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Abstract 
The software complex for predicting changes in the stress-strain state (SSS) of a workpiece in the CAE 
system has been developed. The artificial neural network (ANN) in this package operates in parallel with 
the CAE system, analyzes the calculation results, and predicts changes in the SSS of the workpiece during 
deformation modeling. ANN monitors changes in a given number of elements in the workpiece body. The 
article considers the modeling of two new plastic deformation processes that implement the reverse shear 
scheme. The ANN training time is less than 60 seconds. The prediction accuracy obtained when using SSS 
in four workpiece elements was 89%-98%, depending on the size of the training sample and the number of 
training epochs. This approach allows the effective use of ANN to predict changes in SSS simultaneously 
with the calculation process in the CAE system. If negative trends in the change of the workpiece SSS are 
observed, then the modeling in the CAE system is stopped, and the geometry of the die is changed. Thus, 
the combined use of the CAE system and ANN reduces the time needed to select rational parameters for the 
deformation process by predicting the state of the workpiece.  
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1. Introduction 

The development of mathematical modeling methods leads to an expansion of the area of their 
successful use. The finite element method (FEM) is commonly used for modeling to reduce the 
complexity of physical experiments [1, 2]. The use of computer-aided engineering (CAE) systems has, 
in many cases, replaced physical research methods through the application of FEM [3, 4]. Thanks to 
parallel computing methods and numerous calculation models, it is possible to study the influence of 
various technological conditions on the initial result of workpiece processing in detail [5, 6]. 

Performing the analysis of the deformation process in a CAE system is characterized by the high 
accuracy of the results obtained based on the calculation of the influence of a large number of 
parameters on the workpiece. The use of classical calculation methods requires performing a large 
number of calculations, and therefore, when using this type of software, high requirements are placed 
on the computer's hardware. First of all, the speed of performing elementary operations (requirements 
for the processor) and the speed of data transfer for it (speed of RAM) are important. Depending on 
the characteristics of these components, the time required to calculate the analysis area can vary 
significantly. 

Calculations using FEM require significant time to obtain the needed solution. This is especially 
evident when performing cyclic optimization procedures. Therefore, this study solves the problem of 
predicting changes in the values of workpiece parameters during plastic deformation using artificial 
neural networks (ANN) based on a model created for use in a CAE system. 

Prediction of a workpiece stress-strain state (SSS) using CAE and ANN involves using machine 
learning models to effectively predict its mechanical behavior during plastic deformation. Connecting 
ANN to the CAE system can significantly speed up the prediction of the SSS. At the same 
time, the use of machine learning models will reduce the computational time and costs associated 
with numerical methods such as FEM. 
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Researchers consider different approaches to the use of ANN. Thus, works [7 9] prove that 
convolutional neural networks (CNN) effectively predict stress and strain fields from material 
microstructures. They provide faster predictions than traditional modeling using FEM. It is 
emphasized that CNNs effectively handle multidimensional problems and sparse data scenarios. In 
works [7, 9], unique architectures such as U-Net and Convolutional Autoencoders were used to 
predict stress fields. These NNs showed high accuracy in mapping input microstructures onto the 
stress-strain curve. 

It has been pointed out in [10, 11] that high-density training data is crucial for accurate predictions. 
For example, a fully connected feedforward network with sufficient training data can effectively 
model the stress-strain relationship. However, it should also be noted that ANNs can generalize well 
to unseen data and are capable of zero-shot generalization, predicting stress and strain fields for new 
workpiece geometries without additional training [12 15]. 

Another advantage of using ANNs is that they can model complex material behavior, such as 
temperature- and rate-dependent reactions, without explicit mathematical formulations of yield 
functions or hardening laws [16, 17]. These models are scalable and can be adapted to different classes 
of materials, providing a universal approach to material modeling [16, 18]. 

The purpose of this work is to increase the efficiency of the modeling process in the CAE system 
for processing a workpiece using plastic deformation methods and machine learning methods to 
predict changes in the parameters of the workpiece's SSS over time. Compared to performing a 
complete calculation in the CAE system, the reduction in analysis time is achieved by deciding to stop 
the calculations when undesirable trends in SSS changes are detected. 

2. Case study 

Performing the analysis of the deformation process in a CAE system is characterized by the high 
accuracy of the results obtained based on the calculation of the influence of a large number of 
parameters on the workpiece. The use of classical calculation methods requires the performance of a 
large number of calculations; therefore, when using this type of software, requirements are primarily 
placed on such components of the hardware as the speed of elementary operations (processor 
requirements) and the speed of data transfer for it (RAM speed). Depending on the characteristics of 
these components, the calculation time of the analysis area may vary. 

As an optimization of the process of performing engineering calculations, alternative methods of 
finding the parameter's value at a specific point in time of workpiece processing were considered. 
The object of analysis was the process of the workpiece deformation distributed in time and 
observation of the parameters characterizing its state; therefore, changes in these parameters were 
presented in the form of a time series. 

The process model allows for determining the changes in the deformed state in a given direction, 
section, or volume of the workpiece over time. It is also possible to analyze other parameters 
(restrictions) of the process obtained as a result of numerical modeling based on the physical model 
of the process. In addition, quality criteria are required for the development of the process over time. 
These criteria will allow us to determine the changes in the deformed state in the calculation process 
and evaluate the quality of the process. If changes in the parameters affect the quality criteria in such 
a way that the efficiency of the process decreases, then it will allow the calculation process to stop. 
This will allow the creation of a decision-making model in the calculation process. 

As an alternative to the numerical solution of the deformation process modeling problem, we used 
time series element prediction using machine learning methods. This approach allowed us to replace 
many long-term calculations with the analysis of a short time interval based on the trends of changes 
in the parameters monitored during the analysis. 

The designed ANN should combine two stages of execution. First, the training time series (𝑥𝑡 , 𝑦𝑡) 
is analyzed, with a step 𝑌(𝑡) = 1/𝑛, where 𝑥𝑡 is the vector of input values, 𝑦𝑡 is the time series under 
study, and n is the number of recorded values per unit of time. 

Based on the analysis of this series, we use ANN to estimate how system parameters change over 
time. In the second stage, we apply the constructed network to make a direct forecast and evaluate 
its accuracy.  

At the same time, to reduce costs in performing the analysis of calculation data in the CAE system, 
this software module can combine the specified stages into a single execution algorithm. It trains the 
network on existing data and proceeds to predict a given number of steps, calculating the deformation 



of the workpiece at given points. It should be noted immediately that the larger the gap to be 
predicted, the more input steps the network requires to maintain the accuracy of the result. 

The developed software module employs a convolutional neural network (CNN) architecture. The 
input data is a package of multivariate time series 𝑋 ∈ {𝐵, 𝑇, 𝐹}, where: B  batch size (it is not 
specified in our case), T = 3  number of time steps, and F = 5  number of parameters at each time 
step. Each input instance is 𝑥𝑡 = (𝑥(1)𝑡, 𝑥

(2)
𝑡, 𝑥

(3)
𝑡). 

A 1D convolutional layer is applied across the temporal dimension T with 256 filters, Kernel size 
= 3, and step = 1. 

The convolution for each filter j is: 
𝑧𝑗 = ∑ 𝑤𝑗,𝑡 ∙ 𝑥𝑡 + 𝑏𝑗

3
𝑡=1 . 

The Softplus activation function 𝑓(𝑥) = log⁡(1 + exp(𝑥)), is applied within the convolutional 
layer to ensure smooth non-linearity.  

A fully connected (dense) layer maps the 256-dimensional activation to 5 outputs. The output layer 
is the final forecast vector 𝑦

𝑡
. 

Training minimizes the mean square error 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1 . The following metrics are also 

used: mean absolute error (MAE) and root mean square error (RMSE). Training stops prematurely if 
RMSE does not improve, and the model reverts to the last best weights. 

The main structure of the model is presented in Table 1.  
 

Table 1 
The main structure of the model  
Layer Type Shape Parameters Description 
Input Layer (None, 3, 5)  Accepts batches of input data (3 time 

steps × 5 parameters) 
Convolutional Layer (None, 1, 256) 4096 256 filters used to process the input; 

1D convolutions for time series 
Fully Connected (Dense) 
Layer  

(None, 1, 5) 1285 Connects the flattened output of the 
CNN to the output layer 

Output Layer (None, 1, 5)  Predicts 5 parameters at the next time 
step 

 
Training specifics include: 
 Initial training with 400 epochs, achieving up to 98% accuracy in about 3 minutes 
 Optimized training with 60 100 epochs, reducing training time to about 1 minute with 89

98% accuracy 
 Early stopping is based on the RMSE minimum to avoid overfitting. 

In addition, the possibility of premature termination of model training when reaching the 
extremum point for losses, which are also calculated using the root mean square error formula, is 
implemented. In this case, a return to the last successful coefficients is performed. This is done to 
avoid oversaturation of the model with data and the increased influence of individual parts of the 
series, which can lead to a severe loss of forecast accuracy. 

Since the software module for forecasting is implemented as a library, its execution requires the 
presence in the software environment of the current version of the Python interpreter, the 
TensorFlow and Keras frameworks, and libraries whose functions are used in the neural network 
training process and the forecasting process itself. The issue of the availability of these tools is 
resolved by a separate command file that searches the software system for the necessary software 
and, if required, installs what is missing for the software to work. 

The work cycle of the developed software complex involves close interaction with the CAE system 
Abaqus, which is used as a modeling tool and the main data source. For their preparation and transfer, 
the possibility of integrating ANN into the analysis script by connecting it as an additional library, 
selecting parameters for analysis, and calling the model training function has been implemented. 

The process of integrating the software module should occur before analyzing a small part of the 
workpiece processing process to obtain training and test data, which will be used to train the ANN 
model and build a forecast of further changes in the system parameters selected by the user. 



It is also possible to create a model based on previously saved analysis results, presented as an MS 
Excel table with the distribution of monitored parameters in columns and their values in time 
intervals in rows. 

3. Results and discussion 

To check the speed of the developed software package and the predicted accuracy results, we 
performed a partial analysis of the simulated workpiece processing, indicating material properties 
and the form of influence.  
After that, it is possible to query the CAE system to obtain analysis data and implement a prediction 
of changes in the state of the workpiece on its basis. 

During experimental tests to study the accuracy of the obtained model, we used the forecast of 
changes in values at the points of the workpiece with previously calculated data and determined the 
error of the obtained result. 

The general functionality of the system is shown in Fig. 1 as a use case diagram. The system 
generates a task of workpiece deformation for implementation in the CAE system. For this, the 
geometry of the workpiece and tool is designed, and the material's mechanical characteristics and the 
nature of the loading are determined (use case - Selection/construction of the process model). These 
parameters are used to create a calculation project in the CAE system using FEM (Construction of the 
design model). For this, the type of finite elements is selected, grids are formed, the tool and workpiece 
are divided into a set of finite elements, and the boundary and initial conditions for process modeling 
are set. The results of step-by-step calculations of the parameters of the workpiece SSS are written to 
an Excel file, which serves as a means of data exchange (use case - Export data to an Excel file). Using 
the accumulated data, arrays are formed for training and using ANN. 

 

 
Figure 1: Use case diagram for predicting the values of workpiece SSS parameters during CAE 
modeling 

 
To analyze the process, characteristic elements in the workpiece volume that characterise the 

workpiece SSS are selected (Selection of elements for forecasting). The efficiency of the deformation 
process can be assessed by changing the SSS of the workpiece over a given period of time. To ensure 
the system's operation, a mechanism for creating and configuring models by the user (operator) was 
developed. An operator provides the flexibility of the program's operation with different datasets and 
to adjust the forecast to different possible conditions of the studied process. For this purpose, the 
"Model Training" use case was defined. The values of the process flow generated by the CAE system, 
the model of which requires forecasting, were used as the data source. 

The selected business process entities are presented in the class diagram (Fig. 2). The main task of 
the software and methodical complex is to predict the parameters of the stressed-deformed state of 
workpieces during pressure processing. 



 

 
Figure 2: Class diagram of the software and methodological complex for predicting parameter 
values during modeling in CAE systems using ANN 

 
In the "Forecast SSS " class, the choice of the sequence of working with models for designing the 

deformation process and further forming a calculation model in the CAE system is determined. At 
the same time, the geometry of the design elements of the die set and workpiece are determined, too. 
Besides, the mechanical characteristics of the materials and the deformation conditions are specified 
(Process Model). For calculations, the software is integrated with the CAE system. Automation of the 
task formulation for the CAE system is performed for typical processes using a Python script. The 
script determines the model parameters for calculations. At the same time, a geometric model of the 
process is formed, including models of the die set and workpiece elements, the workpiece's 
mechanical characteristics, and the specified deformation conditions. A calculation model is also 
developed, which includes a finite element model, generation of a mesh that divides the part for study, 
and which is represented by the nodes of this mesh. The conditions for implementing the modeling 
process are specified (class - SSS Calculation Model). Then, a step-by-step modeling process is 
performed in the CAE system, accumulates calculation results, and a dataset is formed for further use 
(Dataset class). 

The resulting dataset is used to form arrays necessary for training and monitoring the correct 
neural network operation (Data Sampling class). A neural network with a predefined architecture is 
used to analyze the received information (Dataset class). Work with the neural network model is 
automated using a Python script (Script class). As a result of the neural network (Neural Network 
class) work, calculation results are formed for the finite elements selected at the previous stage 
(Calculation Results class). The modeling process results are also determined (Process Results class). 



In the next stage, the obtained results are analyzed, as well as the results of the modeling process 
(the Results Analysis and Process Analysis classes). For this purpose, various types of analysis are 
used: the obtained data are compared with experimental data, with the results of calculations in the 
CAE system. The results of different kinds of data analysis are recorded in separate files for further 
consideration (the Analysis Results class). In case of deviations from the adequacy of the results when 
using the neural network, its architecture is changed, or the process of its training is improved (the 
Working Version of the Neural Network, Architecture classes). The "Architecture" class includes the 
"Layer" classes and reflects the logical component of the neural network. The representation of the 
structure in this project is used to analyze the activity of the neural network and control its 
parameters, such as the error value depending on the epoch and the time spent passing the epoch 
during training. 

A dataset was formed to test the operation of the software module and train the neural network. 
The test data were the results of calculating the accumulated equivalent plastic strain (PEEQ) for four 
elements according to the deformation scheme of reverse shear (RS) (Fig. 3a) [20] and multi-
directional reverse shear (MDRS) (Fig. 3b) [21]. The calculations of the workpiece SSS for the RS and 
MDRS processes were performed in CAE Abaqus. The projects were prepared using three-
dimensional graphics. Each project for calculation in CAE Abaqus included steps (stages) for 
performing four deformation operations and auxiliary steps that are necessary for unfolding the 
workpiece before the next deformation operation. Thus, each of the calculations consisted of 13 steps. 

CAE Abaqus saves the calculation results in the internal .odb format, which can be accessed by 
connecting a Python script to the CAE Abaqus post processor and importing data. Data can be 
imported in full or selectively for individual parts of the model and individual steps of the calculation. 
Data can also be exported from CAE Abaqus using the built-in tool. 

 

  
(a) (b) 

Figure 3: Process model in CAE Abaqus: (a) according to the RS scheme, (b) according to the MDRS 
scheme 

 
As a result of the calculations, deformed workpieces were obtained (Fig. 4a, 4b), and four elements 

were selected for the analysis of the change in the equivalent deformation PEEQ (Fig. 5a, 5b).  
 

 

 

(a) (b) 
 
Figure 4: Deformed workpieces: (a) according to the RS scheme, (b) according to the MDRS scheme 

 



 

 
(a) (b) 

Figure 5: Selection of elements for equivalent deformation analysis PEEQ: (a) according to the RS 
scheme, (b) according to the MDRS scheme 

 
The elements were selected for analysis in the state before deformation, in the corners and the 

middle part of the workpiece. Considering the symmetry of the deformation scheme, the selected 
elements are sufficient for evaluating the key areas of the workpiece cross-section. 

CAE Abaqus tools were used to plot the equivalent strain PEEQ during deformation for selected 
workpiece elements (Fig. 6a, 6b). The plot includes areas with increasing equivalent strain PEEQ, 
corresponding to the steps in which the workpiece is deformed, and horizontal areas corresponding 
to the steps for performing auxiliary operations (rotations of the workpiece in space). The horizontal 
areas of the plot do not carry useful information for training the neural network and are removed 
during dataset preparation. Export of the results of the calculation of the equivalent deformation 
PEEQ for selected workpiece elements was performed using the built-in CAE tool Abaqus (Fig. 7).  

 
(a) 

 
(b) 

Figure 6: Graph of the growth of the equivalent strain PEEQ with deformation time: (a) according to 
the RS scheme, (b) according to the MDRS scheme 

 
The next step was to prepare the obtained data in an MS Excel table, including deleting the 

calculation data for the auxiliary stages and the deformation time for each given element of the 
workpiece. The prepared data in the MS Excel table included five columns: change in deformation 



time in the range from 0 to 3 seconds with intervals of 0.05 s; calculated values of the equivalent 
deformation PEEQ for four elements corresponding to the calculation stage. For this study, a limited 
dataset was selected, which allowed us to prepare the data quickly and develop a neural network 
model for training and predicting the equivalent deformation PEEQ for the chosen workpiece 
elements. 

 

 
Figure 7: Built-in CAE Abaqus tool for exporting simulation results to MS Excel 

 
For each of the processes of RS and MDRS, MS Excel tables were prepared, which were used during 

the training of the neural network and for predicting the values of the equivalent deformation PEEQ. 
During the training process, the neural network reads a dataset and forms a time series for training 
the model, subsequently performing a forecast of individual values of this series.  

The neural network program was launched in the Anaconda 3 environment with the Tensorflow 
and Keras frameworks configured with Cuda technology support. During the operation of the neural 
network script, a dataset is read from the MS Excel table. A graph of the change in the equivalent 
deformation PEEQ of four elements labelled PEEQ 1  PEEQ 4 is displayed to evaluate the initial data. 
The graph (Fig. 8a) shows the change in the equivalent deformation PEEQ for the workpiece elements 
deformed by the RS process. The graph shows that for elements PEEQ 1 and PEEQ 2, there are areas 
with an uneven increase in the equivalent deformation PEEQ, which is explained by the location of 
the element in the workpiece zone, which intensively moves along the tool by the process scheme. 
The presence of such areas creates random situations with the general nature of the change in the 
equivalent deformation PEEQ. Additional research on the neural network model and the volume of 
data for training is required. For elements PEEQ 3 and PEEQ 4, the nature of the change in the 
equivalent strain PEEQ is relatively uniform. The graph (Fig. 8b) shows the change in the equivalent 
strain PEEQ for the workpiece elements deformed by the MDRS process. All elements PEEQ 1  PEEQ 
4 have a uniform nature of the change in the equivalent strain PEEQ. 

 

  
(a) (b) 

 
Figure 8: Dependence of equivalent strain PEEQ on deformation time: (a) according to the RS scheme, 
(b) according to the MDRS scheme 



To train and predict the values of the equivalent deformation PEEQ, a neural network model was 
used, which included an input layer for processing data with values (None, 3, 5), a convolutional layer 
with values (None, 1, 256) using 256 filters for input data and the number of parameters 4096; a fully 
connected layer with values (None, 1, 5) and the number of parameters 1285; an output layer with 
values (None, 1, 5). The selected topology of the neural network is sufficient for processing a small 
dataset and predicting values. 

The neural network operation was studied with a change in the number of epochs to evaluate the 
neural network training process and analyze the loss function (Fig. 9a, 9b).  

 

  
(a) (b) 

 
Figure 9: Dependence of the loss function on the number of training epochs: (a) according to the RS 
scheme, (b) according to the MDRS scheme 

 
In the first attempts to train the neural network, 400 epochs were set, showing a maximum training 

accuracy of about 98%. The training time was about 3 minutes. In subsequent studies, the number of 
epochs was reduced to 100 and 60, which allowed us to reduce the training time to 1 minute and 
achieve a training accuracy of 89%. 

To predict the values of the equivalent deformation PEEQ, the data window size was set to 15 
points; the prediction range was 5, 10, and 15 points. To monitor the correctness of the neural 
network, a prediction was performed within the known values; the results are presented in Tables 2 
and 3, and in the form of graphs (Fig. 10a, 10b). As a result of 60 epochs of CNN training on the given 
data (Fig. 10a, 10b), we obtain a prediction  with an average error of the predicted steps of 0.01  0.25, 
which, given the range of the studied values, corresponds to an accuracy of 75%  98%. 

Analysis of the loss function graphs shows a significant decrease in losses after 10 epochs of 
training for the RS scheme and stabilization of the learning process after 30 epochs. For the MDRS 
scheme, there is a gradual decrease in training losses after 40 epochs and stabilization of the training 
process after 50 epochs. 

 
Table 2 
Forecast data according to the RS scheme 

N 
PEEQ 1 PEEQ 2 PEEQ 3 PEEQ 4 

Value Forecast Value Forecast Value Forecast Value Forecast 
1 2.15 2.13 1.09 1.05 2.07 2.01 0.87 0.86 
2 2.18 2.24 1.17 1.11 2.11 2.12 0.95 0.91 

         
         

14 4.15 3.85 1.94 1.91 4.11 3.64 1.73 1.56 
15 4.17 3.9 2.02 1.93 4.13 3.69 1.80 1.58 
MSE=  0.174  0.01  0.25  0.01 

 
The conducted studies have shown that the selected topology of the neural network and the 

prepared datasets for prediction give correct values in the workpiece elements with a uniform growth 
of the equivalent strain PEEQ, while high prediction accuracy is observed. For elements with an 
uneven growth of the equivalent strain PEEQ, deviations in the prediction of up to 16% are observed, 



which does not reflect the real changes in the equivalent strain during the deformation process. Thus, 
to increase the accuracy of the prediction of elements with an uneven growth of the equivalent strain 
PEEQ, it is necessary to use a larger dataset for training the neural network, which will allow it to 
cover a larger number of elements with uneven growth of the strain. Another way to improve the 
result is to complicate the topology of the neural network for a more sensitive response to data 
heterogeneity. 

 

 
(a) 

 
(b) 

Figure 10: Predicted values of equivalent strain at selected points (PEEQ 1...4 ) compared with the 
results of calculations in the CAE system: (a) according to the RS scheme, (b) according to the MDRS 
scheme. 
 



Table 3 
Forecast data according to the MDRS scheme 

N 
PEEQ 1 PEEQ 2 PEEQ 3 PEEQ 4 

Value Forecast Value Forecast Value Forecast Value Forecast 
1 0.62 0.77 1.13 1.19 0.59 0.69 1.46 1.51 
2 0.67 0.80 1.23 1.23 0.62 0.72 1.54 1.56 

         
         

29 2.90 2.22 3.48 3.41 2.82 2.00 3.83 4.33 
30 2.99 2.26 3.62 3.47 2.90 2.04 3.84 4.41 
MSE=  0.11  0.013  0.161  0.047 

4. Conclusions 

Neural networks, particularly deep learning models such as CNN, provide a powerful alternative to 
traditional numerical methods for predicting the stress-strain state in materials. These models offer 
high computational efficiency and accuracy, which makes them suitable for high-performance design 
and analysis of the plastic deformation of parts made of different materials. 

A software package has been developed to predict the change in the values of the SSS at given 
points of the workpiece based on an artificial neural network, which is based on the results of 
modeling in the CAE system and works in parallel with it. The accuracy of the prediction of the 
equivalent deformation obtained as a result of the experiment varied from 89% - to 98%. The execution 
time for data preparation, analysis, and prediction of values by the neural network did not exceed 60 
s with 60 epochs of neural network training. At the same time, a usable result is observed already at 
50 epochs with a training time of about 60 s. 

As a result of the modeling, it was found that the information processing cycle and forecast 
formation are significantly shorter than the time for a complete analysis of the SSS in a CAE system. 
The software package and the CAE system accelerate the verification of many options for the metal 
forming process during its optimisation. 

The developed neural network model and the methodology for preparing the dataset demonstrate 
the possibilities of using numerical calculations and ANN together. 

Integrating neural networks with CAE systems offers a powerful approach to accelerating stress 
and strain prediction.  

Using the improved architecture of neural networks and sufficient training data, these models can 
effectively process complex material behavior and geometry, providing a scalable and flexible 
alternative to traditional calculation methods. 

The proposed methodology requires improving the topology of the neural network and expanding 
the dataset, which will allow using this development to predict the values of the equivalent strain 
PEEQ for various deformation schemes with a more heterogeneous distribution of strain over the 
volume or cross-section of the workpiece. 

A further improvement of the software package is adapting the neural network for various 
deformation processes, allowing for the semi-automatic creation of different model topologies for 
each calculation or dataset. 
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