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Abstract 
The article presents the results of the study on image compression algorithms based on neural networks. 
The study analyses classical compression methods, such as JPEG, PNG, GIF, TIFF and identifies the 
advantages of neural network methods, in particular the use of an autoencoder, a variational autoencoder, 
and generative adversarial networks. A comparative analysis of classical compression algorithms, such as 
JPEG, with new approaches based on neural networks is carried out using the example of an autoencoder. 
A mathematical model describing the principle of operation for an autoencoder is presented, illustrating 
how a neural network encodes and restores images using latent space. To achieve the best reconstruction 
quality, a hybrid loss function comprising three components was employed: perceptual loss based on 
VGG16, SSIM loss, and MSE loss. A modular software system was developed using the Python programming 
language to conduct the experiments. The software includes a graphical interface, a compression module 
for encoding and decoding images using an autoencoder model, and a quality assessment module for 
calculating the main quality. The study found that traditional image compression methods demonstrate 
high efficiency, but are more prone to generating artifacts, especially at high compression levels, compared 
to neural network methods. The research results indicate that the autoencoder model can encode and 
decode images with minimal loss of quality, on par with JPEG, but is inferior to classical algorithms in speed 
and compression ratio. 
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1. Introduction 

With the rapid advancement of information technology and the growing volume of digital content, 
there is an increasing need for efficient data compression methods. Images make up for a significant 
portion of digital data, and effective compression is essential for their storage and transmission. Most 
traditional compression methods, however, result in information loss and visual artefacts, which 
degrades image quality. Using neural networks for image compression offers strong potential for 
maintaining higher quality images compared to classical methods at the same compression ratios. 
This approach requires further research and development to enable its widespread adoption in 
industrial and commercial systems. 

Over the past decade, numerous studies have focused on optimising image compression using 
neural networks. In Neural Image Compression and Explanation [1], X. Li and S. Ji demonstrated 
that neural networks can not only reduce image size but also retain key semantic details. Their 
approach allows for image compression of up to 60% of the original size without significant loss of 
important information. Similarly, research by [2] highlighted the advantages of end-to-end 
optimized compression, which uses nonlinear transformations to improve image restoration quality 
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compared to traditional methods. While these studies demonstrate the strong potential of neural 
networks in compressing images, their practical implementation is often hindered by high 
computational requirements, making them inaccessible for many commercial applications. 

The relevance of the research is determined by the need for a deeper understanding of modern 
image compression approaches that address the limitations of traditional methods. Neural network-
based compression represents an innovative approach with the potential to enhance both 
compression efficiency and quality. Research in this field is essential for the continued development 
of technologies, especially as the volume of digital data continues to grow. 

2. Literature review 

The goal of this study is to assess the effectiveness of image compression algorithms based on neural 
networks and compare them with traditional compression methods. 
Analysis of Recent Research and Publications. Classical image compression methods (JPEG, PNG, 
GIF, and TIFF) have their own strengths and weaknesses. For example, JPEG works well for 
photographs but can introduce noticeable artefacts when compressed too much, while PNG 
preserves high image quality but results in larger file sizes. The choice of compression method 
depends on specific requirements for the image, such as image quality, content size and type. Neural 
networks can offer a new approach to image compression [3-5], with their main advantage being 
their ability to learn from large datasets, identify patterns and extract the most important 
information from an image. They can also be tailored for specific image types, such as medical scans 
[6, 7] or satellite imagery [8], making them a flexible and versatile tool. 

One popular approach is an autoencoder, a type of neural network used for encoding and 
decoding data [9]. It is commonly applied in dimensionality reduction and noise removal and consist 
of two main components: 1) encoder, which compresses the input data by identifying and keeping 
only the most essential features while discarding noise and irrelevant information; 2) decoder, which 
restores the original image from the compressed data as accurately. The main advantages of 
autoencoders include the ease of implementation and configuration, as well as adaptability to 
different data types. However, their compression quality may not be as high as more advanced 
approaches, while their latent space is often linear and has limitations in handling complex data. 

A variational autoencoder builds on the traditional autoencoder by introducing a probabilistic 
approach to feature representation. Instead of using a fixed feature vector in the latent space, 
variational autoencoders model the data as a probability distribution [10], allowing for more flexible 
and generalized data representations. This flexibility in the latent space enables them to encode more 
complex features, generate new information based on the data not previously seen by the network 
and effectively handle complex, uneven data distributions. However, variational autoencoders are 
computationally more demanding than standard autoencoders and require more complex training. 

Generative adversarial networks (GANs) are a class of artificial intelligence algorithms used in 
unsupervised learning. They consist of two competing neural networks in a zero-sum game [11]: one 
network generates candidate images (generator), while the other (discriminator) evaluates them. The 
generator network typically learns to build matches from the latent space to a specific data 
distribution, while the discriminator distinguishes between real data and the candidates produced by 

 are particularly 
effective at operating with complex patterns and have a potential in generating new data. However, 
they require substantial computational resources, long training times, and can sometimes introduce 
artefacts into the generated images. 

Considering the strengths and limitations of the above methods, autoencoders were chosen for 
further experimentation due to their simplicity and operational features. 

Let us consider the existing image compression software. A study in [1] examines a new system 
that combines convolutional neural network (CNN) explanations with semantic image compression 
in a single, end-to-
while compressing input images for efficient storage or transmission. The method offers an 



innovative approach combining neural network transparency with high compression efficiency, 
making it especially useful when the resources are limited in terms of data storage and transmission. 
However, one drawback of t
for images or classes not included in the training set, leading to inconsistencies in explanations or 
reduced compression efficiency. Additionally, the choice of parameters, such as block size, may affect 
the trade-off between image quality and compression level. 

In [2], researchers propose a new approach for image compression using deep learning neural 
networks, optimized from start to finish with consideration of the trade-off between data 
transmission rate and distortion. The authors apply non-linear transformations inspired by biological 
neuron models, significantly improving the quality of compressed images compared to standard 
methods like JPEG and JPEG 2000. The method demonstrates strong improvements in image 
compression, especially at low bitrates, making it a promising option for future real-world 
applications. However, optimising all the parameters of this model requires considerable time and 
computational power, and the use of GDNs and other non-linear transformations makes 
implementation more complex compared to traditional algorithms, such as JPEG. 

Another study [12] explores a different approach for lossy image compression using GANs, with 
the goal of preserving high visual quality of the restored images at low bitrates. The primary idea is 
to combine generative models with compression techniques, allowing the preservation of textures 
and fine details even when their size is significantly reduced. To improve the quality of the restored 

perceptual losses helps to achieve a high level of similarity between the restored and original images. 
This method combines advanced neural network and data compression methods to ensure high-
quality restored images. However, it has some drawbacks: images with tiny details or text may lose 
quality, especially at extremely low bitrates; and implementing GANs for compression requires 
significant computational resources during the training, which limits their widespread use on devices 
with restricted processing power. 

Thus, the main advantages of neural networks include the preservation of high texture and detail 
quality at low bitrates, as well as the ability to work with high-quality images. These methods, 
however, require substantial computational resources and may struggle with preserving fine details 
and tiny text. In summary, neural networks enable to achieve effective image compression, 
improving the balance between file size and visual quality, however, further research is required 
before they can be widely adopted. 

The scientific novelty of this study is the establishment of the dependence of compression 
efficiency on the architecture of the convolutional autoencoder. This allows us to provide specific 
recommendations for further optimization of the model architecture and increasing its efficiency. 

3. Research methodology 

The autoencoder model is a complex system of functions that encodes and decodes the input image 
using neural networks [9, 13]. The model aims to find a latent representation of the data that would 
minimize information loss during the image restoration process [13, 14]. 

An autoencoder can be represented as a pair of functions: 
 encoder 𝐸(𝑋) = 𝑍, which matches the input image 𝑋 ∈ ℝ𝐻×𝑊×𝐶  with the latent space 𝑍 ∈ ℝ𝑑, 

where 𝑑 ≪ 𝐻 × 𝑊 × 𝐶, with 𝐻 being the height, 𝑊 representing the width, and 𝐶 showing the 
number of channels; 
– decoder 𝐷(𝑍) = 𝑋̂, which restores the image 𝑋̂, from the latent representation 𝑍. 
The objective is to determine the sets of parameters (weight and offsets) for the encoder 𝜃𝐸   and 

decoder 𝜃𝐷 that minimize the difference between the input image 𝑋 and the restored image 𝑋̂. 
The encoder performs a series of convolutional operations: 

𝑍 = 𝑓(𝑋) = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑋, 𝑊1) + 𝑏1), (1) 



where 𝐶𝑜𝑛𝑣 denotes convolution, 𝑊1 is the filter weigh matrix, 𝑏1 is the offset, and 𝑅𝑒𝐿𝑈 is the 
activation function. 

After a sequence of convolutions, a latent vector is obtained: 

𝑍 ∈ ℝ𝑑 , (2) 
where 𝑑 ≪ 𝐻 × 𝑊 × 𝐶. 
The decoder restores the image from the latent space using transposed convolutional layers: 

𝑋̂ = 𝑔(𝑍) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑍, 𝑊2) + 𝑏2), (3) 
where 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 represents the transposed convolution, and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is the activation 

function that confines pixel values to the range [0, 1]. 
Model training algorithm: 

1. The input image 𝑋 is passed through the encoder and decoder, resulting in 𝑋̂; 
2. The difference between 𝑋 and 𝑋̂ is used to assess the quality of the restoration; 
3. The gradients are computed and used to update the network weights; 
4. A stochastic gradient descent algorithm or one of its variations is employed to minimize the 
difference between 𝑋 and 𝑋̂. 
Characteristics of the latent space: 

• the latent space contains fewer parameters than the input data, enabling the compression of 
information; 
• the latent representation contains only the essential features for restoration, discarding 
irrelevant details; 
• the latent space assumes a linear structure, which may limit the model s ability to handle 
highly complex data. 
The model described outlines the functioning of the autoencoder (1) and illustrates how the neural 

network encodes and restores images through the latent space. During this process, some 
information is lost, leading to a reduction in the size of the output image. However, if the model is 
properly trained, this loss of information does not significantly affect the visual perception of the 
image, which allows the process to be regarded as a form of lossy compression. This approach serves 
as the foundation for the subsequent research presented in this study. 

To train the model to correctly identify image features and achieve optimal reconstruction 
quality, a hybrid loss function is employed. This function combines three components: perceptual 
loss based on VGG16, SSIM loss, and MSE loss. 

Perceptual loss leverages intermediate features from the VGG16 neural network, pre-trained on 
the ImageNet dataset. It measures the similarity between the true images 𝑦𝑡𝑟𝑢𝑒 and the predicted 
images 𝑦𝑝𝑟𝑒𝑑 at the feature map level, rather than at the pixel level. 

The formulation is as follows: 

𝐿𝑝𝑒𝑟𝑐(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛
∑(𝜙(𝑦𝑡𝑟𝑢𝑒)𝑖 − 𝜙(𝑦𝑝𝑟𝑒𝑑)𝑖)

2
𝑛

𝑖=1

, (4) 

where 𝜙 represents the function used to compute features with VGG16; 𝑛 is the number of values 
in the feature maps; 𝜙(𝑦𝑡𝑟𝑢𝑒)𝑖 and 𝜙(𝑦𝑝𝑟𝑒𝑑)𝑖 are the 𝑖-th feature values for the true and predicted 
images, respectively. 

This part of the loss function allows the network to retain high-level semantic details of the images. 
SSIM loss (Structural Similarity Index Loss) assesses the similarity between two images by 

considering structural characteristics such as brightness, contrast, and texture [15]. 
The formula for calculating SSIM is: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
, (5) 



where 𝑥 and 𝑦 represent the image areas being compared; 𝜇𝑥 and 𝜇𝑦 are the mean pixel intensity 
values for blocks 𝑥 and 𝑦; 𝜎𝑥

2and 𝜎𝑦
2 are the intensity dispersions for blocks 𝑥 and 𝑦; 𝜎𝑥𝑦 is the 

covariance between 𝑥 and 𝑦; 𝐶1 and 𝐶2 are small constants preventing division by zero, typically 
defined as 𝐶1 = (𝐾1𝐿)2 and 𝐶2 = (𝐾2𝐿)2, where 𝐿 is the dynamic range of pixels (255 for 8-bit 
images), 𝐾1 and 𝐾2 are larger constants typically between 0.01 and 0.03. 

Since SSIM is a similarity measure (values closer to 1 indicate a higher degree of similarity), the 
loss function is defined as: 

𝐿𝑆𝑆𝐼𝑀(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) = 1 − 𝑆𝑆𝐼𝑀(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑), (6) 

where 𝑆𝑆𝐼𝑀 ∈ [0.1] represents the value of similarity between the images. 
This function improves the structural similarity between the input and restored images.  
MSE loss (Mean Squared Error Loss) measures the mean-square deviation between the pixels of 

the true and predicted images: 

𝐿𝑀𝑆𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =
1

𝑚
∑(𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)2

𝑚

𝑖=1

, (7) 

where 𝑚 is the number of pixels in the image; 𝑦𝑡𝑟𝑢𝑒,𝑖 and 𝑦𝑝𝑟𝑒𝑑,𝑖 represent the intensity values 
of the 𝑖-th pixel in the corresponding images. 

This part of the loss function minimizes the numerical difference between the original and 
restored images. 

Hybrid loss function is a linear combination of the three above losses: 

𝐿ℎ𝑦𝑏𝑟𝑖𝑑(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) = 𝑎𝐿𝑆𝑆𝐼𝑀(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + 𝑏𝐿𝑝𝑒𝑟𝑐(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + 

+𝑐𝐿𝑀𝑆𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑), 
(8) 

 
where 𝑎, 𝑏, 𝑐 are the importance factor coefficients, 𝑎 + 𝑏 + 𝑐 = 1. 
This loss function enables balancing between numerical precision, structural similarity, and high-

level features. 

4. Results and discussions 

The experiment consisted of comparing the performance of the developed autoencoder model with 
classical algorithms. In particular, the compression efficiency, speed of operation, and quality of 
reconstructed images, assessed using PSNR and SSIM, were investigated. 

To conduct the experiment, a modular software system (Figure 1) was developed in Python, 
comprising of the following components: 

• graphical user interface, which facilitates user interaction, enabling the selection of 
compression models and working directories, as well as the visualization of the results and 
diagrams. 
• compression module, which handles the encoding and decoding of images using the 
autoencoder model; 
• quality assessment module, which computes the key evaluation metrics, specifically PSNR 
and SSIM. 
 



 

Figure 1: Graphical user interface. 

The development of the software relied on the following third-party libraries: 
tensorflow (version 2.17.0), keras, numpy, pillow, matplotlib, scikit-image, ttkbootstrap, opencv-
python, and scipy. 

The convolutional autoencoder model was trained using the following key hyperparameters: 

• batch_size=64 - the number of images that are simultaneously fed to the model during one 
training step. This parameter value allowed for efficient use of computing resources and 
accelerated the training process; 
• epochs=40 - the number of epochs during which the model was trained. To prevent 
overtraining and optimize the process, the EarlyStopping technique was used with the patience=3 
parameter. This allows training to be automatically terminated if the validation loss value does 
not improve over three consecutive epochs; 
• optimizer='adam' - Adam (Adaptive Moment Estimation) optimizer to minimize the loss 
function with standard parameters (learning_rate=0.001, beta_1=0.9, beta_2=0.999 and 
epsilon=1e-07). It adaptively adjusts the learning rate for each model parameter separately, which 
allows for faster convergence and stability of the learning process. 
The images used in this paper were taken from CelebA-HQ (CelebFaces Attributes Dataset High-

Quality), an extended and improved version of the popular CelebA dataset. This dataset is used to 
train models such as generative adversarial networks (GANs) and autoencoders. CelebA-HQ is 
available for non-commercial use. 

To perform the experiments, 4 encoder configurations were developed: incorporating 3 layers, 
5 layers, 7 layers, and 10 layers of convolution. 

Let us consider the performance of each configuration and compare them with the JPEG method. 
The results obtained using the 3-layer encoder are presented in Figure 2. 

 

Figure 2: Performance of the 3-layer model. 



The model achieved an SSIM score of 0.97, which corresponds to a JPEG quality setting of 95 out of 
100 (where 100 represents the highest possible image quality). An SSIM value close to 1 indicates a 
high degree of structural similarity between the compressed image and its original. The SSIM 
distribution is presented in Figure 3. 

 
 (a) (b) 

 
(c) 

Figure 3: Performance (a), PSNR distribution (b) and compression ratio distribution (c) of the 3-layer 
model. 

The PSNR for JPEG compression is 41.11 dB, while the autoencoder achieves 27.09 dB. The higher 
PSNR value for JPEG suggests that, from a mathematical standpoint, JPEG-compressed image retains 
greater fidelity to the original compared to the autoencoder-compressed image. However, while 
PSNR is an important quality parameter, it does not always correlate with perceptual visual quality. 
The distribution of PSNR is illustrated in Figure 3 (b). 

The JPEG compression ratio (4.58) is nearly 4 times higher than that achieved by the model (1.11). 
Therefore, the autoencoder currently exhibits limited compression efficiency. This suggests that the 
model has learned to effectively encode and decode images with no significant information loss, 
providing a positive impact on the quality of the output images, while reducing the degree of 
compression. The compression ratio distribution is shown in Figure 3 (c). 

JPEG compression significantly outperforms the autoencoder in terms of processing speed, 
requiring 92.07 seconds compared to 1519.46 seconds. This result is expected, as neural network 
algorithms generally demand more computational resources. A visual comparison of the output 
images is shown in Figure 4 and Figure 5. 



 
 (a) (b) (c) 

Figure 4: Comparison of image details for the 3-layer model: original image (a); autoencoder (b); 
JPEG (c). 

 
 (a) (b) 

Figure 5: Comparison of image details for the 3-layer model: model (a); JPEG (b). 

Visually, both images are similar to the original, with no noticeable artefacts. These results indicate 
that while the autoencoder achieves high-quality image restoration as indicated by SSIM, it still lags 
behind JPEG in terms of compression efficiency and processing speed. 

Next, we evaluate the performance of the 5-layer autoencoder and compare it to JPEG (Figure 6). 

 

Figure 6: Performance of the 5-layer model. 

This model achieves an SSIM of 0.93, which approximates to a JPEG quality setting of 75/100. This 
represents a slight decrease in image quality compared to the 3-layer model (Figure 7). 



 
 (a) (b) 

 
(c) 

Figure 7: Performance (a), PSNR distribution (b) and compression ratio distribution (c) of the 5-layer 
model. 

The 5-layer model also performs worse than JPEG in terms of PSNR (25.78 vs. 36.37); however, the 
gap between the two is narrower (Figure 7). 

A notable characteristic of the JPEG method is its ability to adjust the trade-off between the 
quality and compression. This means that as the SSIM decreases, the compression ratio increases, as 
evident from the experiment results.  

The 5-layer autoencoder demonstrates a slightly better compression ratio compared to the 3-layer 
model (1.11 vs. 1.18); however, the difference is minimal when compared to JPEG. The compression 
ratio distribution is shown in Figure 7. 

The visual comparison is presented in  (a) (b) (c) 
Figure 8 and  (a) (b) 
Figure 9. 

 
 (a) (b) (c) 

Figure 8: Comparison of image details for the 5-layer model: original image (a); autoencoder (b); 
JPEG (c). 



 
 (a) (b) 

Figure 9: Comparison of image details for the 5-layer model: model (a); JPEG (b). 

The images still closely resemble their original, though a slight difference in colour becomes 
apparent. 

In comparison to the 3-layer model, there is a modest reduction in both SSIM and PSNR values. 
However, a small increase in the compression ratio is observed. This indicates that the compression 
process performed by the autoencoder is lossy, with the compression ratio dependent on the quality 
of the original. 

We now turn to the performance of the 7-layer autoencoder model (Figure 10). 

 

Figure 10: Performance of the 7-layer model. 

An SSIM of 0.85 corresponds to a JPEG setting of 20/100. 
A noticeable decline in SSIM indicates potential overfitting in the model. With an excessive 

from them. Despite this, the restored images maintain clear structure, especially when compared to 
dent. However, the restored images show a near-complete 

absence of green colour (Figure 11 (a, b)), and some finer details begin to blur (Figure 11 (c)). 
 

 
 (a) (b) (c) 

Figure 11: Performance of the 7-layer model: model (a); JPEG (b); blurring of fine details (c). 



with more than 5 convolutional layers is not advisable. 
Next, we examine a case of significant overfitting with the 10-layer model (Figure 12). The SSIM 

of 0.80 approximates to the JPEG setting of 13/100. 
 

 

Figure 12: Performance of the 10-layer model. 

Due to significant overfitting, the model generates artefacts, as illustrated in Figure 13. Overall, the 
restored images frequently display facial features or even entire faces in areas where they should not 
be present. 

 
 (a) (b) (c) (d) 

Figure 13: Comparison of image details for the 10-layer model: original images (a, c), autoencoder (b, 
d). 

Comparative characteristics of 3 layers, 5 layers, 7 layers, 10 layers models and JPEG method with 
settings of 95/100, 75/100, 20/100, 13/100 is shown in Table 1. 

Table 1 
Comparative characteristics of the encoder with different configurations and the JPEG 
method 

Model / 
JPEG 

PSNR SSIM Compression 
ratio 

Time  
per image, s 

Total  
time, s 

3-layer 27.09 0.9738 1.11 1.46 1519.46 
5-layer 25.78 0.9392 1.18 1.67 1729.73 
7-layer 23.70 0.8528 1.37 1.62 1684.44 
10-layer 22.61 0.8062 1.51 1.58 1642. 42 

JPEG (95/100) 41.11 0.9742 4.58 0.02 92.07 
JPEG (75/100) 36.37 0.9405 12.03 0.01 88.77 
JPEG (20/100) 31.43 0.8559 32.25 0.02 93.57 
JPEG (13/100) 29.87 0.8147 40.82 0.01 85.40 

 
Figure 14: shows graphs that demonstrate the dynamics of changes in parameters such as PSNR (a), SSIM 
(b), Compression ratio and Time per image with increasing number of layers (autoencoder modules with 



3, 5, 7, 10 layers of convolution). The graphs also show similar results of the JPEG method with the 
corresponding settings (quality values 95/100, 75/100, 20/100, 13/100). 

 

  
 (a) (b) 

  
 (c) (d) 

Figure 14: Graphs of the dependence of changes in image recognition results for encoder models 
with different numbers of layers and the JPEG method with different quality settings: PSNR (a), SSIM 
(b), Compression ratio (c),Time per image (d). 

The findings of this research indicate that, at present, neural networks are not yet able to outperform 
traditional compression methods, suggesting that this area requires further exploration. The example 
of the basic autoencoder illustrates that while neural networks can reconstruct images with adequate 
quality, they still fall short of the compression efficiency and computational performance offered by 
classical methods. Furthermore, the study demonstrated that overly deep models tend to 
underperform in this context. Consequently, for compressing homogeneous images of size 128×128 
pixels, shallow neural networks with 2 3 layers are more suitable. 

The primary challenges at this stage include suboptimal data compression and a significant 
demand for computational resources. Addressing the first issue will require further model 
optimisation and the development of a loss function that can train the model to perform the trade-
off between compression and quality. The second issue points to the need for the adoption of 
advanced model compression techniques, such as quantisation and neuron and weight pruning. 

5. Conclusions 

In summary, neural networks can reconstruct images with adequate quality, they still fall short of 
the compression efficiency and computational performance offered by classical methods. 

This study developed an autoencoder model for image compression. The experiments 
demonstrated that the proposed model successfully preserves key structural features of the images, 
while achieving significantly lower compression ratios when compared to JPEG. 



The experiments determined the maximum acceptable number of convolutional layers for the 
model. For images of size 128×128 pixels, the maximum acceptable number of convolutional layers 
was found to be 5, with 2 3 layers being the most effective configuration. 

The analysis of the experimental data highlighted two main challenges for the neural network-
based approach: a low compression ratio and high resource requirements. Optimising the model 
architecture could enhance compression efficiency. Further improvements can be made through 
model optimisation and compression. The results indicate that, without addressing the 
computational cost, neural network-based compression methods cannot replace traditional 
approaches. 

To optimize the architecture, it is planned to explore alternative architectures, such as variational 
autoencoders (VAEs), to create a more efficient and stable latent space. It will be advisable to study 
hybrid models that combine different types of neural networks, and use dilated convolutions to 
increase the receptive field without additional computational costs. 

To reduce the size of the model and accelerate the encoding and decoding process, a promising 
direction will be the study of quantization, pruning, and knowledge distillation methods. 

Further research in this direction will allow creating more efficient and compact solutions for 
image compression based on neural networks. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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