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Abstract 
This paper focuses on the development of a dynamic model for the purging mode in a basic oxygen furnace 
process, a key issue for enhancing energy and resource efficiency in modern steelmaking. The primary 
objective is to create a comprehensive state-space model suitable for the design of an advanced control 
system. The study analyzes the influence of key control parameters, namely the lance height above the 
quiescent bath level and the oxygen blast intensity, on the process outputs. The model describes the 
transient dynamics connecting these inputs to the decarburization rate and the degree of carbon oxidation 

-stationary and are described 
by first and third-order differential equations, whose parameters (time constants, process gains) were 
determined in this paper. By connecting these individual subsystems in series, a comprehensive state-space 
model in controllable canonical form was developed. This resulting model is intended for use as the 
predictive core for a control system. 
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1. Introduction 

The basic oxygen steelmaking process is noted for the complexity of its physicochemical phenomena, 
which proceed at high rates and temperatures. It is characterized by multiple operational modes and 
the high dimensionality of the problems to be solved. The quality of the final steel is determined by 
its composition and temperature. The converter can be considered a chemical reactor wherein the 
oxidation of various elements and the redistribution of impurities and heat between the metal and 
the slag occur. An investigation was conducted using data from converters with a 160-tonne capacity. 
The converters process hot metal with the following composition (%): silicon, 0.4 1.0; manganese, 
0.3 0.6; sulfur, 0.02 0.07; and phosphorus, 0.02 0.15. The temperature of the hot metal varied within 
the range of 1200 1400 °C [1]. The charge included metallic scrap in quantities ranging from 0 to 
30% of the hot metal's mass. Liquid hot metal was supplied from a mixer in 140-tonne ladles. The 
oxygen injection rate was 2.5 3.0 m³/(t·min). The assortment of steel grades produced was 
characterized by a carbon content of 0.09 0.40% and a tapping temperature of 1580 1630 °C. Steel 
smelting is an intensive process, which makes it physically impossible for the converter operator to 
process a large volume of information, select the optimal operating regime, and intervene in the 
course of the heat in a timely manner. Under manual control, the blowing process often deviates 
from the optimum, and slag formation is disrupted. Consequently, the slag may become either 
inactive or excessively foamy, leading to slopping and ejections. With manual control, only 45 50% 
of heats, and sometimes fewer, are successfully tapped on the first attempt [2]. 
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The quest for greater efficiency, quality, and consistency in basic oxygen furnace (BOF) 
steelmaking has driven a continuous evolution in process control methodologies. From early reliance 
on operator experience, the industry has progressed through successive generations of predictive 
models, each aiming to better capture the complexities of the high-temperature, multiphase reactions 
within the converter. This evolution reflects a broader shift from static, precalculated control to 
dynamic, data driven optimization, a journey catalyzed by advancements in both metallurgical 
understanding and computational technology. The first attempts to move beyond purely empirical 
control involved the development of mechanistic models grounded in the fundamental laws of 
physics and chemistry. These models sought to describe the BOF process using first principles of 
thermodynamics, kinetics, and mass and energy transfer.  

The earliest and most fundamental form of process control model is the static model. These 
models are essentially a set of pre-blow calculations based on comprehensive mass and energy 
balances for the entire heat. Given the initial conditions, such as the weight, temperature, and 
chemical composition of the hot metal and scrap. The desired final (endpoint) steel composition and 
temperature, the static model calculates the total required inputs. These include the total volume of 
oxygen to be blown, the weight of fluxes (lime, dolomite) needed to achieve a target slag basicity, 
and the number of coolants (like iron ore) or heating agents required to hit the thermal target. Static 
models are often described as a feedforward (open loop) control strategy; they provide a single set 
of instructions at the beginning of the blow but offer no capability for in blow adjustment or 
correction based on the actual process evolution [3]. Their accuracy is therefore highly sensitive to 
the quality and stability of the input data and the validity of the underlying thermodynamic 
assumptions [4]. 

Recognizing the limitations of the static approach, researchers developed dynamic models to 
predict the state of the bath during the oxygen blow. Unlike static models, which treat the process 
as a single transformation from start to finish, dynamic models aim to describe the trajectory of key 
variables like bath temperature and composition over time. Early dynamic models were often based 
on unsteady-state mass transfer theory and sought to capture the spatial heterogeneity of the furnace 
by dividing it into multiple reaction zones. For example, a common approach was to model the BOF 
as having three distinct zones: a jet impact zone where the supersonic oxygen jet hits the bath, an 
emulsion zone comprising metal droplets dispersed in the slag, and a bulk slag-metal zone [5]. Static 
control operates under the assumption of a largely deterministic process where initial conditions 
fully dictate the final state. Dynamic control, in contrast, acknowledges that the process is inherently 
stochastic and requires real-time feedback and correction.  

The true breakthrough in data-driven modeling came with the application of machine learning, 
which offered powerful new tools for handling complex, non-linear, high-dimensional datasets. The 
adoption of ML in steelmaking was not merely a matter of following a technological trend, but a 
necessary evolutionary step to fill the performance gap left by mechanistic models. Over the past 
two decades, a variety of ML algorithms have been successfully applied to BOF process control, 
primarily for endpoint prediction. Artificial Neural Network (ANN), and their common variants like 
the Backpropagation Neural Network (BPNN) and Extreme Learning Machine (ELM), are 
exceptionally well-suited for modeling the complex, non-linear input-output relationships found in 
BOF data[6]. They have been widely and successfully used to build predictive models for key 
endpoint parameters like steel temperature and the concentrations of carbon and phosphorus [7]. 
The disadvantage of using an ANN to predict BOF purging is that they are often complex 'black 
boxes' that require large amounts of data and significant computational resources to train. This 
makes them difficult to interpret and prone to overfitting. 

2. Development of dynamic prediction model 

In the current landscape of metallurgical industry development, pressing tasks include the 
development of resource-efficient steelmaking processes, the advancement of theoretical and 
practical aspects of novel energy-saving methods for blowing the steelmaking bath with process gas, 



and the enhancement of furnace thermal efficiency. One of the key approaches to reducing 
operational expenditures is the recovery of physical and chemical energy from converter off-gases, 
specifically through the post-combustion  Control 
of the purging 

equation for the gases in the blast, ambient air, and the off-gas duct [8].  
The mathematical model for the dynamic control of the blowing process, which is based on the 

distribution of blast oxygen among the molten metal, slag, and converter gas phases, is represented 
by a system of differential equations. These equations characterize the mass and heat balance within 
the converter and its off-gas. In the development of this dynamic model, gradients of the control 
parameters are neglected, under the assumption that spatial heterogeneity in both chemical 
composition and temperature is absent within the bath due to intensive mixing. The primary 
contributors to the process's mass transfer and energy balance are the thermochemical reactions 
involving the oxidation of carbon and iron from the bath. It is assumed that the converter gas, as a 

board, carbon 
monoxide is partially combusted to form carbon dioxide. This reaction, along with the combustion 
of iron, leads to a decrease in the oxygen assimilation coefficient by the carbon in the bath and lowers 
its burnout rate. Considering the above, the decarburization rate of the bath can be expressed in 
terms of the volumetric flow rate of the blast oxygen (1): 

𝑑𝐺𝑐
𝑑𝜏

= 10−3
2 ⋅ 12

22,4
⋅ [𝑣𝛾1(1 − 𝛾2) − 10

3
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𝑑𝐺𝑐
𝑑𝜏

− 103
22,4
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𝑑𝐺𝐹𝑒
𝑑𝜏

], (1) 

where 
𝑑𝐺𝑐

𝑑𝜏
  is the mass rate of bath decarburization, t/min; 𝑣  is the volumetric flow rate of the 

blast, m³/min; 𝛾1  is a coefficient characterizing the purity of the blast; 𝛾2  is a coefficient 
characterizing blast losses; 𝛾𝐶𝑂   is the mass fraction of carbon from the bath that is oxidized to CO 

within the converter cavity by the blast oxygen; 
𝑑𝐺𝐹𝑒

𝑑𝜏
  is the mass rate of iron oxidation from the 

bath, t/min. 
Let express the decarburization rate (2), considering that 𝛾СО2 = 1 − 𝛾СО and 𝑣𝑂2𝐹𝑒 =

103
22,4

2⋅56

𝑑𝐺𝐹𝑒

𝑑𝜏
: 

𝑑𝐺𝑐
𝑑𝜏

= 10−3
2 ⋅ 12

22,4

𝑣𝛾1(1 − 𝛾2) − 𝑣𝑂2𝐹𝑒

1 + 𝛾𝐶𝑂2
, (2) 

where 𝑣𝑂2𝐹𝑒    is the oxygen flow rate consumed for the oxidation of iron in the bath, m³/min; 
𝛾СО2    converter cavity by 
the blast oxygen.  

The oxygen flow rate consumed for the oxidation of iron in the bath is determined by the 
following relation (3): 

𝑣𝑂2𝐹𝑒 = 10𝑚ℎ𝛾𝑠
16

72

22,4

32
𝛾𝐹𝑒𝑂𝜏𝑝

−1, (3) 

where 𝑚ℎ    is the mass of the hot metal, t; 𝛾𝑠  is the slag fraction relative to the metal mass;  

𝛾𝐹𝑒𝑂   is the iron oxide content in the slag, %; 𝜏𝑝  is the average blowing time, min. 
The values 𝛾𝐹𝑒𝑂  (4) and 𝛾СО2   (5) are functions of the lance height above the quiescent bath level: 

𝛾𝐹𝑒𝑂 = 16,34𝐻 − 5,63 (4) 

𝛾СО2 = [10,2(𝐻 − 1,5)
2 + 3,1]10−2, (5) 

where 𝐻  is the position of the lance above the quiescent bath level, m.   
For a 160-tonne converter, with a slag fraction of 0.1 and an average blowing time of 20 min 𝑣𝑂2𝐹𝑒 =

10 ⋅ 160 ⋅ 0,1 ⋅
16

72

22,4

32
𝛾𝐹𝑒𝑂

1

20
= 1,244𝛾𝐹𝑒𝑂  . For a blast supply rate of 400 m³/min, a blast oxygen 



purity of 0.99, and losses of 0.01, the resulting dependency of the decarburization rate (Figure 1) on 
the lance position above the quiescent bath level using (2), (4) and (5) is obtained as follows (6): 

𝑑𝐺𝑐

𝑑𝜏
=

427,55−21,78Н

102(𝐻−1,5)2+1031
. (6) 

 

Figure 1: The effect of the lance height above the quiescent bath level on the decarburization rate 

The transient process of the change in the decarburization rate 𝑣𝑐 =
𝑑𝐺𝑐

𝑑𝜏
 as a function of the change 

in the lance height above the quiescent bath level 𝐻 is described by the differential equation (7): 

𝑇𝑣𝑐
𝐻
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐(𝑡) = 𝑘𝑣𝑐

𝐻𝐻(𝑡), (7) 

where 𝑘𝑣𝑐
𝐻

   is the process gain for the lance height to decarburization rate,  
𝑡

𝑚𝑖𝑛⋅𝑚
; 𝑇𝑣𝑐

𝐻  is the 

time constant, s. The value of the process gain can be found from relation (6) 𝑘𝑣𝑐
𝐻  =

𝛥𝑣𝑐

𝛥𝐻
=

(0,329−0,383)
𝑡

𝑚𝑖𝑛

(2.5−1.5)𝑚
≈ −0,054

𝑡

𝑚𝑖𝑛⋅𝑚
. Difficulties arise in determining 𝑇𝑣𝑐

𝐻
 due to the transient processes 

within the decarburization rate sensor. Therefore, to determine the time constant, impulse response 
characteristics and the analysis of acoustic oscillations via the measurement of gas pressure in the 
converter's intermediate gas duct were used [7]. The value of the time constant is nonstationary 
(Figure 2) and depends on the stage of the heat. This dependency is described by a third-order 
Gaussian function (with an R² value of 0.989) as shown in expression (8): 

𝑇𝑣𝑐
𝐻(𝜏) = 7,05 ⋅ 𝑒

−(
𝜏−3,47
2,9

)
2

+ 6,61 ⋅ 𝑒
−(
𝜏−15,57
2,6

)
2

+ 11,48 ⋅ 𝑒
−(
𝜏−9,73
6,0

)
2

, 
(8) 

where 𝜏   is the time from the start of the blow, min. 

in the converter cavity. This process can also be described by the following first-order differential 
equation (9): 

𝑇𝛾СО2
𝑣𝑐

𝑑𝛾СО2(𝑡)

𝑑𝑡
+ 𝛾СО2(𝑡) = 𝑘𝛾СО2

𝑣𝑐 𝑣𝑐(𝑡), 
(9) 

where 𝑘𝛾СО2
𝑣𝑐

    
𝑚𝑖𝑛

𝑡
; 𝑇𝛾СО2

𝑣𝑐   

is the time constant, s. The value of the process gain can be found from relation (2): 𝑘𝛾СО2
𝑣𝑐  =

𝛥𝛾СО2
𝛥𝑣𝑐

=

0,133−0,0565

(0,329−0,363)
𝑡

𝑚𝑖𝑛

≈ −2,25
𝑚𝑖𝑛

𝑡
 . According to the research results [8] 𝑇𝛾СО2

𝑣𝑐 ≈ 2,15 𝑠. 



 

Figure 2: Dependency of the time constant on the time from the start of the purging 
 

, resulting from a 
change in the lance height above the quiescent bath level, is formed by the series connection of (7) 
and (9) and is described by the differential equation (10): 

𝑇1𝛾СО2
Н (𝜏)

𝑑2𝛾СО2(𝑡)

𝑑2𝑡
+ 𝑇2𝛾СО2

Н (𝜏)
𝑑𝛾СО2(𝑡)

𝑑𝑡
+ 𝛾СО2(𝑡) = 𝑘𝛾СО2

𝐻 𝐻(𝑡), (10) 

where 𝑘𝛾 2
= 𝑘𝑣𝑐

𝐻 ⋅ 𝑘𝛾 2

𝑣𝑐 = (−0,054
𝑡

𝑚𝑖𝑛⋅𝑚
) ⋅ (−2,25

𝑚𝑖𝑛

𝑡
) ⋅ 100% = 12,15

%

𝑚
;  

𝑇1𝛾СО2
Н (𝜏) = 𝑇𝑣𝑐

𝐻𝑇𝛾СО2
𝑣𝑐 = 15,16 ⋅ 𝑒

−(
𝜏−3,47
2,9

)
2

+ 14,21 ⋅ 𝑒
−(
𝜏−15,57
2,6

)
2

+ 24,68 ⋅ 𝑒
−(
𝜏−9,73
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)
2

[𝑠]; 

𝑇2𝛾СО2
Н (𝜏) = 𝑇𝑣𝑐

𝐻 + 𝑇𝛾СО2
𝑣𝑐 = 7,05 ⋅ 𝑒

−(
𝜏−3,47
2,9

)
2

+ 6,61 ⋅ 𝑒
−(
𝜏−15,57
2,6

)
2

+ 11,48 ⋅ 𝑒
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𝜏−9,73
6,0

)
2

+ 2,15 [𝑠]. 

Let represent process (10) as a state-space model in controllable canonical form (11): 

{
 
 

 
 
[
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

] = [

0, 1

−
1

𝑇1𝛾СО2
Н (𝜏)

, −
𝑇2𝛾СО2
Н (𝜏)

𝑇1𝛾СО2
Н (𝜏)

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [

0
1

𝑇1𝛾СО2
Н (𝜏)

]𝐻(𝑡),

𝛾СО2(𝑡) = [𝑘𝛾СО2
Н 0] [

𝑥1(𝑡)
𝑥2(𝑡)

] .

 (11) 

It is known that the metal decarburization rate is also determined by the blast supply rate. At the 
beginning of the blow, when the carbon mass fraction is high, its oxidation rate varies with the 
oxygen supply rate to the reaction zone, as decarburization primarily occurs at the interface between 
the oxygen jet and the molten bath. Towards the end of the blow, when the mass fraction of carbon 
in the bath reaches a so-called "critical" level, the decarburization rate decreases, as the diffusion of 
the element being oxidized to the reaction zone becomes the rate-limiting step. In accordance with 
the concept of two kinetic periods for the carbon oxidation process, the first period is described by 
equation (12): 

−
𝑑С

𝑑𝜏
=
𝐾1 ⋅ 𝜂 ⋅ 𝑣

𝐺𝑚
, (12) 

where 
𝑑С

𝑑𝜏
  is the bath decarburization rate,  

%

𝑚𝑖𝑛
; 𝐾1  is the coefficient characterizing the first 

kinetic period, 
𝑡∙%

𝑚3 ; 𝜂  is a coefficient dependent on the volume fraction of oxygen in the blast and 



its degree of utilization for decarburization; 𝑣  is the volumetric flow rate of the oxygen blast, 
𝑚3

𝑚𝑖𝑛
; 

𝐺𝑚  is the mass of the metal bath, t. 
In the second kinetic period, which begins when the diffusion fluxes of carbon and oxygen become 
equal, the decarburization rate is described by equation (13): 

−
𝑑С

𝑑𝜏
=
𝛽𝑆𝐶

𝑉𝑚
, (13) 

Where 𝛽  is the carbon mass transfer coefficient in the bath,  
𝑚

𝑚𝑖𝑛
; 𝑆  is the surface area where 

the carbon oxidation process occurs, m²; 𝐶  is the mass fraction of carbon in the bath, %; 𝑉𝑚  is the 
volume of the metal bath, m³. The dependency of the average carbon oxidation rate on the specific 
oxygen consumption rate is depicted in Figure 3. 

 
Figure 3: Effect of the blowing intensity on the bath decarburization rate 
 
The transient response of the decarburization rate to changes in the oxygen blast intensity can be 
described by the following first order differential equation (14): 

𝑇𝑣𝑐
𝑣
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐(𝑡) = 𝑘𝑣𝑐

𝑣 𝑣(𝑡), (14) 

where 𝑘𝑣𝑐
𝑣

   is the process gain for oxygen flow rate to decarburization rate,  
𝑡

𝑚3; 𝑇𝑣𝑐
𝑣   is the time 

constant, s. The values of the dynamic properties are determined from the studies described above 

(Figure 1). For a 160-tonne converter, the following values are obtained: 𝑘𝑣𝑐
𝑣  =

𝛥𝑣𝑐

𝛥𝑣
=

(0,367−0,322)
𝑡

𝑚𝑖𝑛

(480−400)
𝑚3

𝑚𝑖𝑛𝑠

≈ 0,56
𝑘𝑔

𝑚3 ; 𝑇𝑣𝑐
𝑣 ≈ 3,7 𝑠. The transient process for the change in the degree of carbon 

connection of (9) and (14) and is described by the differential equation (15): 

𝑇𝑣𝑐
𝑣𝑇𝛾СО2

𝑣𝑐
𝑑2𝛾СО2(𝑡)

𝑑2𝑡
+ (𝑇𝑣𝑐

𝑣 + 𝑇𝛾СО2
𝑣𝑐 )

𝑑𝛾СО2(𝑡)

𝑑𝑡
+ 𝛾СО2(𝑡) = 𝑘𝛾СО2

𝑣 𝑣(𝑡), (15) 

where 𝑘𝛾СО2
𝑣 = 𝑘𝑣𝑐

𝑣 ⋅ 𝑘𝛾СО2
𝑣𝑐 = (0,56

𝑘𝑔

𝑚3) ⋅ (−2,25 ⋅ 10
−3 𝑚𝑖𝑛

𝑘𝑔
) ⋅ 100% = −0,126

(%⋅𝑚𝑖𝑛)

𝑚3 . 

The process control object for the oxygen blast intensity of an oxygen converter is comprised of the 
physical connection between a pneumatic valve and a flow meter. This arrangement represents an 
oxygen capacitance, which creates resistance to fluid flow. This system, with the pneumatic valve 



position as its input and the oxygen flow rate as its output, is described by the following first-order 
differential equation (16): 

𝑇𝑣
𝑢𝑂2

𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡) = 𝑘𝑣

𝑢𝑂2𝑢𝑣𝑜2(𝑡), 
(16) 

where 𝑢𝑣𝑜2    is the pneumatic valve position, %; 𝑘𝑣
𝑢𝑂2

  is the process gain for pneumatic valve 

position to blast intensity,  
𝑚3

%⋅𝑚𝑖𝑛
.;  𝑇𝑣

𝑢𝑂2  is the time constant, s. The process gain is 𝑘𝑣 =
𝛥𝑣

𝛥𝑢𝑣𝑜2
=

600
𝑚3

𝑚𝑖𝑛

100%
= 6

𝑚3

(𝑚𝑖𝑛⋅%)
. From the handbook [9], the time constant is 𝑇𝑣

𝑢𝑂2  =1,2 s. 

resulting from a 
change in the oxygen pneumatic valve position, is formed by the series connection of (15) and (16) 
and is described by the differential equation (17): 

𝑇1𝛾СО2
𝑢𝑂2

𝑑3𝛾СО2(𝑡)

𝑑3𝑡
+ 𝑇2𝛾СО2

𝑢𝑂2
𝑑2𝛾СО2(𝑡)

𝑑2𝑡
+ 𝑇3𝛾СО2

𝑢𝑂2
𝑑𝛾СО2(𝑡)

𝑑𝑡
+ 𝛾СО2(𝑡) = 𝑘𝛾СО2

𝑢𝑂2 𝑢𝑣𝑜2(𝑡), 
(17) 

where 𝑘𝛾СО2
𝑢𝑂2 = 𝑘𝛾СО2

𝑣 ⋅ 𝑘𝑣
𝑢𝑂2 = (−0,126

(%𝐶𝑂2⋅𝑚𝑖𝑛)

𝑚3 ) ⋅ (6
𝑚3

(𝑚𝑖𝑛⋅%𝑢𝑂2
)
) = −0,756

%𝐶𝑂2

%𝑢𝑂2

; 𝑇1𝛾СО2
𝑢𝑂2 =

𝑇𝑣
𝑢𝑂2𝑇𝑣𝑐

𝑣𝑇𝛾СО2
𝑣𝑐 = 9,55 𝑠; 𝑇2𝛾СО2

𝑢𝑂2 = 𝑇𝑣𝑐
𝑣𝑇𝛾СО2

𝑣𝑐 + 𝑇𝑣𝑐
𝑣𝑇𝑣

𝑢𝑂2 + 𝑇𝑣
𝑢𝑂2𝑇𝛾СО2

𝑣𝑐 = 14,98 𝑠; 𝑇3𝛾СО2
𝑢𝑂2 = 𝑇𝑣

𝑢𝑂2 + 𝑇𝑣𝑐
𝑣 +

𝑇𝛾СО2
𝑣𝑐 = 7,05 𝑠. Let represent process (17) as a state-space model in controllable canonical form (18): 

{
 
 
 
 

 
 
 
 

[

𝑥1
′(𝑡)

𝑥2
′ (𝑡)

𝑥3
′ (𝑡)

] =

[
 
 
 
 
 
 

0 1 0

0 0 1

−
1

𝑇1𝛾СО2
𝑢𝑂2

−
𝑇3𝛾СО2
𝑢𝑂2

𝑇1𝛾СО2
𝑢𝑂2

−
𝑇2𝛾СО2
𝑢𝑂2

𝑇1𝛾СО2
𝑢𝑂2

]
 
 
 
 
 
 

[

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

] +

[
 
 
 
 
 
0

0

1

𝑇1𝛾СО2
𝑢𝑂2

]
 
 
 
 
 

𝑢𝑣𝑜2(𝑡),

𝛾СО2(𝑡) = [𝑘𝛾СО2
𝑢𝑂2 0 0] [

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

] .

 (18) 

A simulation of the purging mode for BOF process was performed in the Matlab Simulink 
environment (Figure 4, Figure 5, Figure 6). The ode23s (stiff/mod. Rosenbrock) variable-step solver 
was selected for the simulation. The absolute and relative tolerances for the calculations were set to 
0.00001. 

 
Figure 4: Effect of the blowing intensity on the bath decarburization rate 
 



 
Figure 5: Effect of the blowing intensity on the bath decarburization rate 

 
Figure 6: Effect of the blowing intensity on the bath decarburization rate 

 
The resulting model of the purging mode for BOF process, represented in the controllable 

canonical form of a state-space model (11,18), will subsequently be used for the design of a controller 
based on the model predictive control approach. 



3. Conclusion 

The technological features of controlling the parameters of the purging mode for BOF process 
were analyzed, and a state-space model of this process was developed. It was established that one of 
the main parameters of the purging mode is the blowing intensity, on which the progress of impurity 
oxidation and slag formation processes depends. However, increasing the blowing intensity reduces 
iron oxidation and its transfer into the slag, and also decreases lining wear; this is associated with a 
reduction in both the blowing duration and the contact time of the refractories with the aggressive 
slag and high-temperature flame. The effect of the lance height above the quiescent bath level was 
analyzed. Specifically, increasing the lance height leads to an increase in the basicity and oxidation 
of the final slag, a higher degree of CO post-combustion in the converter cavity, a decrease in the 
manganese mass fraction in the metal at the end of the blow, and reduced fluorspar consumption 
and lining wear. By regulating this distance, the optimal amount of heat generated from the oxidation 
of C . It was determined that variations in the degree of carbon oxidation to 

is governed by the lance height above the quiescent bath level. The process of the decarburization 
rate changing in response to a change in lance height is non-stationary and is described by a first-
order differential equation whose time constant depends on the stage of the blow. The effect of blast 
supply intensity on the metal decarburization rate was investigated. The transient process for the 

valve position, is described by a third-order differential equation. A prediction model of the purging 
model for the oxygen converter process was obtained in the controllable canonical form of a state-
space model, dependent on changes in the lance height above the quiescent bath level and the blast 
intensity. This model was used as the predictive model for the control system. The numerical values 
of the dynamic properties of the resulting model are provided. 
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