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Abstract 
The paper proposes a multi-agent energy management system for autonomous unmanned platforms, 
specifically unmanned aerial vehicles (UAVs) and unmanned ground robotic complexes (UGRCs). For the 
first time, an embedding-based approach is employed to represent the technical state of the battery pack: 
a multidimensional feature vector is mapped into an embedding space for subsequent analysis, 
classification, and prediction. The effectiveness of clustering and short-term degradation forecasting of 
battery cells-implemented via the embedding method using MLP models-is demonstrated. Simulation 
results confirm the feasibility of early detection of critical battery operating modes and adaptive energy 
management. The integration of the embedding approach within a multi-agent architecture is examined, 
assigning distinct roles to monitoring, classification, prediction, and decision-making agents. Attention is 
also given to the potential integration with digital twin models of batteries. The proposed method is 
suitable for deployment on edge devices and is promising for application in high-reliability power 
systems operating under resource-constrained and highly dynamic conditions. 
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1. Introduction  

The energy autonomy of unmanned aerial vehicles (UAVs) and unmanned ground robotic 
complexes (UGRCs) critically depends on the ability to rapidly and reliably assess the residual 
operational capacity of their battery packs. Traditional methods, which rely on individual metrics 
(State of Charge (SoC), cell internal resistance, temperature, etc.) [1], fail to capture the full scope 
of degradation processes. In this work, we propose an integral health vector that unifies discrete 
performance indicators - SoC, State of Health (SoH), Remaining Useful Life (RUL), and other 
diagnostic features-and projects them into a multidimensional embedding space, thereby laying the 
groundwork for a multi-agent system (MAS) capable of real-time classification, prediction, and 
energy-management decision-making. Addressing the challenge of estimating the remaining useful 
life of batteries requires a systematic approach that spans the evolution of methods - from the 
analysis of individual physical parameters to the development of integrated digital representations. 
Accordingly, it is appropriate to examine the historical stages of scientific approaches that have 
established the modern foundation for embedding integration within multi-agent energy-decision 
support systems. 

In [2], a cloud-based digital twin for batteries with online SoC/SoH estimation is proposed, 
demonstrating the promise of remote monitoring. The NASA dataset [3] has become a benchmark 
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for modeling lithium-ion cell degradation. Study [4] presents an interpretable neural network 
model for SoH forecasting, affirming the feasibility of feature vectorization. The review in [5] 
systematizes BMS functionalities and emphasizes the need for comprehensive indicators and 
predictive capabilities. Study [6] demonstrated that the application of neural networks enhances 
RUL forecasting, whereas work [7] focuses on energy-efficient cooperative mission planning for 
drones under battery constraints, emphasizing the necessity of accurate flight-time predictions. 
Finally, [8] introduces a UAV-aided digital twin framework for IoT networks, corroborating the 
growing role of digital twins in the management of UAV fleets. 

Neural network based approaches to SoC estimation have been demonstrated in [9], while the 
deployment of predictive models on edge devices using transfer learning is described in [10]. To 
capture long-term nonlinear patterns, it is common to employ the Long Short-Term Memory 
(LSTM) architecture. [11] and attention mechanisms [12] have been employed, and deep ResNet 
models [13] have been shown to stabilize the training of complex networks. The survey in [14] 
summarizes hybrid (physics-informed statistical) battery models that enhance estimation accuracy. 
Finally, a scalable multi- -of-
networks is proposed in [15], highlighting the potential of distributed decision-making. Thus, the 
evolution from measuring individual metrics to employing integral embedding vectors and multi-
agent systems represents a contemporary trend in the energy management of unmanned systems. 

 Regarding the perspectives for practical implementation, multi-agent energy management 
system find direct application in complex UAV missions where sustained operational efficiency is 
critical. For example, in swarm-based UAV operations for radio-electronic reconnaissance and 
active electronic warfare, as described in [16], energy allocation decisions must be made 
dynamically to ensure continuous jamming of adversary systems while maintaining 
reconnaissance coverage over designated areas. Such scenarios demand precise coordination of 
SoC, SoH, and RUL data across the swarm to prevent premature mission aborts. Similarly, MAS 
architectures can be integrated into UAV mission control frameworks for meteorological data 
collection in IoT-based environments [17] or optimized routing over rough terrain using machine 
learning [18], where energy-aware path planning directly influences mission success. Beyond 
tactical missions, MAS-based energy management can be embedded into logistics systems such as 
LOGFAS or ARK AI, enabling synchronized planning of UAV fleet deployments, predictive battery 
replacement scheduling, and integration of energy constraints into broader operational planning 
cycles. These practical implementations underscore the dual role of the proposed architecture - as 
both a tactical decision-support tool and a component of higher-level logistics and command 
systems - thereby bridging the gap between battery diagnostics, operational planning, and 
autonomous mission execution. 

The following exposition demonstrates how the constructed health‐assessment vector is 
mapped into the embedding space, how the agent architecture leverages this representation for 
clustering, prediction, and decision‐making, and how the novel metrics enable aggregated 
diagnostics of battery condition in complex tactical scenarios. 

2. Formation of the Battery Health Vector 

The operation of modern autonomous platforms - namely unmanned aerial vehicles (UAVs) and 
unmanned ground vehicles (UGVs) - requires a reliable assessment of the residual capacity of their 
power sources. This analysis centers on three key performance indicators: State of Charge (SoC), 
State of Health (SoH), and Remaining Useful Life (RUL). Individually, these parameters inform on 
the current energy reserve, the extent of degradation, and the projected future lifespan, 
respectively. However, only when considered collectively do they provide a comprehensive 

 



2.1. Interrelationship of the SoC, SoH, and RUL Performance Indicators 

Presented below is a concise overview of the most widely adopted and complementary metrics 
enabling quantitative evaluation of lithium‐based battery performance across its entire life cycle. 
The State of Charge (SoC) metric defines the percentage level of available capacity within the 
current cycle: 

𝑆𝑜𝐶(𝑡) =
𝑄(𝑡)𝑎𝑣𝑎𝑙

𝑄𝑛𝑜𝑚
. 

(1) 

In practice, it is computed by coulomb counting - that is, integrating the current over time-and 
subsequently corrected using open-circuit voltage (OCV) calibration. This approach maintains an 
error below 1 % even under dynamic loading and temperature variations [19]. 

On the other hand, the State of Health (SoH) describes the long-term degradation of the battery 
and has several equivalent formulations: 

𝑆𝑜𝐻𝑐(𝑡) =
𝐶max(𝑡)

𝐶𝑖𝑛𝑖𝑡
, 

(2) 

𝑆𝑜𝐻𝑅(𝑡) =
𝑅𝐸𝑂𝐿−𝑅0

𝑅𝐸𝑂𝐿 − 𝑅(𝑡)𝑖𝑛𝑖𝑡
. 

(3) 

The capacity-based indicator 𝑆𝑜𝐻𝑐(𝑡) (2) is defined as the ratio of the actual measured capacity 
to the initial capacity, reflecting the loss of active lithium mass. The impedance-based indicator 
𝑆𝑜𝐻𝑅(𝑡) (3)  reflects the progressive increase of internal resistance during battery aging and is 
commonly defined using the end-of-life resistance 𝑅𝐸𝑂𝐿 , corresponding to the failure threshold, 
and the initial resistance 𝑅(𝑡)𝑖𝑛𝑖𝑡 [20]. -
typically expressed in cycles or operating hours until the failure threshold is reached-the 
Remaining Useful Life (RUL) metric is applied [20]:  

 
𝑅𝑈𝐿(𝑡) = 𝑡𝐸𝑂𝐿 − 𝑡𝑖𝑛𝑖𝑡  , (4) 

where 𝑡𝐸𝑂𝐿  denotes the number of cycles for which the capacity reaches the battery end of life 
EOL threshold (80 % of the initial capacity), 𝑡𝑛𝑜𝑚 - represents the  number of cycles for the nominal 
capacity. 

Figure 1 illustrates the interrelation between three key performance indicators of a lithium-ion 
battery: SoC (State of Charge), SoH (State of Health), and RUL (Remaining Useful Life), as 
presented in the study [21]. SoC represents the current level of available capacity relative to the 

battery degradation, decreasing progressively during cyclic operation. RUL denotes the predicted 
number of cycles until the end of life (EoL) is reached, when SoH falls below the acceptable 
threshold. The combined analysis of these indicators provides a comprehensive assessment of both 
the current and the forecasted condition of the battery. 

Existing approaches reported in the literature typically operate on isolated battery health 
indicators-such as SoC, SoH, RUL, internal resistance, and so forth. However, this methodology is 
insufficient for comprehensive forecasting and real‐time decision‐making under the dynamic 
conditions of complex missions, where the integration of multiple parameters into a single metric 
is critically important. 

By combining SoC, SoH, and RUL into a unified descriptor-such as the Dynamic Vector 
Efficiency (DVE)-one obtains a metric of the form: 

DVE(t) =
𝑆𝑜𝐶(𝑡) ∙ 𝑅𝑈𝐿(t)

𝑅𝑖𝑛𝑡 ∙ 𝑇
, 

(5) 

where Rint − denotes the internal resistance of the battery (Ohm), T -represents the battery 
temperature (°C).  



 

Figure 1: Interdependence of SoC, SoH, and RUL in Lithium-ion Batteries 

The DVE is a dimensionless index that quantitatively characterizes the energy efficiency of a 
battery at a given moment by accounting for its SoC, RUL, and losses due to internal resistance and 
thermal effects. This enables MAS agents to rapidly assess the 
both short-term and long-term indicators into a single numerical expression. 

2.2. Construction of the Integral Health Vector  

In order to standardize the parametric representation of the battery at each time t, we propose 
to construct an integral health vector  here after referred to as the Battery State Index Vector 
(BSIV) - which, in its most general form, is expressed as: 
 

b⃗ =  [SoC(t), SoH(t), RUL(t), Rint, T, Vload, 𝐼load, Z(f1),… , Z(fn)], (6) 

 
where SoC(t) denotes the state of charge at time t; SoH(t) - the state of health (remaining 

resource) of the battery; RUL(t) - Remaining Useful Life (number of cycles until the critical SoH); 
Rint(t)  is the internal resistance of the cell (Ohm); T(t) is the cell temperature at time t (°C or K)., 
Vload(t), Iload(t) denote the voltage and current under load (V, A);  - is the complex 
impedance measured at frequency 𝑓𝑖 (Hz). 

This vector may serve as the foundation for classification, prediction, and embedding 

projections. Its flexibility lies in the ability to incorporate additional parameters (e.g., 
∆SoC

∆𝑡
, 

enclosure temperature, degradation index, etc.). 
The proposed integral health vector encapsulates all relevant information regarding the 

degradation trends, and decision-making within a multi-agent environment, this vector is 
transformed into an embedding space of appropriate dimensionality. The objectives of this 
embedding representation are: information compression without loss of key features, cluster 
identification of battery states exhibiting similar characteristics, decision-space construction for 
energy-management agents, critical-zone detection based on threshold distances (Critical Distance 
Metric - CDM). For example, based on the embedding representation, one may introduce a novel 

metric that quantifies the Euclidean distance from the embedding vector 𝑏⃗ 𝑡 to the critical-state 

region 𝑏⃗ threshold (7): 
 

CDMt = min
𝑏⃗ 𝑡

‖𝑏⃗ 𝑡 − 𝑏⃗ threshold‖. (7) 

 
Moreover, the embedding space derived from the integral health vector enables a transition 



point within this space represents a unique state profile, and the distance between points correlates 
with the similarity of their technical conditions. This framework allows agents not only to classify 
the current state as normal or critical but also to detect degradation trends and latent anomalies in 
the distribution. Isolated features-such as SoC or the internal resistance Rint treated independently 
in classical methods, whereas the embedding space reveals nonlinear interdependencies among 
features that are not apparent in the raw data.  

To reduce the dimensionality of the embedding space and construct a topologically meaningful 
representation, several approaches are commonly employed, including Principal Component 
Analysis (PCA) for linear compression and visualization,  t-Distributed Stochastic Neighbor 
Embedding (t-SNE) or Uniform Manifold Approximation and Projection (UMAP) for nonlinear 
cluster separation, autoencoders for representation learning via reconstruction, and neural 
embedding layers (implemented via multilayer perceptrons) when the embedding is an integral 
part of the trained model. The application of PCA, autoencoders, or t-SNE facilitates the discovery 
of latent clusters-for example, groups of battery cells exhibiting similar aging rates or operating 
conditions. 
clustering results in conjunction with a predictive model that projects the state at time t+1 (Figure 
2). 

 

 
Figure 2:  the PCA space  
 
Despite the flexibility of the embedding-based approach, the accuracy of forecasting the 

-quality, complete, and balanced 
datasets. In the event of insufficient sample representativeness or sudden changes in operating 
conditions, the embedding space may shift, adversely affecting classification and decision-making. 
Moreover, deep neural networks (in particular autoencoders, MLPs, and LSTMs) require careful 
hyperparameter tuning and are prone to overfitting when trained on limited data. At the same 
time, adapting these models for field deployment necessitates edge implementations with 
constrained computational resources. 

The embedding space can serve as a generalized map of battery states for the entire system. 
Agents within the MAS analyze positions relative to clusters, forecast state-transition trajectories 
over time, and apply thresholding mechanisms based on Euclidean or cosine distances. They then 
optimize task allocation - such as repositioning or load distribution - across a UAV swarm. This 
approach combines local interpretability with global coherence in decision-making within the 
multi-agent architecture. 



3. Implementation of the Multi-Agent Energy Management System 

Based on the integral health vector described in the preceding sections, we propose an 
implementation of a multi‐agent system (MAS) that performs monitoring, forecasting, and 
decision‐making for energy consumption in UAV swarms and UGV groups. The MAS leverages the 
embedding space of battery states as its coordination environment. It is architected according to 
principles of agent distribution, vectorized state representation, stream-oriented data processing, 
and flexible hardware deployment. Agent distribution entails that each agent executes one or more 
functions within a clearly defined zone of responsibility. Under the vectorized state representation, 
all agents operate on a unified battery state vector. 

3.1. Architecture of the MAS 

The multiagent system comprises five distinct agent types-Sensor Agent, Embedder Agent, 
Classifier Agent, Predictor Agent, and Decision Agent-whose roles are detailed in Figure 3. The 
Sensor Agent acquires battery parameters (voltage, current, temperature, impedance) via SMBus, 
CAN, and I²C protocols and packages them as raw data. The Embedder Agent transforms this raw 
data into a state-feature embedding, which the Classifier Agent then uses to categorize the 

-employing techniques such as K-means 
clustering or decision trees.  

 

Figure 3: Architecture of the MAS 

The Predictor Agent leverages the embedding trajectory to forecast future battery states and 
quantify associated risks, while the Decision Agent 
to adjust mission parameters-such as rerouting, load redistribution, or replacing drones in the 
swarm due to impending battery depletion. 

As illustrated in Figure 3, the agent interaction algorithm proceeds as follows. The Sensor Agent 

instantaneous values of voltage, current, temperature, internal resistance, frequency-domain 
impedance, and additional relevant parameters. If data frames are missed or noise is excessive, the 
agent applies an internal smoothing filter (e.g., EMA or EKF). The Embedder Agent then consumes 



this raw data, computes derived metrics (SoC, SoH, RUL, 
𝑑𝑇

𝑑𝑡
, etc.), and constructs the integral state 

vector 𝑏⃗ 𝑡. This vector is normalized and projected into the embedding space using techniques such 
as PCA, autoencoders, or UMAP. The agent publishes the resulting embedding coordinates 𝑒 𝑡 via a 
message queue (e.g., MQTT [15] or ZeroMQ) to the downstream agents. 

For state classification, the Classifier Agent receives and assigns it to one of the predefined 
clusters- -using methods such as K-means, hierarchical decision 
trees, or a Critical Distance Metric threshold. The classification outcome is then published along 
with a timestamp and confidence level. Predictor Agent The Predictor Agent generates a short-
term forecast by maintaining an up-to-date predictive model (e.g., MLP, LSTM, or transformer) and 
pre  𝑒 𝑡  

5 min). If the predicted embedding falls within the critical 
ecision-making, the Decision Agent ingests the 

current health classification, the risk flag, and mission context (e.g., distance to target, availability 
of spare drones, weather conditions, terrain/elevation data, tactical situation). Based on these 
inputs, it selects one of several action protocols-such as entering an energy-saving mode, rotating 
platforms within the swarm, or initiating an emergency return to the launch point. 

Regarding the interaction of optional agents, it should be noted that the Digital Twin Agent 
initiates an update of the degradation model within the cloud‐based digital twin, compares the 
actual and simulated trajectories  t..t+k and transmits corrections to the Embedder and Predictor 
Agents. The Mission Risk Agent assesses the impact of energy loss on mission success-considering 
factors such as distance to target, remaining munitions, and time windows-ranks the associated 
risks, and, if necessary, elevates the priority of the Decision Agent.  

During MAS operation, mechanisms for continuous feedback and self-updating must be 
ensured. All agents record their activities and telemetry data in a central log. Key performance 
metrics, such as prediction MAE and the percentage of critical deviations, are periodically 
reviewed. When the P
newly acquired data, while the Classifier Agent recalculates its clusters. This continuous feedback 
and self-update loop ensures the MAS adapts over time to maintain decision-making fidelity. Data 
exchange is performed via a publish subscribe bus (e.g., MQTT), or over an embedded Ethernet 
network (e.g., EtherCAT or MIL-STD-1553B) in combat UGVs. Implementation on edge devices is 
feasible, provided that each agent is deployed as an autonomous container or process on an edge‐
compute module (e.g., Raspberry Pi, Jetson Nano, or other platforms as specified in [22]), with the 
capability to execute PyTorch Lite or MicroPython code. This ensures low latency and autonomous 
decision-making onboard the platform. 

3.2. Example of MAS Application 

In the simulation, a 40-minute flight scenario of a quadrotor UAV was employed under variable 
ambient temperatures ranging from +10 °C to 5 °C. The corresponding data are presented in Table 
1. Based on the computed state vectors, embeddings, and the critical‐distance threshold (CDM < 
0.15), the agents identified the onset of a critical battery state after 36 minutes of flight. 

 
Table 1  
Hypothetical Battery State Vector Values at Selected Flight Times 

t (min) SoC SoH RUL  T (°C) DVE CDM 
0 1.00 1.00 40 0.015 +10 66.7 1.20 
10 0.80 0.99 30 0.017 +5 47.0 0.82 
20 0.65 0.97 22 0.019 0 37.1 0.50 
30 0.45 0.95 12 0.021 2 25.7 0.27 
36 0.31 0.94 6 0.025 5 19.6 0.14 

 



This example illustrates the application of multi‐agent logic based on embedding vectors to 
provide real-time alerts of unacceptable battery states. Table 2 provides a structured comparison of 
the key characteristics of conventional battery-state assessment methods versus the innovative 
embedding-based approach proposed in this work. 
 
Table 2  
Comparison of Embedding-Based and Traditional Approaches 

Criterion Traditional Methods Embedding-Based Approach 
Input Data Type Individual parameters only 

(SoC, internal resistance, 
temperature) 

Multidimensional vectors combining SoC, SoH, 
RUL and other diagnostic features 

Criticality Assessment Rigid threshold rules, valid 
only within predefined 
scenarios 

Geometric analysis in embedding space 
(cluster- and distance-based) allowing adaptive 
anomaly/critical-state detection 

Forecasting Capability Empirical formulas or 
instantaneous diagnostics 

Integrated ML-driven forecasting (MLP, LSTM, 
transformer) supporting short- and medium-
term degradation prediction 

Scalability Typically tailored to single 
platforms or requires 
significant re-engineering for 
swarms 

Naturally scalable - identical embedding model 
can serve swarms of UAVs/UGVs while 
accommodating individual device profiles 

Adaptation to New 
Conditions 

Manual recalibration or 
retuning 

Online model adaptation (retraining, cluster re-
computation) driven by telemetry feedback 

Edge Deployment & Real-
Time Usage 

Varies; may need high-
performance hardware for 
on-board ML 

Designed for edge containers/processes on 
lightweight compute modules (e.g., Raspberry 
Pi, Jetson Nano) running PyTorch Lite or 
MicroPython with low latency 

Interpretability & 
Decision Logic 

Limited to individual metrics Embedding vectors provide both local 
interpretability (via distance/cluster metrics) 
and global consistency for multi-agent decision 
protocols 

Integration with Digital 
Twins 

Often standalone, manual 
data exchange 

Direct feedback loops with cloud-based digital 
twins for automatic calibration and continuous 
refinement of both the embedding and 
degradation models 

 
In terms of input data type, traditional methods are limited to individual parameters-such as 

State of Charge (SoC), internal resistance (Rint ) and temperature-which do not capture the holistic 
dynamics of degradation. By contrast, the embedding approach operates on vectors that unify 
multiple parameters-including SoC, State of Health (SoH), Remaining Useful Life (RUL), and 
additional diagnostic features-thereby creating a unified, multidimensional representation. 

Regarding criticality assessment, classical techniques employ rigid threshold rules that are 
informative only within predefined scenarios. In opposition, the embedding method relies on 
geometric analysis within the vector space, enabling anomaly detection, cluster formation of 
battery states, and recognition of complex nonlinear relationships. 
From a scalability perspective, traditional approaches are generally tailored to single platforms or 
require significant adaptation to scale. Embedding representations, on the other hand, are 
inherently scalable and allow a single model to be applied efficiently across a swarm of UAVs or 
UGVs, while still accommodating the individual characteristics of each device. 

When comparing forecasting capabilities, classical methods are often confined to instantaneous 
diagnostics or the application of empirical formulas, whereas the embedding-based approach 
supports integrated machine learning driven prediction mechanisms. This enables the anticipation 
of degradation trajectories over time. Finally, in the context of adaptation to new operating 



conditions, traditional solutions require manual retuning or recalibration, whereas the embedding 
methodology allows for online model adaptation, thereby maintaining dynamic alignment with 
evolving environmental factors and individual usage profiles. Overall, the foregoing analysis 
underscores the advantages of the embedding-based approach in meeting the contemporary 
demands of autonomous energy systems. 

4. Conclusion 

In this work, an embedding‐based approach to implementing a multi‐agent energy management 
system for unmanned platforms was examined. The proposed representation of the battery’s state 
as a feature vector  t in a multidimensional embedding space enables the implementation of 
powerful real‐time classification, prediction, and decision‐making capabilities. 

The study demonstrates the effectiveness of clustering battery state vectors for early detection 
of critical operating modes, confirms the feasibility of short-term degradation forecasting with 
acceptable accuracy using an MLP model, develops a multi-agent system architecture with clearly 
delineated roles for Sensor, Classifier, Predictor, and Decision agents that can be deployed on edge 
devices, establishes the potential for integration with battery digital twins to simulate cell behavior 
under dynamic mission conditions, and provides a comparative analysis of the embedding-based 
approach versus traditional battery-state assessment methods. The obtained results indicate the 
advisability of employing embedding-based models for energy monitoring tasks in autonomous 
systems, particularly in scenarios where reliability and predictability of power supply are critical. 
The proposed approach is scalable, adaptive, and enables the extension of multi-agent system 
functionality under constrained computational resources. Further research in this area may focus 
on several key directions: 

Expanding datasets and simulations by collecting large volumes of real flight and mission data 
to train and validate embedding models under operational (combat) conditions-taking into account 
temperature, load profiles, and climatic scenarios-and on integrating with digital twins of power 
systems by developing mechanisms for automatic model calibration based on feedback from 
physical or virtual battery instances within the digital twin framework. 

The development of an interactive decision space-including the creation of a visual 
representation of the embedding space for operators or command systems, complete with built‐in 
risk assessment and scenario modeling capabilities constitutes another promising direction; equally 
important is the exploration of heterogeneous agent systems, extending the multi-agent 
architecture with hybrid agents that combine rule-based control and reinforcement learning. 
Addressing scalability and adaptation across diverse platform types-from first-person‐view (FPV) 
drones and lightweight ground vehicles to Class II and III UAVs with redundant power circuits will 
be critical for deploying these methods in real‐world operational contexts. This prospect paves the 
way for the development of fully adaptive decision‐support systems for tactical and operational 
energy‐management in autonomous combat platforms. 
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