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Abstract 
A new method for grayscale image segmentation based on the type-2 fuzzy clustering method (T2FCM) is 
presented. This method enhances segmentation sensitivity, reliability, and noise immunity. The proposed 
algorithm is based on the orthogonalization of fuzzy membership functions using singular value 
decomposition, the formation of a complex space of orthogonal eigenvalues, and the synthesis of a 
composite resulting image based on these components. Experimental results are provided for images of 
various physical nature. 
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1. Introduction 

Digital images, which are the output of standard research methods in various fields such as 
materials science, medicine, and defectoscopy, often suffer from insufficient quality for reliable 
analysis. To make these images more suitable for specific applications, improve their 
interpretability by humans, or enable their use in automated systems, appropriate transformations 
are required [1]. 

Medical images (such as tomograms, fluorograms, and mammograms), which serve as essential 
diagnostic tools for numerous diseases, are characterized by low intensity, uneven background, high 
noise levels, low contrast, and poorly defined structural boundaries. These images are particularly 
challenging to make their analysis and the selection of an effective processing method. Typically, 
the shape, position (and sometimes even the presence), and characteristics of the object of interest 
(pathology or anomaly) in the analyzed image are unknown a priori. As a result, distinguishing 
structural (anatomical) and measurement noise from the useful signal is particularly difficult, 
especially given that the statistical and spectral properties of these noise components are also 
usually unknown. 

In this context, segmentation methods for objects of interest in images hold significant practical 
value, particularly when there is virtually no prior information about the data distribution. These 
methods rely on assessing the proximity of object parameters in a multidimensional space, guided 
only by heuristic assumptions about the nature and features of the studied dataset. 

By objects of interest or anomalies, we refer to observations that deviate from the rest of the 
data, have characteristics different from those of neighboring image regions, have unknown 
location and shape a priori, and whose identification is the primary goal of analysis. The complexity 
of detecting such anomalies lies in the fact that, on the one hand, they often represent small regions 
that can be mistaken for noise or image artifacts. On the other hand, their parameters may only 
slightly differ from the general background or be obscured by other objects. 

Modern approaches to solving this problem widely employ fuzzy logic, particularly, fuzzy 
clustering methods, which enable more precise object segmentation, noise differentiation, and detail 
restoration while ensuring greater robustness to distortions and defects arising during image 
formation [2 5]. 
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Currently, no universal methods guarantee reliable segmentation results for images with diverse 
physical properties. Therefore, the development of new algorithms tailored to specific tasks remains 
an ongoing research challenge [6 8]. 

2. Review of literature 

The problem of image processing is closely related to the task of information extraction. Digital 
image processing algorithms are highly specific, and their performance depends significantly on 
both the characteristics of the input data (such as noise, blurring, background intensity variations, 
brightness, and contrast) and the objectives of the analysis. 

Since 1965, type-1 fuzzy sets (FST1) have been successfully applied in various image processing 
applications, allowing for the consideration of uncertainty and ambiguity, which are always present 
in the original data [9]. 

A distinctive feature of fuzzy methods is that input data are transformed into a fuzzy space, 
where further processing is performed. For an image ( )yxI , , where yx,  are the pixel coordinates, 
a membership function is defined, which takes numerical values in the range [0,1] and represents 
the degree to which a particular property is exhibited (such as grayscale level, histograms, and other 
features) [10]. 

Studies [11 14] demonstrate the effectiveness of FST1 in segmenting images with various 
physical properties. For instance, in medical imaging, where segmentation is used to differentiate 
tissues (such as bone, muscle, and fat), FST1-based fuzzy clustering allows for more precise object 
extraction, noise differentiation, and detail restoration, providing greater robustness against 
distortions and artifacts introduced during image formation. 

However, a key limitation of FST1 is that it represents uncertainty in the input data as a single 
crisp value, which restricts its ability to describe other types of uncertainty and ambiguity. These 
include variability associated with the estimation of membership functions, processing algorithms, 
measurement errors, or image acquisition systems [15]. 

To address these limitations, type-2 fuzzy sets (FST2) have been introduced, offering 
improvements over traditional FST1-based segmentation methods. Research in [16 18] has 
demonstrated that FST2 enables more precise object segmentation, while [19] shows its 
effectiveness in restoring images corrupted by noise. Additionally, [20] highlights its improved 
ability to handle uncertainties that arise during image processing. 

3. Problem statement 

The objective of this paper is to present a new grayscale image segmentation method based on type-
2 fuzzy clustering (T2FCM). The proposed method enhances segmentation sensitivity, reliability, 
and noise immunity by orthogonalizing fuzzy membership functions using singular value 
decomposition, constructing a complex space of orthogonal eigenvalues, and synthesizing a 
composite resulting image based on these components. 

4. Materials and Methods 

For an image ( )yxI ,  of size  dydx  , the result of type-1 fuzzy clustering (FCMT1) is a three-

dimensional matrix U , which contains the membership function values for each pixel yxu ,  in 

relation to the properties being analyzed (e.g., brightness, homogeneity, edges, background). The 
dimensionality of the third coordinate is determined by the predefined number of clusters c . 
Traditionally, defuzzification (the formation of a final result in a crisp space) is performed based on 
the maximum membership function value. However, this approach is suboptimal because 
membership functions may exhibit multiple extrema of comparable or even equal amplitude, and no 
prior information is available regarding the significance of a particular cluster. This can result in the 
loss of valuable information. 

Figure 1 a presents an image of the microstructure of a ternary eutectic alloy in multicomponent 
systems, which is analyzed in quantitative metallography to determine its characteristics (such as 
the volume fraction of various phases, grain size, and specific grain boundary surface area). Figure 1 
b shows its histogram. The image is characterized by an uneven background, noise, and low 



contrast, while its histogram does not allow for the identification of a brightness range 
corresponding to the objects of interest. Figures 1 d, 1 e, and 1 f depict three different fuzzy classes 
obtained by applying FCMT1 with six clusters, enabling the visualization of individual structures of 
the alloy that are the focus of analysis. In contrast, the defuzzification result based on the maximum 
membership function (Figure 1 c) lacks meaningful analytical information, producing a noise-like 
pattern. 

 

             
                       a                                                                     b                                                              c 

 

             
                                     d                                                  e                                                      f 
Figure 1: Different visualization approaches for fuzzy clustering results using the FCMT1 method: a 

 original metallographic image; b  its histogram; c  maximum membership function; d, e, f  
visualization of three arbitrary classes. 

 
In type-2 fuzzy sets (FST2), the membership function of each element can itself be represented as 

a function. If the membership function u  of a type-1 fuzzy set (FST1) is defined, the corresponding 
lower  lu  and upper hu  membership functions used to describe FST2 can be determined using the 
expressions: 

),()),((),( ji
l jigujiu = , (1) 
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1
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h jigujiu = , 
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where ),1(   is the transformation coefficient [20]. 
FST1 is characterized by its degree of fuzziness, whereas FST2 is defined by its degree of 

uncertainty (second-order uncertainty  fuzzy fuzzy sets ) [15]. In FST1, the fuzzy representation 
of the initial parameter is lost after transformation, eliminating all uncertainty (Figure 2 a). In 
contrast, FST2 introduces a third dimension, represented by the footprint of uncertainty (FOU) 
(Figure 2 b). Consequently, defuzzification in FST2 involves a more complex two-step process 
compared to traditional FST1. 

Since the membership functions generated by fuzzy clustering are informationally equivalent, 
image segmentation based on them remains one of the most uncertain and challenging problems. 
We propose a defuzzification method based on two key ideas: orthogonalization and transformation 



into a complex space. This approach allows for analyzing the entire set of membership functions as 
a unified whole while simultaneously interpreting the result as an anisotropic filtering process in 
the fuzzy space [21, 22]. 
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Figure 2: Defuzzification of the membership function: a  FST1 ; b  FST2 T1. 

 
Orthogonalization ensures the formation of a non-equivalent eigen-space of membership 

functions, referred to as orthonormal membership functions (OMF) ( ) ciyxGi ,...,1,, = . The first 
composite  OMF carries the most significant information regarding U , while the second contains 

the most significant remaining information, and so on. The resulting representation expresses 
membership functions as a spectrum in the eigen-basis, meaning that preserving only a few 
principal spectral components is sufficient to retain the essential information from the original data. 
A crucial aspect of this approach is the ability to assess the informativeness of each component: 
each ( )yxGi ,  contains %iD  of the total information embedded in the original data, as determined 
by the magnitude of its eigenvalues [23]. 

The orthonormal property is then used to transition into the complex space of OMF and to 
synthesize additional informative characteristics based on the expressions: 
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where k , l  are the corresponding eigenvalues. This provides greater flexibility in analyzing 
results compared to working within the domain of real brightness values. When operating in the 
complex domain, various options for mapping the final results (both linear and nonlinear) become 
possible [24]. 

The proposed algorithm includes the following steps: 
1. Making window transformation (window size 3x3) brightness values of the original 
greyscale image I  by using a window transformation and forming in that way a 9-dimensional 
ensemble including the brightness of neighbouring pixels to take into account for spatial 
characteristics. This constitutes the first stage of expanding the input data space. 
2. Performing an orthogonal transformation (SVD) of the expanded original data with 
subsequent automatic selection of the most significant components [25] based on calculating the 
coefficient vector C  as follows: 
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where sV  contains the right singular vectors for the SVD. Vector C  is sorted in descending 
order. A difference vector dC is also created containing the differences for each neighbouring 
pair in the sorted vector C . The value adC  is calculated by the next formula: 
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where mindC  and maxdC  are the minimum and maximum elements of vector dC , 
correspondingly. This threshold value adC  is used to determine the number of the most 
significant elements of the left singular vector matrix. The selected indices correspond to the 

original indices in vector C  prior to sorting svdI . 

3. Scaling each component of matrix svdI  to the range  1,0 . 
4. The second stage of data space expansion involves generating matrices   and   for each 

pair of components of the matrix svdI  with indices k , l  according to the following formulas: 
svd
l

svd
k jII += , (8) 

 

( ) ( )( ) 2/svd
k

svd
l

svd
l

svd
k jIIanglejIIangle +++= . (9) 

 
These matrices are then scaled to the range  1,0 , and a new component of the three-

dimensional matrix cI  (the total number of components equals the number of all possible pairs 

of components from  svdI ) is computed using the following formulas: 
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where I ,   and   are the average values of matrices I ,   and  , respectively, and 0K  is a 
constant parameter (in experiments values in the range  6.0,4.0  were used). It should be noted 
that both the value of 0K  and the structure of equation (12) were chosen experimentally and 
significantly affect segmentation sensitivity. Using 1K  instead of 0K  in equation (11) allows for 
the consideration of specific characteristics of the processed image. 

5. Scaling all components of matrix cI  to the range  1,0 , followed by orthogonal 
transformation SVD and selecting the most significant components according to the algorithm 
described in Section 2. 

6. Merging matrices svdI  and the most significant components of cI  into a single matrix 
сsvdI _  and forming in that way a multidimensional input matrix for fuzzy data clustering. 

7. Performing fuzzy clustering of the scaled matrix сsvdI _ . We used T2FCM method [16] with 
dynamic compression of the fuzzy membership function [3], which involves initially setting a 
larger number of fuzzy clusters, which dynamically decreases during training by merging close 
clusters. The closeness of fuzzy cluster centers is determined by usage of weighted Euclidean 
distance, which is calculated (for the distance between the centers of the k-th and l-th clusters) 
by the next formula: 
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where values 
kuS  and 

luS  are calculated as: 
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where ju  is the average membership function value for the j-th fuzzy cluster, and minu  is the 

minimum value of the vector u  of average membership values for each cluster.  

During each training iteration t , the MFT2 matrix ta  is calculated as the difference between the 

upper  t
h

u  and lower   t
l

u  membership functions by the next formulas: 
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where k
tu  is the average membership for the k-th cluster, and  Ni ,1 , K  is the coefficient, 

values of which are recommended to be chosen within the range  2.0,0 . This coefficient has a 

significantly impact the transformation results. The final membership function matrix ta  is 
interpreted as a multidimensional image. 

8. Transforming the matrix csvdI _  as follows: 
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h

I
_  and csvd

l
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_  are calculated as per formulas (15) and (16), correspondingly, forming 

matrix trI . 

9. Obtaining matrix uI  as the columns union of  matrices trI  and ta . 

10. Applying the transformation described in step 7 to matrix uI  to compute matrix ta  

(formulas (15)  (21)), resulting in matrix 2TI . 

11. Applying an orthogonal transformation (SVD) to the matrix 2TI . After this, the most 
significant components are selected from the left singular vectors, as described in step 2. A 

grayscale image sI  is formed using a weighted sum of selected significant components based on 
the values of the vector C , corresponding to the selected significant components of the left 
singular vectors, scaled so that their sum equals 1. 

12. Generating two output images: outI   сoutI _ . The first output is obtained by applying the 

adaptive histogram equalization method (using a uniform transformation function) to image sI . 

The second output image, сoutI _ , is generated based on a pair of matrices: sI  and the first 

component of matrix svdI  using formulas (8) (12), the coefficient 2K  is computed as follows: 
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After that, adaptive histogram equalization (using a uniform transformation function) is also 

applied to сoutI _ . 



5. Results 

The proposed algorithm was applied for the segmentation of grayscale low-contrast 
images of various physical origins, including computed tomography (CT) scans of the 
human brain (Figure 3 a), which was used as a test image due to the known location of the 
objects of interest,  and thoracic spine (Figure 4 a), X-ray images of the cervical spine 
(Figure 5 a), optical microscopy images (Figure 6 a), and microbiological images (Figure 7 a).  

These images were obtained using standard research methods across various fields, 
including medicine, metallography, and microbiology, however, their quality is not enough 
sometimes for objective analysis. 

These images contain significant dark and/or bright regions with objects of interest that 
are indistinguishable in the original images due to discrepancies in their brightness 
characteristics and the psychophysical limitations of human vision. 

Figures 3 b  7 b and Figures 3 c  7 c illustrate the experimental results of applying the 

algorithm with the following parameters: 2=m , 510− , initial number of fuzzy clusters 9=с  
the experiments were conducted on medical images, and therefore, this amount is more than 
enough), 075.0=K , 4803.00 =K . 

It was found that for some images, the best results could be obtained without applying step 10 in 

the proposed algorithm (using matrix uI  in step 11 instead of 2TI  ).  
Visual assessment of the segmentation results was chosen due to the limitations of 

automatic metrics, which do not always reliably distinguish objects of interest from 
excessive detail in the considered image region. 

The algorithm proposed in this article was implemented in the MATLAB R2016a 
environment running on the Microsoft Windows 10 Pro x64 operating system, version 
22H2. 

Analysis of the results demonstrates that the proposed algorithm significantly enhances 
segmentation detail and image contrast. For example, Figure 3 a presents a brain CT scan used for 
diagnosing the presence of a hematoma and its affected region (outlined by a rectangle). Figure 3 b 
shows a brain CT scan obtained with the use of a radiopaque contrast agent. While such agents may 
marginally enhance the visibility of the target region by increasing image contrast, their application 
poses potential health risks. Therefore, it is preferable to improve image quality through advanced 
image processing techniques rather than relying on invasive substances. The results of applying the 
standard FCM algorithm with c = 9 and c = 5 (Figure 3  and Figure 3 d, respectively) to the original 
image (Figure 3 a) are visualized based on adaptive histogram equalization of the maximum 
membership function. This approach results in excessive detailing that obscures the region of 
hematoma spread, which is clearly identified using the proposed method in Figures 3e and 3f. When 
visualized in the complex space of orthogonal membership functions, the method exhibits greater 
sensitivity to low-contrast regions of the image compared to Figure 3 e, despite a lower contrast 
level.  

Figures 4 b, 5 b, 6 b, 4 c, 5 c, and 6 c clearly delineate object boundaries and structures. Figures 6 
b and 6 c reveal defects and background variations, while Figures 7 b and 7 c enhance the contrast 
of objects of interest against a non-uniform background and highlight its features. The analysis 
confirms that transitioning to the complex space effectively reduces noise components, which 
aligns with the theoretical justification for using complex-valued components for anisotropic 
filtering in a fuzzy space. 

 



           
                               a                                                          b                                                          c 
 

                   
                                d                                                         e                                                         f 
Figure 3: Segmentation results of a brain CT scan: (a) original image (204×201); (b) brain CT scan 
obtained using a radiopaque contrast agent; segmentation using the standard FCM algorithm with 
different numbers of fuzzy clusters: (c) 9=с ; (d) 5=с ; (e) orthogonal membership function space 

( outI ); (f) complex orthogonal membership function space ( сoutI _ ); 
 

     
                             a                                                            b                                                          c 
Figure 4: Segmentation results of a thoracic spine CT scan: (a) original image (1013×1585); (b) 

orthogonal membership function space ( outI , without step 10); (c) complex orthogonal membership 

function space ( сoutI _ , without step 10). 
 



         
                             a                                                           b                                                               c 
Figure 5: Segmentation results of a cervical spine X-ray: (a) original image (570×744); (b) 

orthogonal membership function space ( outI , without step 10); (c) complex orthogonal membership 

function space ( сoutI _ , without step 10). 
 

             
                                a                                                         b                                                        c 
Figure 6: Segmentation results of an optical membrane image: (a) original image (257×257); (b) 

orthogonal membership function space ( outI , without step 10); (c) complex orthogonal membership 

function space ( сoutI _ , without step 10). 
 

     
                              a                                                           b                                                           c 
Figure 7: Segmentation results of a microbiological image: (a) original image (1024×1024); (b) 

orthogonal membership function space ( outI , without step 10); (c) complex orthogonal membership 

function space ( сoutI _ ). 

6. Conclusions 

The effectiveness of fuzzy clustering methods significantly depends on the approach used to 
synthesize the final result based on membership functions. When designing an algorithm for 



solving specific segmentation tasks, achieving practically significant results and validating their 
reliability may require the integration of multiple complementary methods. 

The presented grayscale image segmentation algorithm, based on Type-2 fuzzy clustering, 
synthesizes a composite segmented image using multidimensional analysis methods. The core of 
this approach is built upon two key concepts: orthogonalization of membership functions and 
transition to the complex space of orthogonal membership functions. This approach enables the 
analysis of the entire set of membership functions as a unified whole while simultaneously 
interpreting the results as an anisotropic filtering process in a fuzzy space. This, in turn, enhances 
segmentation sensitivity and accuracy. While transitioning to the complex orthogonal membership 
function space results in a slight reduction in detail, it effectively minimizes the influence of noise 
components. 

The proposed algorithm is effective for segmenting images of various physical natures, with the 
diagnostic significance of the extracted features being determined by the characteristics of the 
original data and the objectives of the analysis. 

Promising directions for future research are the exploration of different orthogonalization 
methods for membership function ensembles, as well as investigating alternative functional 
dependencies for computing the coefficient 1К . 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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