 694 
7 Grass-pasture-mowed 87.50 51.85 65.12 1 27 
8 Hay-windrowed 86.77 98.02 92.05 23 455 
9 Oats 50.00 10.53 17.39 1 19 
10 Soybean-notill 69.44 54.11 60.83 48 924 
11 Soybean-mintill 62.15 78.83 69.50 122 2333 
12 Soybean-clean 53.00 29.79 38.14 29 564 
13 Wheat 75.98 98.97 85.97 10 195 
14 Woods 82.85 95.67 88.80 63 1202 
15 Buildings-Grass-Trees-Drives 54.64 27.25 36.36 19 367 
16 Stone-Steel-Towers 88.64 87.64 88.14 4 89 



the overall accuracy (OA) reaches 90.62%, the average accuracy 
coefficient (𝜅) is 89.55. 

Table 7 shows per-class classification performance for KSC with 5% training data. The highest F1-
scores are observed for classes with stable spectral characteristics: Salt Marsh (98.02%), Bare Soil 
(90.52%), Reed Swamp (94.61%), and Water (98.44%). 

Lower classification performance is observed for Hardwood Forest (66.19%) and Oak Forest 
(70.46%), which is partly due to the limited number of training samples (8 11) and the spectral 
similarity to other forest types. 

The results demonstrate that the improved model is capable of accurately classifying most classes 
even with minimal training data, achieving F1-scores above 85% for 10 out of 13 classes. 

As shown in Figure 4, the KSC dataset classification map illustrates high accuracy for classes with 
well-separated spectral features. 

Table 8 
Overall classification results (KSC) 

 
 
 
 
 
Table 9 
Per-class classification metrics (Train 5%) 

 

Figure 4: Prediction map for the KSC dataset (OA = 91 02%). From left to right: original spectral 
channel, ground truth (GT), and classification result. 

Train/Test OA (%) AA (%) 𝜅 
1% 80.71 70.73 78.50 
5% 90.62 86.30 89.55 
10% 93.06 89.46 92.27 

 Class 
Precision 

(%) 
Recall (%) F1 (%) Train Test 

1 Scrub 94.76 92.53 93.63 38 723 
2 Willow Swamp 85.71 93.51 89.44 12 231 
3 Evergreen Forest 82.31 93.44 87.52 12 244 
4 Pine Forest 70.16 75.42 72.69 12 240 
5 Oak Forest 77.34 64.71 70.46 8 153 
6 Hardwood Forest 69.35 63.30 66.19 11 218 
7 Marsh 82.61 76.00 79.17 5 100 
8 Grass Marsh 85.65 88.78 87.19 21 410 
9 Salt Marsh 93.40 97.37 95.34 26 494 
10 Reed Swamp 95.49 93.75 94.61 20 384 
11 Saline Marsh 96.82 99.25 98.02 20 399 
12 Bare Soil 98.28 83.89 90.52 25 478 
13 Water 96.92 100 98.44 46 881 



7. Conclusions 

In this work, we proposed an intelligent system for hyperspectral image classification based on the 
AC-WGAN-GP architecture, aimed at improving classification under conditions of data imbalance, 
spectral overlap between classes, and unstable training. The proposed improvements encompass all 
major components of the model: generator, discriminator, and classifier. 

The generator was enhanced through the use of class-aware sampling and label embeddings, 
allowing better representation of minority classes. Its architecture is based on ResNet-inspired 
deconvolutional blocks with cross-attention mechanisms and spectral dropout, ensuring greater 
sample diversity and reduced risk of mode collapse. The generator input includes latent noise, a PCA-
transformed spectral vector, and a dense class embedding. 

The discriminator was adapted for stable WGAN-GP training by replacing Batch Normalization 
with Layer Normalization and introducing Minibatch Discrimination. This enables the detection of 
sample duplications and increases robustness against repetitive patterns in synthetic data. 
Additionally, the gradient penalty mechanism was implemented to enforce the 1-Lipschitz continuity 
requirement. 

The classifier was modernized by replacing one-hot labels with dense embeddings and 
incorporating several loss functions: weighted categorical cross-entropy, contrastive loss, and 
embedding divergence. This enhanced the structure of the feature space, improved sensitivity to 
spectrally similar classes, and enabled better adaptation to rare cases. 

Special attention was paid to fair evaluation: clustering and synthetic sample selectionwere 
performed strictly on the training set without access to test data. This eliminates any possibility of 
data leakage and guarantees the reliability of the reported metrics, even under stricter conditions than 
commonly used in related works. 

The results confirm the effectiveness of the proposed intelligent system, particularly in classifying 
rare categories and under conditions of limited training data. Future research will aim to extend the 
system to 3D hyperspectral objects, segmentation tasks, and multisensor fusion, as well as to explore 
its potential in practical applications such as vegetation health monitoring and environmental 
assessment. 

Declaration on Generative AI  

The authors have not employed any Generative AI tools. 
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