
Object Detection Models in Counter-Unmanned Aircraft 
Systems Based on Devices with Limited Computing 
Capabilities 

Oleh Zaritskyi1,  

1 Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine 

Abstract 
The study provides a detailed analysis and identifies the most common and powerful computer vision 
methods for detecting and identifying unmanned aerial vehicles (UAV) depending on environmental 
conditions from the perspective of using these models on low-power computing devices on board an 
interceptor UAV. The author investigated the performance of some popular machine learning (ML) models, 
such as MobileNetV2 SSD FPN-Lite, FOMO (Faster Objects, More Objects). The simulation was carried out 
using a training dataset obtained by storyboarding a video of a real UAV use and pre-processing the images 
by scaling them and labeling them with appropriate labels. The obtained result of the accuracy of even the 
model converted with the help of Tensor Flow light with a reduced bit depth of feature weights indicates 
the possibility of using such models in computing modules of the Raspberry PI, Arduino etc. types on board 
the interceptor UAV. Specific imaging factors that have the greatest impact on detection and identification 
accuracy were also identified. A combination of various machine-learning methods have been proposed to 
build an effective Counter-Unmanned Aircraft Systems at any time of day and environmental conditions. 
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1. Introduction 

The widespread use of unmanned aerial vehicles (UAVs) of different classes and types in recent 
armed conflicts has resulted in significant material and human losses for both military units and 
civilians. The Shahed-type barrage munitions, also known as tactical UAVs of the second class 
according to NATO classification (weighing 150-600 kg, with a practical ceiling of up to 5000 m), 
pose a particular threat to the country's critical infrastructure [1] and civilian people. 

Figure 1 shows the dynamics of Shahed UAV launches against critical infrastructure and civilian 
targets during the full-scale war in Ukraine. The analysis is based on the "Massive Missile Attacks 
on Ukraine" database, which contains information on launched and shot down missiles and drones 
during massive strikes on infrastructure since October 2022 as part of the invasion of Ukraine. 

The database was created manually using official reports from the Air Force Command of the UA 
Armed Forces and the General Staff of the Armed Forces of Ukraine, published on social media [2]. 

Since the start of the full-scale invasion of Ukraine around 8000 UAVs of this type UAV have been 
launched till the January of this year, as shown in Figure 1. The cursory analysis of the data and the 
trends in Fig. 1 suggest that UAV attacks will continue to increase by the end of 2024. It's worth 
noting that UAVs are used in combined attacks with different types of missiles to overload air defense 
systems. 

Given the growing production and use of UAVs, as illustrated in Figure 1, and the significant cost 
of neutralizing them using current air defense systems like MANPADS (Man-portable air-defense 
systems) and operational/tactical air defense systems, a critical scientific and technical goal is to 
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develop cost-effective, unmanned counter-UAV systems. Research in this area has been ongoing for 
several years yielding specific advancements as detailed in the cited reference [3]. 

 

Figure 1: Dynamics of UAV Shahed use 

The purpose of this paper is formalizing the most effective methods of UAV detection by 
analyzing existing approaches with regard to the real conditions of particular UAV type use from 
the perspective of using these models on low-power computing devices on board an interceptor 
UAV.  

The main tasks of the research: 

1. Analysis of existing methods and approaches for detecting and tracking targets at any time 
of the day, taking into account the tactics of using a specific type of UAV. 

2. Modeling and assessing the accuracy of detecting Shahed-type UAVs using the most 
powerful models.  

3. Evaluation of the possibility of using UAV detection models using low-power computing 
resources such as Arduino etc.  

4. Identification of factors that most affect the accuracy of detecting and identifying a specific 
type of UAV.  

5. Development of a general concept of a comprehensive UAV countermeasure system at any 
time of the day based on an interceptor UAV. 

The emphasis is placed on the Shahed UAV due to its widespread use. 

2. Analysis of existing researches 

Research on UAV detection and identification is mainly focused on improving existing machine 
learning methods in computer vision tasks in order to increase the efficiency of detecting different 
types of UAVs. Let us consider the existing approaches in more detail. 

It should be noted at once that there is a large number of works devoted to acoustic object 
detection. For example, in [4], a neural network was built to recognize the sound pattern of the 
Shahed-136 engine due to its characteristic spectrum of frequencies and tones. 

The review paper [5] is interesting in terms of providing a thorough analysis of the methods used 
to detect and track UAVs or drones. Common methods are described that allow measuring the 



position, speed, and image of UAVs, and then using them for detection and tracking. Hybrid 
detection methods are also presented. The article is a quick reference for a wide range of methods 
used in the UAV detection process. 

In [6], the authors tested the applicability of an inexpensive long-wave infrared sensor for 
detecting various UAVs in flight. A large number of works have been devoted to the study of 
detection methods in the infrared range. For example, article [7] describes a visible and thermal 
monitoring system that combines detection and tracking modules based on deep learning. The 
authors present an integrated detection and tracking system that outperforms the performance of 
each individual module containing only detection or tracking. Experiments have shown that even 
based on synthetic data the proposed system performs well on real UAV images with complex 
backgrounds. 

Similar to infrared cameras, optoelectronic cameras have been widely researched for use in UAV 
detection and countermeasures. In recent years, deep convolutional neural networks (DCNN) have 
become the main tool for the development of visual UAV detection and classification systems. Paper 
[8] investigates the issues and various approaches to building convolutional networks in object 
detection tasks. 

Object tracking is one of the most important tasks in computer vision, which has many practical 
applications such as motion monitoring, robotics, autonomous vehicle tracking, etc. Various studies 
have been conducted in recent years, but due to various problems such as occlusion, lighting 
variations, fast movement, etc., research in this area continues. Article [9] explores various methods 
of object tracking and presents a comprehensive classification that categorizes tracking methods into 
four main categories: feature-based, segmentation-based, evaluation-based, and learning-based 
methods.  

The development of machine learning methods for UAV detection and classification requires 
training datasets that allow training and adjusting model parameters to obtain an acceptable level of 
detection accuracy, which in turn has created a powerful impetus for the development of research 
in the field of creating these datasets. In [10], the authors present a new dataset created entirely for 
training computer vision-based machine learning algorithms for object detection. The dataset 
extends the existing multi-class image classification and object detection datasets (ImageNet, MS-
COCO, PASCAL VOC, anti-UAV) with a diverse set of UAV images. 

As a rule, in most studies, object detection is described as the problem of determining the location 
of an object in an image (localization task) and which category (class) this object belongs to 
(classification task) and involves several stages: selecting the target area in the image, obtaining 
semantic features, and classification itself [11]. 

Faster R-CNN achieves state-of-the-art performance on generic object detection. However, a 
simple application of this method to a large vehicle dataset performs unimpressively. In paper [12], 
authors take a closer look at this approach as it applies to vehicle detection. They show that through 
suitable parameter tuning and algorithmic modification, we can significantly improve the 
performance of Faster R-CNN on vehicle detection.  

Paper [13] presents YOLO, a new approach to object detection. Prior work on object detection 
repurposes classifiers to perform detection. Instead, authors frame object detection as a regression 
problem to spatially separated bounding boxes and associated class probabilities. A single neural 
network predicts bounding boxes and class probabilities directly from full images in one evaluation. 

Paper [14] introduces G-CNN, an object detection technique based on CNNs which works without 
proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. Authors train a 
regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the 
problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the 
objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN 
which uses around 2K bounding boxes generated with a proposal technique. This strategy makes 
detection faster by removing the object proposal stage as well as reducing the number of boxes to be 
processed. 



Paper [15] presents a method for detecting objects in images using a single deep neural network. 
The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes 
over different aspect ratios and scales per feature map location.  Compared to other single stage 
methods, SSD has much better accuracy even with a smaller input image size. 

The analysis of works in the field of C-UAS systems development allows us to draw the following 
conclusions: 

1. Existing approaches involve the widespread use of optoelectronic cameras in the visible and 
infrared ranges of the radiation spectrum in UAV detection tasks.   

2. Researchers are mainly improving existing machine learning methods and widely applying 
transfer learning to object detection and tracking tasks.  

3. None of the systems under consideration fully satisfies the requirements for the 
implementation of highly effective C-UAS systems in terms of ensuring the detection of 
UAVs within the framework of possible scenarios of their use. 

4. All the papers are devoted to theoretical research and, in some cases, description of elements 
of practical implementation of UAV detection and classification systems. None of the papers 
considers the implementation of the interception concept as a logical extension of their 
research.   

That is why the author's idea of building a combined anti-drone system using methods of 
recognizing the intruder UAV, implemented on low-power computing boards on board the 
interceptor UAV, day and night, is an urgent practical task. The article presents the intermediate 
results of the research and the general architecture of building such a system. 

3. Machine learning methods in objects detection tasks 

Existing object detection methods are conditionally divided into several large groups, such as 
detection of ordinary objects (detection of faces, human figures, contours of machinery, etc.) and 
detection of salient objects. 

3.1. Detection of ordinary objects 

UAV detection through machine vision during daylight employs two primary approaches: 

1. Object area detection with subsequent classification (R-CNN models: R-CNN, Fast R-CNN, 
Faster R-CNN) [12]. 

2. Regression and classification methods (MultiBox, AttentionNet, YOLO, G-CNN, SSD, 
YOLOv2) [13-15]. 

Both techniques aim to efficiently recognize and identify objects in images. It is worth noting the 
large size of the Shahed-136 UAV, which is a classic wing measuring about 3x4 meters, which allows 
it to be visually detected at low altitudes with the naked eye and simplifies the setup of the 
recognition model by its characteristic silhouette. 

In order to compare several algorithms, a training dataset was formed, which included up to 1000 
images of the Shahed-136 flight in 1280x720px. size, obtained by storyboarding the corresponding 
videos. The image set was divided into training and testing in a ratio of 78 to 22 percent, respectively. 
All images were pre-processed with appropriate labels to create the training set and implement 
supervised learning. Due to the small amount of labeling and the large number of errors when trying 
to implement AI labeling, the labeling was done manually by applying a bounding box and a 
corresponding mark. 

It's very hard to build a good working computer vision model from scratch, as you need a wide 
variety of input data to make the model generalize well, and training such models can take days on 
a GPU. To make this easier and faster for researching tasks transfer learning is usually used. Such 



approach lets to use a well-trained model, only retraining the upper layers of a neural network, that 
lead to much more reliable models that train in a fraction of the time and work with substantially 
smaller datasets. 

The simulation input data was the same for all models to be able to compare the training results. 
20 epochs and a learning rate of 0.05 were used for training. The validation set was 20 percent of the 
training set; batch size was set from 2 to 4. Hardware acceleration was not used, nor was the GPU 
used during training. To use the trained model, the architecture was simplified by Quantization (from 
float32 to int8) to reduce size and speed up. The model was then exported to .tflite format 
(TensorFlow Lite) for deployment on the target device (Raspbery PI 3, Cortex-A53 (4 cores)  
1,5GHz). 

3.1.1. MobileNetV2 SSD FPN-Lite. 

MobileNetV2 SSD FPN-Lite  a pre-trained object detection model designed to locate up to 10 objects 
within an image, outputting a bounding box for each object detected. The model is around 3.7MB in 
size. It supports an RGB input at 320x320px. The architecture is specifically optimized to work on 
devices with limited computing capabilities, which is achieved thanks to the lightweight 
MobileNetV2 base model. Due to the model using input images of size 320x320, their reduction was 
carried out using several methods. 'Squash' will resize via interpolation, using the entire image. The 
longer axis will look squashed. 'Fit shortest axis' will first crop the outsides of the longer axis to the 
desired aspect ratio, then interpolate to desired size. 'Fit longest' will 'letterbox' the short axis to the 
desired aspect ratio, then interpolate. 

The model achieved an 0.88 mean average precision (mAP) during training (validation dataset) 
and 0.77 on the test dataset. Increasing the number of epochs to 40 and setting learning rate to 0.02 
increase accuracy to 86% on the test dataset (fig.2). 
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Figure 2: a) Video frame with Shahed-136 image, and b) probability of object detection with 
MobileNetV2 SSD FPN-Lite model 

MobileNetV2 SSD FPN-Lite is an efficient architecture for object detection on resource-
constrained devices, providing a good balance between speed and accuracy. However, running it on 
standard Arduino boards is practically impossible due to significant hardware limitations. To 
implement such computer vision tasks on microcontrollers, it is more appropriate to use much 
simpler models or specialized hardware solutions, such as the Arduino Portenta H7 (or Arduino Nano 
33 BLE Sense) in combination with TensorFlow Lite for microcontrollers and additional quantization 
and optimization of the model. To increase the accuracy of the model and fine-tune the task of 
recognizing specific objects of a characteristic shape, freezing the layers of the MobileNetV2 block 
(18 layers) and training SSD Head and FPN-Lite on 1000 samples was used. 



3.1.2. FOMO (Faster Objects, More Objects) MobileNetV2 0.35. 

An object detection model based on MobileNetV2 (alpha 0.35) designed to coarsely segment an image 
into a grid of background vs objects of interest. This architecture represents an innovative approach 
to solving the problem of fast and accurate detection on edge devices, including microcontrollers and 
single-board computers. These models are designed to be <100KB in size and support a grayscale or 
RGB input at any resolution. FOMO is a brand-new approach to run object detection models on 
constrained devices. FOMO is a ground-breaking algorithm that brings real-time object detection, 
tracking and counting to microcontrollers for the first time. FOMO is 30 times faster than MobileNet 
SSD and can run under 200K of RAM. Simulation results for the test set (proportion 78/22 of the data 
set) using images from the previous experiment are presented by Confusion matrix (table1) and fig.3. 

Table 1 
Confusion matrix (validation set) 

 Background Shahed-136 

Background 100% 0% 
Shahed-136 5.3% 94,7% 

 
The model achieved an accuracy of 0.97 (F1 Score) during training (validation dataset) and 0.88 

on the test dataset. 
The model was also converted using Tensor Flow light (reduced the number of feature weights 

to 8) in order to deploy the model on an Arduino device and obtained the following indicators: 
inferencing time  833,98 ms, peak RAM usage - 2,8 MB, flash usage - 11,3 KB. At the same time, it 
should be noted that the detection accuracy decreased to 0,84. 

 

  
  

Figure 3: a) Video frame with Shahed-136 image, and b) probability of object detection with FOMO 
model 

FOMO radically changes the standard approach to object detection. Unlike traditional models that 
assume bounding boxes and perform classification within these boxes, FOMO uses semantic 
segmentation as the basis for detection. This engineering change allows the model to be significantly 
lighter and faster. Due to its small size, the model can be deployed on microcontrollers such as 
Arduino Portenta, ESP32-CAM, or STM32 for basic object detection.  

The main challenges in presented training models: 

1. Poor detection of distant (small) objects that blend into the background (ground, buildings, 
trees). The performance of FOMO is highly dependent on the resolution of the input image. 
Very small objects in low-resolution images may be missed. 



2. Poor detection of large objects (foreground) when the UAV is almost the same size as the 
house against which it was shot (the geometry of the house, the triangular roof (similar to 
the shape of the UAV, etc.) affect the detection). This problem was typical for MobileNetV2 
SSD, and the FOMO model solved this problem completely (fig.4).   

3. Sensitivity to input quality. Compact models are often more sensitive to noise, poor lighting, 
or unusual angles of objects. 

  
  

Figure 4: a) Video frame with Shahed-136 above the triangular roof, and b) the probability of 
detecting a roof instead of a UAV 

4. The need for fine-tuning hyperparameters to achieve the optimal balance between speed and 
accuracy in a specific problem. 

3.2. Detection of salient objects 

One of the most challenging tasks in the field of computer vision is the detection of salient objects, 
which involves highlighting the most dominant parts or the object as a whole in an image. There are 
several approaches to solving the problem of detecting salient objects, the most common of which 
are bottom-up (BU) and top-down (TD). 

The first approach involves studying the contrast of local and global features of image pixels, 
regardless of the overall context of the image, which allows obtaining a low-contrast map of a salient 
object instead of the image of the object itself. The second approach requires prior knowledge of the 
object, i.e., contextual detection, which is the basis for building (recognizing) a contrast map. In the 
case of a combination of the two approaches, the TD approach detects the object of attention (its 
contours), which subsequently allows rejecting pixels that stand out strongly in contrast but do not 
belong to this object. 

These methods of detecting salient objects, as in case of detecting ordinary objects, use 
convolutional neural networks as a basis, which was improved by the authors of the studies [16, 17]. 

A review and comparison of the effectiveness of the main models for detecting salient objects, 
such as: CHM (Contextual hypergraph modeling), RC (Regional Contrast based salient object 
detection), DRFI (discriminative regional feature integration), MC (Multi-Context deep learning), 
MDF (Multiscale Deep CNN Features), LEGS (Local Estimation and Global Search), DSR (Deeply-
Supervised Recurrent CNN), MTDNN (Multi-Task Deep Neural Network), CRPSD (Combining 
Region-level and Pixel-level Salient Detection), DCL (Deep Contrast Learning), ELD (Encoded Low 
level Distance), NLDF (Non-Local Deep Features), and DSSC (Deeply Supervised Salient object 
detection with short Connections) are made in [8]. 

It should be noted that there are no specialized training datasets that would cover a wide range 
of UAVs, especially dual-purpose ones. The following datasets can be used as training sets for 
training models for detecting salient objects: ECSSD, HKUIS, PASCALS, and SOD datasets, which 
are usually represented by 300 to 4000 images with salient objects. 

Two standard metrics are usually used to evaluate the quality of a visibility mapping model: F-
measure and mean absolute error (MAE). Taking into account the values of Precision and Recall, for 



a pre-built binary mask B of the saliency map and a reference image, the F-measure is calculated as 
(𝛽2 = 0,3) (1): 

𝐹𝛽 =
(1 + 𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. (1) 

The mean absolute error is calculated (2): 

𝑀𝐴𝐸 =
1

𝐻 × 𝑊
∑ ∑|𝑆̂(𝑖, 𝑗) = 𝑍̂(𝑖, 𝑗)|

𝑊

𝑗=1

𝐻

𝑖=1

, (2) 

where 
     𝐻, 𝑊 - the height and width of the visible area, respectively; 
      𝑆̂, 𝑍̂ - represent the ground truth and the continuous saliency map, respectively. 
CHM, RC, DRFI recognition methods, which are classified as classical classification methods, 

achieve the highest model quality (𝐹𝛽 = 0.631 − 0.712, 𝑀𝐴𝐸 = 0.143 −  0.222) on these datasets, 
while other mentioned methods based on convolutional neural networks perform much better (𝐹𝛽 =

0.721 − 0.913, 𝑀𝐴𝐸 = 0.037 −  0.12) [8].  
Studies of UAVs with piston engines of the Shahed-136 type in terms of obtaining IR signatures 

have not been carried out, which significantly complicates the development of appropriate detection 
models. 

The UAV type Shahed 136 uses the L550E (MD-550) engine, a four-cylinder horizontally opposed 
two-stroke air-cooled gasoline engine that develops a power of 37 kW (Fig. 5a) [18].  

The cooling system is air. Working volume - 548 cm³, length - 300 mm, width - 410 mm, height - 
301 mm, dry weight - 16 kg, power-to-weight ratio: 2.3 kW/kg. 

  
  

Figure 5: a) Engine L550E, the downed Shahed fell into the field and b) its IR signatures 

 
The operating temperature of the cylinder walls of an air-cooled engine is usually 150-180 

degrees. Air masses passing through the cooling fins at speeds of 150-180 km/h, taking into account 
the ambient temperature, remove part of the heat from the engine and reduce its temperature to 100-
130 degrees, thereby reducing infrared radiation. 

Consequently, the infrared emissions of the Shahed-136 engine operate within the long-wave 
spectrum of 8 12 microns. This property facilitates compatibility with a broad range of infrared 
cameras and sensors, such as the MLX90640-D55 Thermal Camera, HT U-01 MINI 256 CVBS thermal 
camera designed for drones, and the FPV camera RunCam Night Cam Prototype, among several 
others that are compatible with computing modules like Raspberry Pi, NVIDIA Jetson Nano, and 
Arduino. These devices can detect objects at distances of up to 500 1000 meters, depending on 
external conditions (Fig. 5b). 

https://uk.wikipedia.org/wiki/Limbach_L550E#cite_note-:1-4


4. Concept of the combined system of detection, recognition and 
interception of UAV 

Since the use of Shahed-136 UAVs, it has been established that since the beginning of the armed 
aggression, these UAVs have been used most often and are most effective at night, between 23:00 
and 06:00. This is when it is difficult to visually detect and determine their number. 

The flight trajectory is straightforward during the marching phase. The average speed of the 
Shahed-136 kamikaze drones observed during combat use is 140-150 km/h (although movement at 
speeds of 80 to 180 km/h was observed), and the flight altitude on the marching section is from 700 
m to 2000 m, and in the target area it drops to 200 m. 

Thus, for the tasks of detecting UAVs of the Shahed- -
the real data of practical detection of such objects by the Defense Forces of Ukraine, the following 
detection distances can be formed (Table 2). The most effective methods of detection and 
identification are combined into one logical scheme of their application (fig.6). 

Table 2 
Detection distances Shahed-136 

Characteristics Means of detection Detection 
distance, km. 

Material object (geometric dimensions) 
Radar (active radiation) up to 50 

Visual detection 0,5 - 1 
Material object (visibility) Optical and electronic cameras 0,5 - 2 

Thermal radiation Infrared camera 0,5 - 2 
Radio frequency signal Radio frequency receiver - 

Acoustic signal High-sensitivity microphone 
(array) 1 - 5 

 
The visual detection stage begins when the optical-electronic interceptor (OE/IR) camera installed 

on the UAV clearly identifies the target. At this stage, in addition to target detection, additional target 
identification can be performed, i.e., confirmation of the correctness of the identification at the 
previous stage (acoustic, radar, etc. detection and identification). As discussed in the previous section, 
it is possible to use an infrared camera that will allow the UAV interceptor to be pointed at the hot 
engine of a UAV such as the Shahed-136. It is obvious that it is necessary to use a combined 
interception system that will combine various methods to ensure the greatest efficiency and all-
weather capability (fig.6). Thus, in normal visibility conditions, optoelectronic cameras can be used, 
and in night conditions, interception and guidance can be carried out using an infrared camera. The 
next stage is to track and destroy the target using the segmentation tracking method. Tracking is 
carried out by tracking a rectangular frame that was superimposed on the detected UAV at the 
previous stage, and targeting is performed by aligning the Z-axis of the interceptor aircraft with the 
center of the tracking frame.  

Countering drones could be done using one or a combination of several approaches, namely: 
physically destroying the drone, neutralizing the drone, taking control of the drone and was 
reviewed by author in article [3] in detail.  

The main part of the interceptor UAV can be made in a conventional configuration, i.e., of hard 
metals, which involves a dynamic impact with the target at high speed and destruction of the 
propellers and engine, or it can be equipped with a small charge that can be detonated at the moment 
of impact with the target. The explosion is more relevant for daytime tracking and interception using 
an optoelectronic camera that allows detecting the target as a whole, rather than its individual 
elements such as an engine, and imposing a tracking frame on the entire object, which can limit the 
effects of dynamic damage due to the weight and size ratio of the target and interceptor. 

 



 

Figure 6: Methods of Shahed-136 detection 

5. Conclusion 

The results of the research and calculations carried out within the framework of the goals and 
objectives allow us to draw the following conclusions: 

1. The most problematic issue in area of building C-UAS system, as shown by the analysis, is 
the lack of training datasets that would describe different scenarios of UAV use, not to 
mention the variety of their types. That is why all further research will depend on filling the 
training sets with high-quality video and photo materials.  

2. The proposed UAV detection by the C-UAS system involves the use of an interceptor UAV 
as a means of detecting and defeating a target, using a combination of machine vision 
methods under different interception conditions, which will provide a synergistic effect and 
significantly expand the capabilities of interceptor UAVs. The relevance of this approach is 
due to the characteristics of certain types of UAVs (size, engine infrared spectrum, etc.) and 
the tactics of their use mainly at night, which makes the combination of detection in two 
ranges (visible and infrared) quite an urgent task. 

3. Solving the target detection problem and imposing a rectangular bounding box will allow to 
proceed to UAV tracking using one of the segmentation-based tracking methods, which 



involves solving a regression problem and keeping the longitudinal axis of the interceptor 
UAV in the center of the bounding box.  

4. The results obtained regarding the accuracy of detection and identification at the level of 90% 
and small size of models allow to speak about the possibility of using the considered models 
on devices with limited computing power such as Raspberry Pi, NVIDIA Jetson Nano and 
Arduino computing modules. 

5. The Raspberry Pi is a much more powerful platform than Arduino for deploying machine 
learning models, including the MobileNetV2 SSD FPN-Lite and FOMO. Given its 
specifications, the Raspberry Pi can provide acceptable performance for real-time object 
detection tasks, especially with optimized models and hardware accelerators. However, it is 
important to understand that performance will still be limited compared to more powerful 
systems. For complex tasks or high-resolution video processing, additional optimizations or 
even a move to more powerful platforms such as the NVIDIA Jetson Nano or Xavier NX may 
be required. 

6. FOMO does not provide precise bounding boxes, only centroids and segmentation masks. If 
precise object coordinates are critical for the application, this can be a problem.  

Thus, based on the results of the study and the presented conclusions, it is possible to recommend 
the use of the two presented models, but with certain limitations, namely: model MobileNetV2 SSD 
FPN-Lite requires a more powerful board, for example Arduino Nano 33 BLE Sense, Raspberry Pi is 
better and will be more effective in target tracking tasks; model FOMO is more powerful and faster, 
can use board Arduino Nano 33 BLE Sense, but has certain limitations regarding the implementation 
of target tracking, since not provide precise bounding boxes. 

Declaration on Generative AI 

The author has not employed any Generative AI tools. 
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