
Comparative Analysis of Jmeter and Postman for API-
Based Performance Testing

Sergii Khlamov1 , Mariia Mendielieva , Oleksandr Vovk and Zhanna Deineko1

1 Kharkiv National University of Radio Electronics, Nauki avenue 14, Kharkiv, 61166, Ukraine

Abstract
Testing of user interface (UI) presents numerous challenges, primarily related to labor intensity and the cost
of the process, as well as its sensitivity to various factors, such as device type and network conditions, which
is especially important when using cloud servers and distributed systems. Unlike UI testing, application
programming interface (API) load testing is less dependent on conditions such as hardware or client
environments, enabling a more accurate evaluation of backend performance, particularly in cloud
infrastructure environments. This paper presents a comparative analysis of the performance of two popular
tools for Representational State Transfer (REST) API load testing: Postman and JMeter. The study aimed to
identify performance differences between Postman and JMeter when conducting load tests on five public APIs
under four types of load. Aggregated response time metrics, including average response time, minimum,
maximum, and error percentage values, were collected for each tool. The results demonstrated that Postman
shows higher performance in low to moderate load conditions or situations where there is a lower demand for
request intensity. On the other hand, JMeter demonstrates better performance under conditions of high load
and request intensity. Despite the study's limitations (a single test run on five public APIs), the results suggest
that Postman may perform well in scenarios with regular and low load. Alternatively, JMeter is well-suited for
high-load scenarios, particularly when high performance is required to handle a large number of requests. We
believe the obtained results will have a positive impact on the decision-making process in the development
team regarding the choice of test tools, based on the scale and nature of the load. As a result, it can shorten

.

Keywords
Performance testing, Postman, JMeter, load testing, virtual users, response time, delay 1

1. Introduction

Test automation involves using software tools to execute tests, verify results, and manage repetitive
testing tasks with minimal human intervention [1]. It is often related to continuous integration (CI)
in Agile development. The popularity of both CI and test automation is increasing due to market
pressure to release product features or updates frequently [2].

There are numerous advantages for companies to use test automation in their projects. Firstly,
automation can save a significant amount of time for quality assurance engineers by automating
monotonous tasks. A recent report by PractiTest shows that test automation has replaced about 50%
of previously manual testing efforts [3]. Secondly, business outcomes, such as the ability to deliver
more features with high automation levels and a faster route-to-live that increases the customer base,
can be achieved through test automation, as noted by respondents in the 2024 World Quality Report
[4]. By using test automation and adopting iterative models in software delivery, it is possible to
ensure that software products meet quality standards, reduce the appearance of serious bugs that
escape into production [5], and, in the event of an issue or defect arising in the development or test

ICST-2025: Information Control Systems & Technologies, September 24-26, 2025, Odesa, Ukraine
 Corresponding author.
 These authors contributed equally.

 sergii.khlamov@gmail.com (S. Khlamov); mariia.mendielieva@nure.ua (M. Mendielieva); oleksandr.vovk@nure.ua (O.
Vovk); zhanna.deineko@nure.ua (Zh. Deineko)

 0000-0001-9434-1081 (S. Khlamov); 0009-0002-4282-3147 (M. Mendielieva); 0000-0001-9072-1634 (O. Vovk); 0000-0001-
6747-9130 (Zh. Deineko);

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sergii.khlamov@gmail.com
mailto:mariia.mendielieva@nure.ua
mailto:oleksandr.vovk@nure.ua
mailto:zhanna.deineko@nure.ua
https://orcid.org/0000-0001-9434-1081
https://orcid.org/0009-0002-4282-3147
https://orcid.org/0000-0001-9072-1634
https://orcid.org/0000-0001-6747-9130
https://orcid.org/0000-0001-6747-9130

phase, address them efficiently and rapidly using fast feedback. However, there are potential risks
associated with using test automation [6], such as inaccurate estimations of time, costs, and effort
required to introduce a tool, maintain test scripts, and change test processes. Moreover, one of the
significant risks includes unrealistic expectations about the benefits of a tool and using a test tool
when manual testing is more appropriate.

Among the different approaches to software testing, User Interface (UI) testing, Application
Programming Interface (API) testing, and performance testing are three critical areas that address
different aspects of system quality. UI testing is a process of evaluating the correct work and display
of UI components of an application on popular types of devices and environments [7]. This type of
testing is crucial in user-centric applications, where the end-user experience has a direct impact on

8]. UI tests based on test frameworks typically simulate real user interactions
by locating Document Object Model (DOM) elements, performing browser actions (such as clicking,
typing, and scrolling), and inspecting the page state of the UI application.

API testing, on the other hand, evaluates the backend services and communication interfaces that
enable interaction, exchanging data and invoking functionalities of different software components
or systems [9]. API testing has gained significant importance recently due to the increasing number
of microservices, applications, and the dependency of frontend applications on their APIs. For large
and complex systems, especially those that rely on a graphical user interface (GUI), UI testing can be
inefficient compared to API testing. UI testing is typically performed on the front-end and has a slow
execution time [10]. Other challenges of UI automation include the difficulty of performing UI testing
at the early stage of the design phase of the project cycle and the flakiness or fragility of UI test
scripts due to the complex interactions and events within the DOM of an interface [11]. Moreover,
there may be difficulties in maintaining test automation since changes to the UI can be pretty
frequent [12]. Therefore, API tests can be executed much faster, as they are not dependent on visual
changes in the UI, and can provide more stable and reproducible results. Performance, defined as
efficiency and effectiveness of a software application, has become one of the most essential attributes
of a product. To achieve a high-quality software product with a growing number of users and
increasing data volumes, particularly in cloud applications and microservices architectures, the
performance of the user interface and APIs becomes a critical factor [13]. Performance testing is a
subset of conditions.
Moreover, performance testing is not executed in all development environments, and it is often
implemented within the ecosystem of a CI environment. It can be performed for various devices and
services, including mobile devices, websites, online services, and cloud services [14].

There are several popular methodologies or types of performance tests [15]. Load testing involves
evaluating a software system's response times and overall performance under various user load
scenarios. Stress testing involves applying extreme loads to an application under test to identify
potential failure points and assess system recovery mechanisms. Scalability testing aims to determine
how well a software system can handle increased loads by adding more resources, such as servers or
virtual machines, to meet the demands of larger user bases. Endurance testing, also known as soak
testing, involves subjecting an application to a sustained load for an extended period to identify
performance degradation issues. Spike testing checks the response of an application to sudden and
extreme increases in user load (e.g., user traffic spikes unexpectedly). Volume testing focuses on
evaluating the system's performance when handling large volumes of data, identifying problems
with data handling and database performance. Concurrency testing evaluates a system's ability to
handle multiple simultaneous users or transactions efficiently. Performance issues can appear at the
API level, and they can only be identified using specific performance testing tools [16]. To conduct
effective API performance testing, it is crucial to utilize tools that not only simulate load but also
provide detailed metrics that help identify bottlenecks within the system.

Considering the variety of tools used for performance testing, it is necessary to critically evaluate
which one best suits specific needs, particularly when testing APIs. Two commonly used tools for
performance testing, such as Postman and JMeter, offer different capabilities and approaches.
Postman is known for its simple interface and robust functionality for API testing. At the same time,

JMeter is more focused on load testing and is recognized for its ability to simulate high traffic,
providing detailed insights into system performance under load. Moreover, Postman can also run
performance tests for APIs in collection and simulate activity of virtual API users, using configurable
load durations and profiles [17]. Both JMeter and Postman are powerful tools for test automation;
however, their performance under the same conditions may vary significantly.

The purpose of this study is to compare Postman and JMeter as tools for API performance testing.
By evaluating their strengths and limitations across four common load types (load, stress, spike, and
soak tests) for CRUD public API calls, this research aims to determine which tool is more effective
in different testing scenarios, considering performance metrics such as average response time,
minimum, maximum values, and error percentage. This comparison will help Information
Technology practitioners make informed decisions when selecting the most suitable tool for their
API performance testing needs in real software development projects.

2. Literature Review

In the field of performance API testing, various approaches are actively used to simulate real-world
traffic patterns and accurately measure system behavior under load. Most of these approaches are
based on using performance testing tools to simulate virtual user (VU) requests, as well as
performance monitoring and analysis of system stability under load.

Performance testing tools verify the system or application before delivering it to customers, and
its efficiency is related to the accuracy of its statistical results [18]. Performance testing tools can be
classified into two main categories: cloud-based and on-premise tools. The authors [19, 20] highlight
that the cloud-based performance test tools provide scalability, flexibility, and potential cost savings.
However, performance testing in the cloud is expensive, as it requires infrastructure spin-up and
load generation. On the other hand, on-premise load testing is used in organizations with sensitive
data (e.g., healthcare, banking, astronomy [21]) or those that run their application behind a firewall.

The effectiveness of using GUI-based (Graphical User Interface) tools and CLI-based (Command
Line Interface) tools was also established by the authors [22-25] in terms of usability, flexibility, and
efficiency. GUI-based performance testing tools (e.g., LoadRunner, BlazeMeter, Postman) are widely
used due to their user-friendly interfaces, which allow for the design, execution, and analysis of
performance tests with minimal technical expertise. However, GUI tools can be slower to run
compared to CLI test tools during large-scale load testing. On the other hand, CLI performance tools
(JMeter, Locust, Gatling, k6, Artillery, etc.) can generate high loads and simulate thousands of VUs
with minimal impact on system performance. Additionally, CLI-based tools are better suited for
integration into automated testing workflows and CI/CD pipelines, as they provide immediate
feedback without delaying releases. These tools often require a deeper technical understanding, as
they rely on script-based configurations and command-line commands to run tests. According to
authors [26-28], Apache JMeter is a performance testing tool that allows users to perform load tests
on various protocols and technologies. It is one of the most widely used open-source tools for
performance testing, particularly in the domains of API testing and web applications.

The ability to create and execute complex testing scenarios is one of JMeter's most essential
features. The JMeter tool is multithreaded and can simulate a large number of VUs, enabling the
simulation of a heavy load by distributing tests across multiple machines. This tool may be used to
test performance of both static and dynamic resources. Test scenarios in JMeter can be created with
a GUI [29] that allows users to design test plans, configure various types of samplers, and analyze
results. JMeter's flexibility is further enhanced by its support for integration with external services
and tools such as CI/CD pipelines, monitoring systems (InfluxDB, Prometheus, Grafana, Kibana,
Elasticsearch), and third-party performance analysis platforms.

Despite its many advantages, JMeter also has certain limitations, as noted by authors [30, 31]. One
of the main disadvantages is its relatively high memory consumption, especially when running large-
scale tests or simulating a large number of users. Additionally, JMeter also lacks advanced features as
real-time monitoring. It has a high learning curve for setting up and configuring distributed tests.

Additionally, JMeter lacks a scalable GUI and can be slow when managing complex test plans with a
high volume of data. The effectiveness of using Postman was also established by the authors [32, 33]
in studies on API performance testing. Postman is a platform for API development and testing, which
has emerged as a leading tool for API development with a very user-friendly interface. It can be used
in two forms: as a downloadable client and as a web application. Postman is not an open-source tool.
It provides both a free version and a paid version with additional features. Postman tests can be
executed manually using the GUI. Additionally, tests can be run automatically on a schedule using the
Collection Runner, or they can be run using the command-line tool companion, Newman, which
enables the automated execution of Postman Collections. Additionally, Postman enables you to
collaborate with teammates by organizing, sharing, and communicating work to APIs. According to
authors [34, 35], Postman can be used for API performance testing with a desktop application.
Performance tests can be run for a collection of API requests using 1 out of 4 load profiles:

1. Fixed, where a constant number of VUs run tests in parallel;
2. Ramp up, when the number of VUs slowly increases from the initial load to the maximum;
3. Spike, where the number of virtual users increases from the base load to the maximum, then

decreases back to the base load;
4. Peak, during which the number of virtual users increases from the base load to the maximum,

holds steady, then decreases back to the base load.

Postman provides an option to reuse existing API collections for performance testing with
minimal scripting effort. The data file feature enables testers to use the dataset file required to load-
test the API with different datasets in each iteration. Additionally, the number of VUs and test
duration should be configured before running a performance test. It is essential to note that during
performance test execution in Postman, each virtual user runs the requests in the specified order
within a repeating loop. All of the virtual users operate in parallel to simulate real-world load on the
API in a collection. Performance test execution can be monitored in real-time through the Postman
Summary tab, which provides a summary of performance metrics available in both tabular and
graphical forms.

Thus, analyzing the research results in the reviewed authors' works [36], it is worth noting that
there are some limitations to running performance tests in Postman. Firstly, there is a limited number
of performance runs that can be used each month at no additional cost. Secondly, the number of VUs
in a performance test depends on available system resources and the collection used for the test.

Additionally, one area for improvement in Postman is that timer features for managing the
frequency of requests and a sleep time option to introduce a delay between requests, emulating real-
world scenarios, are unavailable, unlike in other load-testing tools. Also, performance test scenarios
can have only one data file, which is an unlikely scenario in load testing. As shown in the work [37],
Postman outperformed JMeter and Robot Framework in various data environments. The relevance
of all these studies is undeniable, as modern web services require testing to ensure their reliability
and performance.

3. Methodology

To perform performance testing, a set of public APIs should be selected for testing. Using public APIs
under various types of load is not considered a DDoS attack or unauthorized use of resources, and
this approach does not violate their ethical use.

Test cases should include executing different types of requests, such as GET, POST, PUT, DELETE,
because this helps to simulate real-world interactions with public APIs. These HTTP methods
represent the typical operations that users or systems perform when interacting with an API. Each
request type generates different types of server load.

When using different types of requests with public APIs, it is essential to note that public APIs
often return simulated responses (mocked data instead of real data). However, public APIs often have

different performance characteristics depending on the type of request. Although the responses may
be mocked, they offer insight into how the API processes requests and handles various loads. This
can help assess whether the API's response times are efficient and stable under load.

sults of Postman and JMeter test tools. For this
reason, it is critical to conduct performance testing under identical conditions, considering the
following factors: number of VU, Think Time or Delay, and test duration. VUs simulate the behavior
of real users interacting with the system. The number of VUs directly impacts the load on the system
being tested. If the number of VUs is too low, the results may not accurately reflect how the system
performs under high traffic. Conversely, if the number of VUs is too high, the system might
experience excessive strain, potentially leading to bottlenecks that don't align with standard usage
patterns.

Think Time, also known as Delay, refers to the pause between user actions (or requests). In real-
world scenarios, users don't send requests continuously without any pause; they typically take a
brief moment to think or interact with the system. The Test Duration specifies how long the
performance test will run, and it can impact the stability and consistency of the results. Short tests
may not provide
accurately.

In contrast, longer tests can identify performance degradation, memory leaks, or other issues that
emerge over time. A combination of different values for the factors mentioned above can be used to
design test cases that closely resemble realistic user behavior. Obtained performance test cases
should be performed for all load profiles, Ramp Up, Spike, Peak, Fixed, in all five public APIs in both
tools, JMeter and Postman.

3.1. API selection

Public websites with open APIs were selected for performance testing. These websites provide ready-
made API endpoints with simulated real data, allowing you to quickly start testing without having
to develop your backend:

1. ReqRes.in website (https://reqres.in) was used for performance testing as it provides a simple
and accessible way to simulate real API requests and responses, allowing for modeling various load
scenarios. This can help to focus on testing the performance of the client application, without the
need to configure a complex server infrastructure, and test the system under various conditions.

2. DummyJSON is an online service (https://dummyjson.com) that provides a range of pre-
configured REST APIs, offering mock data for testing, development, and prototyping. DummyJSON
provides data that mimics real-world APIs, allowing developers to simulate different levels of data
size, from small datasets to larger collections, through pagination and various endpoints. This helps
in testing how the application handles large volumes of data and performs under stress conditions.

3. SampleAPIs is an online platform (https://sampleapis.com) that offers a collection of free,
publicly accessible mock APIs. Developers can simulate various operations, including fetching large
sets of data, creating, updating, or deleting resources, which are everyday tasks for front-end
applications. By testing these actions under heavy load, developers can evaluate the performance
and scalability of their applications when performing these CRUD operations.

4. JsonPlaceholder (https://jsonplaceholder.typicode.com) provides a diverse set of realistic mock
data that can be used to simulate real-world interactions, such as loading user profiles, creating posts,
or fetching a list of comments. This variety makes it an ideal choice for testing how applications
perform under different scenarios, including handling user-generated content, displaying lists, and
updating resources. Developers can use JsonPlaceholder to simulate how their applications interact
with APIs when under load. The ability to make multiple simultaneous requests to various endpoints
enables performance testing, such as simulating the behavior of an application under high traffic, load,
or stress.

5. FakeStoreAPI is a free online service (https://fakestoreapi.com) that provides a set of mock APIs
designed to simulate e-commerce store interactions, offering realistic product data in a structured

https://reqres.in/
https://dummyjson.com/
https://sampleapis.com/
https://jsonplaceholder.typicode.com/
https://fakestoreapi.com/

format. FakeStoreAPI enables developers to simulate a vast product catalog comprising thousands of
items. This makes it an ideal tool for testing how an application handles large datasets, such as
loading hundreds of products in an e-commerce store. Developers can use FakeStoreAPI to simulate
load testing by sending multiple simultaneous requests to various endpoints (e.g., retrieving product
lists, adding items to the cart).

3.2. Limitations of comparison

It is important to note that although the load parameters were standardized, the execution
architecture differs between the tools. In Postman, each virtual user executes requests sequentially
(one after the other). In contrast, in JMeter, each thread is executed in parallel, potentially creating a
higher load (higher Requests Per Second (RPS)). As a result, Loop Controller elements with GET,
POST, PUT, and DELETE requests can be added to JMeter test plans within a Thread Group to ensure
more accurate and comparable test execution with similar load profiles, similar to Postman.

Think Time can be implemented in JMeter using the Constant Timer element, which is shown in
Figure 1a. Similarly, a GET Delay request can be used in Postman for this purpose - GET
https://postman-echo.com/delay/X, where X is the number of seconds to pause, to emulate realistic
user behavior. In general, the structure of all tests for all five public APIs in JMeter is similar to Figure
1a (using Loop Controller with GET, POST, PUT, DELETE requests and listeners inside it). Still, the
Thread Group type should be varied depending on the load type (Thread Group, Ultimate Thread
Group, or Concurrent Thread Group). In Postman, all CRUD requests and Delay requests after each
of those requests were organized into a collection for all five public APIs, as shown in Figure 1b.

 a) b)

Figure 1: Test cases structure: a) JMeter Loop Controller with requests; b) Postman collection of
requests.

The load parameters of test cases should be designed to have similar parameters for different load
scenarios in both test tools. For this reason, different Thread Group types can be used in JMeter,
including Thread Group, Ultimate Thread Group, and Concurrent Thread Group.

Obtained performance test results for five public APIs should be collected, and received
performance metrics (average response time, min, max values and error %) should be analyzed. Then,
the difference in metric values (deltas) can be calculated to analyze which types of requests were
slower in Postman or JMeter. This can be done using the formula:

𝛥Avg = PostmanAvg − JMeterAvg, (1)

where 𝛥Avg difference in average response time between Postman and JMeter;
PostmanAvg value of average response time in Postman;

JMeterAvg value of average response time in JMeter.

In case 𝛥Avg is a positive value, then Postman had a longer average response time than JMeter.
If 𝛥Avg is a negative value, then JMeter's average response times exceeded those in Postman, and
Postman's performance was faster. Calculating the aggregated mean values for performance metrics
across all test cases for each (API, test tool, HTTP method) combination helps to provide a

representative performance assessment. Average values of each performance metric are calculated
for 8 test cases for each API and HTTP method:

Avg_metric =
∑ 𝑚𝑘

𝑛
𝑘=1

𝑛
,

(2)

where 𝑚𝑘 value of performance metric for 𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒𝑘;
n number of test cases.
This should be repeated for 5 APIs using a test tool (such as Postman or JMeter) and a selected

HTTP method. Then, mean aggregated values should be calculated for average performance metric
values for selected HTTP method:

Mean_metric =
∑ Avg_metric𝑖

𝑙
𝑖=1

𝑙
,

(3)

where Avg_metric value of performance metric for selected HTTP method;
𝑙 number of APIs.
The final step after analyzing aggregated metrics and their deltas is visualizing them through bar

charts to evaluate the differences between the test tools.

4. Results

The proposed performance testing approach was applied to a set of 5 public APIs using two tools:
Postman and JMeter. Response times were measured for various HTTP methods (GET, POST, PUT,
DELETE), after which the following metrics were collected: average response time (avg), minimum (min),
maximum (max), and error rate (error %). Performance tests were conducted under identical conditions:

• Number of VU: 10, 20, 30, 40, or 50, depending on the scenario;
• Think Time was ranged: 1000 ms (peak load), 3000-5000 ms (realistic load), 10000 ms (low load);
• Test duration: 5 or 10 minutes depending on the scenario.

For evaluating Postman and JMeter behavior under different user scenarios, four load profiles were
used: Ramp Up, Spike, Fixed Load, and Peak Load. In each of these profiles, the values of VUs and Think
Time intervals were varied depending on the test goal (see test cases in Table 1). The baseline scenario
was 10 VU with a Think Time of 10 seconds, during which all five public APIs functioned without
errors. It was done to ensure consistent conditions and simplify the results. Additionally, stress testing
scenarios were applied with increased request frequency (think time ranging from 1 to 5 seconds) and
peak load values (up to 80 VUs) to obtain results that closely mimic realistic user behavior. Test cases
are described in Table 1, and each test case (TC) was run on five public APIs.

Table 1
Performance Test Cases for JMeter and Postman

TC Load Profile VU Think Time, s
Duration,

min
Comment

1 Ramp Up
Ramp Up

0 10 10 10 Increase of load
2 10 30 3 10 Increase of load
3 Spike

Spike
1 10 1 10 10 Users attack simulation

4 5 50 5 2 5 Users attack simulation
5 Fixed Load

Fixed Load
10 10 10 Stable request flow

6 20 5 10 Stable request flow
7 Peak

Peak
2 10 2 10 10 Check of requests maximum

8 8 40 8 1 5 Check of requests maximum

The TC1 Ramp Up load profile in Postman with 10 VUs, an initial load of 0 VUs, and a test duration
of 10 minutes enables the following scenario: steadily ramp up to 10 users for 5 minutes, with each
user executing all requests sequentially, as shown in Figure 2a. To obtain an equivalent load in
JMeter, a Thread Group with 10 VUs and ramp-up period = 300 s and duration = 600 s was used, as
shown in Figure 2b. In this case, the Loop Count was set to 1 in the Loop Controller of JMeter.

a) b)

Figure 2: Ramp Up load parameters with 10 VUs and 0 VUs as initial load, test duration 10 mins:
a) Postman load profile; b) JMeter Thread Group plugin configuration.

TC2 Ramp Up load profile in Postman with 30 VUs, initial load = 10 VUs, test duration = 10 mins
enables the following scenario: 10 VUs run for 2 mins 30 s, then ramp up to 30 VUs for 2 mins 30 s,
after that maintain 30 VUs for 5 minutes, each executing all requests sequentially, as shown in Figure
3a. To obtain an equivalent load in JMeter, Ultimate Thread Group with two threads was used, as
shown in Figure 3b: 1) start threads count = 10, initial delay = 0 sec, startup time = 0 sec, hold load
for = 600 sec, shutdown time = 0; 2) start threads count = 20, initial delay = 150 sec, startup time =
150 sec, hold load for = 300 sec, shutdown time = 0. In this case and subsequent one, the Loop Count
was set to 'Infinite' in the Loop Controller of JMeter.

 a) b)

Figure 3: Ramp Up load parameters with 30 VUs and 10 VUs as initial load, test duration 10 mins:
a) Postman load profile; b) Ultimate Thread Group plugin configuration in JMeter.

TC3 Spike load profile in Postman with 10 VUs, base load = 1 VU, test duration = 10 mins enables
the following scenario: 1 VU runs for 4 minutes, then spikes to 10 VUs over 1 minute, drops to 1 VU

over 1 minute, maintains 1 VU for 4 minutes, each executing all requests sequentially. To obtain an
equivalent load in JMeter, Ultimate Thread Group was used: 1) start threads count = 1, initial delay
= 0 sec, startup time = 0 sec, hold load for = 600 sec, shutdown time = 0; 2) start threads count = 9,
initial delay = 240 sec, startup time = 60 sec, hold load for = 0 sec, shutdown time = 60.

TC4 Spike load profile in Postman with 50 VUs, base load = 5 VUs, test duration = 5 mins enables
the following scenario: 5 VUs run for 2 minutes, then spikes to 50 VUs over 30 sec, drops to 5 VUs
over 30 sec, maintains 5 VUs for 2 minutes, each executing all requests sequentially. To obtain an
equivalent load in JMeter, Ultimate Thread Group was used: 1) start threads count = 5, initial delay
= 0 sec, startup time = 0 sec, hold load for = 300 sec, shutdown time = 0; 2) start threads count = 45,
initial delay = 120 sec, startup time = 30 sec, hold load for = 0 sec, shutdown time = 30.

TC5 Peak load profile in Postman with 10 VUs, base load = 2 VUs, test duration = 10 mins enables
the following scenario: 2 VUs run for 2 minutes, ramp up to 10 VUs over 2 min, maintains 10 for 2 min,
decrease to 2 over 2 min, maintains two over 2 min, each executing all requests sequentially. To obtain
an equivalent load in JMeter, Ultimate Thread Group was used: 1) start threads count = 2, initial delay
= 0 sec, startup time = 0 sec, hold load for = 600 sec, shutdown time = 0; 2) start threads count = 8,
initial delay = 120 sec, startup time = 120 sec, hold load for = 120 sec, shutdown time = 120.

TC6 Peak load profile in Postman with 40 VUs, base load = 8 VUs, test duration = 5 mins enables
the following scenario: 8 VUs run for 1 min, ramp up to 40 VUs over 1 min, maintains 40 for 1 min,
decrease to 8 over 1 min, maintains eight over 1 min, each executing all requests sequentially, as
shown in Figure 8a. To obtain an equivalent load in JMeter, Ultimate Thread Group was used, as
shown in Figure 8b: 1) start threads count = 8, initial delay = 0 sec, startup time = 0 sec, hold load for
= 300 sec, shutdown time = 0; 2) start threads count = 32, initial delay = 60 sec, startup time = 60 sec,
hold load for = 60 sec, shutdown time = 60.

TC7 Fixed load profile in Postman with 10 VUs, test duration = 10 minutes, enabling the following
scenario: 10 VUs run for 10 minutes, each executing all requests sequentially. To obtain an equivalent
load in JMeter, Concurrency Thread Group was used: 1) target concurrency = 10, hold target
rate = 10 minutes.TC8 Fixed load profile in Postman with 20 VUs, test duration = 10 mins enables the
following scenario: 20 VUs run for 10 min, each executing all requests sequentially. To obtain an
equivalent load in JMeter, a Concurrency Thread Group was used with the following settings: 1) target
concurrency = 20, hold target rate = 20 minutes.

Testing of CRUD operations was performed on the following endpoints:
1. For ReqRes.in service, GET, POST, PUT, and DELETE requests were used for resource

https://reqres.in/api/users, as illustrated in Figure 4:

Figure 4: .

It should be noted that {{postId}} in Figure 4 is a generated ID for a new user by the service in the

POST request. This {{postId}} was saved after executing the POST request using variables and the
pm.environment.set() function in Postman collections, and correspondingly, by using the Regular

https://reqres.in/api/users

Expression Extractor in JMeter tests. After that, {{postId}} was passed to PUT and DELETE requests.
Such an approach was implemented in tests for ReqRes.in, SampleAPIs, FakeStoreAPI services. For
DummyJSON and JsonPlaceholder,
limitations of these services.

2. For DummyJSON service, GET, POST, PUT, and DELETE requests were used for
resource https://dummyjson.com/products in a similar manner as shown in Figure 4.

3. For SampleAPIs service, GET, POST, PUT, and DELETE requests were used for
resource https://api.sampleapis.com/codingresources/codingResources.

4. For JsonPlaceholder service, GET, POST, PUT, and DELETE requests were used for
resource https://jsonplaceholder.typicode.com/posts.

5. For FakeStoreAPI service, GET, POST, PUT, and DELETE requests were used for
resource https://fakestoreapi.com/products.

For both test tools, JMeter and Postman, the test scenarios involved sequential execution of GET,
POST, PUT, and DELETE requests to the public APIs. All requests were identical between the tools
and were directed to the same public APIs test servers.

During the experiment, the following tools were utilized: Postman Desktop application version
11.50.2 and Apache JMeter version 5.6.3. The scripts were executed in an identical environment:
Windows 11 x64 24H2, 8-core CPU, 16GB RAM. Obtained test cases (TC) results are presented both
in tabular form and through visualization (bar chart) for different load profiles in both tools gradual
increase in load from 0 to 10 VUs over 10 minutes.

Table 2
Performance results for TC1 Postman, ReqRes.in service

Table 3
Performance results for TC1 JMeter, ReqRes.in service

Difference in average response time values (deltas) were calculated using Formula (1). A positive
value indicates a higher Postman value, meaning a longer response time (see Table 4).

Table 4
Difference in average response time values between Postman and JMeter for ReqRes.in service in TC1

Method Samples, N Minimum, ms Maximum, ms Average, ms Error, %
GET 112 47 199 64 0
POST 109 98 133 112 0
PUT 106 103 151 115 0

DELETE 104 99 136 109 0

Method Samples, N Minimum, ms Maximum, ms Average, ms Error, %
GET 117 40 157 77 0.00
POST 115 113 564 134 0.00
PUT 113 118 263 159 0.01

DELETE 110 111 185 130 0.01

Method
Average Postman,

ms
Average JMeter, ms , ms

GET 64 77 -13
POST 112 134 -22
PUT 115 159 -44

DELETE 109 130 -21

https://dummyjson.com/products/
https://api.sampleapis.com/codingresources/codingResources
https://jsonplaceholder.typicode.com/posts
https://fakestoreapi.com/products

The results obtained, as shown in Tables 2-4, indicate that the average response time in Postman
is less than that in JMeter for all types of requests in TC1.

Similarly, average response time deltas were calculated for other public APIs. The difference
between the average response time values is further illustrated in the chart in Figure 5, where it is
clear that Postman shows lower average response times for 4 out of 5 APIs.

This visualization helps to ensure that the differences between the tools are not random
fluctuations, but are consistent across all APIs.

Figure 5: Deltas of Average response time values for public APIs for TC1.

The same results were obtained in other test cases, except in cases where the think time was reduced

to 5 seconds or less, or in cases where there was a significant increase in the number of VUs in
combination with a short think time. In all these cases, JMeter demonstrated better performance, as
evident in the experimental results for TC6 in Figure 6.

Figure 6: Deltas of Average response time values for public APIs for TC6.

mentioning that for the ReqRes.in service, a vast majority of 429 errors (too many

requests) were returned in response when the number of VUs started to increase, for instance,
significantly in TC4. For other APIs, 429 and 502 errors were returned in response, but their number
was insignificant. To ensure statistical objectivity [38] and reduce case-specific variability, average

-60 -40 -20 0 20 40 60 80 100

ReqResIn

DummyJson

SampleApis

JsonPlaceHolder

FakeStoreApi

GET POST PUT DELETE

-20 -10 0 10 20 30 40 50 60 70

ReqResIn

DummyJson

SampleApis

JsonPlaceHolder

FakeStoreApi

GET POST PUT DELETE

response times, min, max values and error % were first collected per test case, then averaged across
8 test cases for each combination of API and HTTP method, as described in Formulas (2) and (3).

These values per API were subsequently aggregated across 5 APIs. The final metrics, including
mean response time,
performance per HTTP method, as shown in Table 5.

Table 5
Aggregated performance results for Postman and JMeter

The final aggregated values in Table 5 show that, in general, Postman demonstrates better
performance compared to JMeter. Although the test was conducted once, aggregated values of
metrics were calculated from hundreds of requests, allowing for an objective assessment of system
behavior [39]. These data provide a preliminary conclusion that Postman shows higher performance
in low to moderate load conditions, particularly during stable loads with a fixed amount of VUs, and
in other types of loads where think time is greater than 5 seconds. On the other hand, JMeter
demonstrates higher performance under conditions of high load and high request intensity,
especially in cases of a sharp increase in load to peak, followed by a gradual decrease with a short
think time of 1 second. Additionally, a greater number of samples were generated in JMeter than in
Postman in all performance testing cases including mathematical methods [40].

5. Discussion

The analysis is based on a single performance test run for five public APIs, which limits statistical
generalizability. However, aggregated values were calculated from hundreds of requests in each
collection in both test tools, allowing for a reliable assessment of tools' behavior at the API level. The
visualization of the differences confirms a consistent trend, where Postman demonstrates better
performance across the average response time metric, particularly when there are not many VUs and
the think time is more than 5 seconds for all load profiles. In other cases, JMeter shows faster results
in performance metrics. Since public open APIs were used, the exact number of active users at the
time of the performance test execution remains unknown. This introduces an element of uncertainty,
as the actual load on the system could vary based on the number of concurrent users accessing the
API during the test period. However, performance tests were conducted at the same time of day
during the experiment to minimize this uncertainty. In our opinion, additional experiments with
repeated execution of scenarios can be applied to confirm the robustness of the observed effects.

6. Conclusion

In conclusion, the conducted research showed that Postman performs more efficiently under
conditions of low to medium user concurrency or when request rates are relatively low. In contrast,
JMeter is more appropriate for scenarios involving high concurrency, where the system must sustain
substantial request loads.

Postman shows high performance, particularly during cases as stable load with fixed amount of
VUs (fixed load profile), with gradual increase in load (ramp up profile with initial load as 0) and in

Method Test Tool Mean Avg, ms Mean Min, ms Mean Max, ms Mean Error, %
GET Postman 162,400 104,975 410,200 0,9348
GET JMeter 181,650 115,925 499,625 0,739
POST Postman 148,100 117,250 393,035 7,671
POST JMeter 147,175 124,700 806,050 7,999
PUT Postman 144,925 118,100 341,425 7,777
PUT JMeter 151,625 125,525 377,275 7,936

DELETE Postman 166,189 136,561 307,629 7,931
DELETE JMeter 161,725 143,525 374,475 8,515

other types of loads where think time value represents a relatively long delay between user actions,
significantly reducing the request rate per user.

JMeter achieves better performance in scenarios with high load and high request intensity. Such
performance behavior is most pronounced in high-intensity scenarios involving a rapid ramp-up to
peak load, a gradual ramp-down, and minimal delays between user actions.

The obtained data could have a profound impact on improving both the stability and effectiveness
of software development, especially in the context of selecting appropriate testing tools and
practices. Considering factors such as the complexity of returned responses, planned load parameters
(e.g., number of virtual users, think time, and test duration), it is possible to ensure a reduction in
testing time and the risk of underestimating the system's performance in high-traffic conditions.

We believe that using Postman as a tool for performance testing in low to moderate load
conditions would provide a step forward for small and medium-sized organizations and firms in their
efforts to achieve a good software quality level. Additionally, using JMeter could be beneficial for
complex cloud servers [41] and distributed systems including decision-making process [42] with
high load and request intensity [43].

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] BrowserStack, Test Automation Benefits, Limitations, Tools, Best Practices 2025. URL:
https://www.browserstack.com/guide/what-is-test-automation.

[2] Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, Test automation maturity improves product quality
 Quantitative study of open source projects using continuous integration, Journal of Systems

and Software 188 (2022). doi: 10.1016/j.jss.2022.111259.
[3] PractiTest, The 2024 State of Test

https://www.practitest.com/assets/pdf/stot-2024.pdf.
[4] 16th edition of World Quality Report, 2024, URL: https://www.capgemini.com/wp-

content/uploads/2024/10/WQR-24-MAIN-REPORT-CG.pdf.
[5] Cloudzero, Cloud Computing Statistics report, 2025, URL:

https://www.cloudzero.com/blog/cloud-computing-statistics.
[6] R. Cerquozzi, W. Decoutere, J.-F. Riverin, ISTQB Certified Tester Foundation Level Syllabus, V4.0.1,

2024.
[7] BrowserStack, UI Testing Guide, 2025. URL: https://www.browserstack.com/guide/ui-testing-guide.
[8] O. Vovk, I. Chebotarova, M. Mendielieva, Approach to comprehensive website testing:

combining usability and functional test methods, in: Proceedings of the 10th annual conference
on Print, Multimedia & Web. Modern Trends, LLC "Drukarnya Madrid", Kharkiv, Ukraine, vol.
1, (2025) 5-30. doi: 10.30837/PMW.2025.T1.005.

[9] A. Owen, Microservices Architecture and API Management: A Comprehensive Study of
Integration, Scalability, and Best Practices, International University of Applied Sciences, 2025.

[10] TestSigma, API vs UI testing, 2025. URL: https://testsigma.com/blog/api-vs-ui-testing.
[11] Y. Pei, J. Sohn, M. Papadakis, An Empirical Study of Web Flaky Tests: Understanding and

Unveiling DOM Event Interaction Challenges, in: Proceedings of the Conference on Software
Testing, Verification and Validation (ICST), (2025) 92-102. doi: 10.1109/ICST62969.2025.10989030.

[12] M. Nass, E. Alégroth, R. Feldt, Why many challenges with GUI test automation (will) remain,
Information and Software Technology 138 (2021) 106625. doi: 10.1016/j.infsof.2021.106625.

[13] Akamai, What Is API Performance Testing, 2025. URL: https://www.akamai.com/glossary/what-
is-api-performance-testing.

https://www.browserstack.com/guide/what-is-test-automation
https://www.practitest.com/assets/pdf/stot-2024.pdf
https://www.capgemini.com/wp-content/uploads/2024/10/WQR-24-MAIN-REPORT-CG.pdf
https://www.capgemini.com/wp-content/uploads/2024/10/WQR-24-MAIN-REPORT-CG.pdf
https://www.cloudzero.com/blog/cloud-computing-statistics
https://www.browserstack.com/guide/ui-testing-guide
https://testsigma.com/blog/api-vs-ui-testing/

[14] M. Yenugula, R. Kodam, D. He. Performance and load testing: Tools and challenges,
International Journal of Engineering in Computer Science 1 (2019) 57-62.
doi: 10.33545/26633582.2019.v1.i1a.102.

[15] S. Pargaonkar, A Comprehensive Review of Performance Testing Methodologies and Best
Practices: Software Quality Engineering, International Journal of Science and Research (IJSR) 12
8 (2014). doi: 10.21275/SR23822111402.

[16] M. Hendayun, A. Ginanjar, Y. Ihsan, Analysis of application performance testing using load
testing and stress testing methods in API service, Jurnal Sisfotek Global 13 1 (2023) 28-34.
doi: 10.38101/sisfotek.v13i1.2656.

[17] Postman, Performance Testing, 2024.
URL: https://www.postman.com/templates/collections/performance-testing.

[18] A. Jacob, A. Karthikevan, Scrutiny on Various Approaches of Software Performance Testing
Tools, in: Proceedings of the Second International Conference on Electronics, Communication
and Aerospace Technology (ICECA), (2018) 509-515. doi: 10.1109/ICECA.2018.8474876.

[19] LoadViewTesting, Cloud vs. On-Premise Load Testing: An ROI Comparison, 2025. URL:
https://www.loadview-testing.com/learn/roi-comparison-cloud-vs-premise-load-testing-tools.

[20] LoadNinja, Should You Use Cloud-Based or On-Premise Load Testing, 2025.
URL: https://loadninja.com/articles/cloud-based-on-premise-load-testing.

[21] V. Troianskyi, V. Kashuba, O. Bazyey, et al., First reported observation of asteroids 2017 AB8,
2017 QX33, and 2017RV12, Contributions of the Astronomical Observatory Skalnate Pleso 53 2
(2023) 5-15. doi: 10.31577/caosp.2023.53.2.5.

[22] D. Westerveld, API Testing and Development with Postman: API creation, testing, debugging,
and management made easy, Packt Publishing Ltd, 2024.

[23] N. Srivastava, U. Kumar, P. Singh, Software and performance testing tools, Journal of Informatics
Electrical and Electronics Engineering 2 1 (2021) 1-12. doi 10.54060/jieee/002.01.001.

[24] S. Khlamov, et al., The astronomical object recognition and its near-zero motion detection in
series of images by in situ modeling, in: Proceedings of the International Conference on Systems
Signals and Image Processing (2022) 1-4. doi: 10.1109/IWSSIP55020.2022.9854475.

[25] M. Pirah, H. Tahseen, B. Sania, S. S. Qureshi, Comparative study of testing tools Blazemeter and
Apache JMeter, Journal of Computing and Mathematical Sciences 2 1 (2018) 70-76.
doi: 10.30537/sjcms.v2i1.66.

[26] F. Okezie, I. Odun-Ayo, S. Bogle, A critical analysis of software testing tools, Journal of Physics:
Conference Series 1378 4 IOP Publishing, (2019). doi: 10.1088/1742-6596/1378/4/042030.

[27] I. Indrianto, Performance testing on web information system using apache jmeter and blazemeter,
Jurnal Ilmiah Ilmu Terapan Universitas Jambi 7 (2023) 138-149. doi: 10.22437/jiituj.v7i2.28440.

[28] T. Vatsya, U. Sachin, K. G. Jayati, A. Sanjiv, Analytical evaluation of web performance testing
tools: Apache JMeter and SoapUI, in: Proceedings of the 12th International Conference on
Communication Systems and Network Technologies, (2023).
doi: 10.1109/CSNT57126.2023.10134699.

[29] S. Siddhant, S. B. Prapulla, Comprehensive review of load testing tools, International Research
Journal of Engineering and Technology 7 5 (2020) 3392-3395.

[30] AutomateNow, Advantages and Disadvantages of using JMeter, 2023.
URL: https://automatenow.io/advantages-and-disadvantages-of-using-jmeter.

[31] TestSigma, JMeter vs Postman, 2025. URL: https://testsigma.com/blog/jmeter-vs-postman.
[32] Postman, What is Postman, 2025. URL: https://www.postman.com/product/what-is-postman.
[33] S. D. Sri, M. S. Aadil, S. R. Varshini, R. Raman, G. Rajagopal, S. T. Chan, Automating REST API

Postman Test Cases Using LLM, arXiv preprint:2404.10678 (2024). doi: 10.48550/arXiv.2404.10678.
[34] H. A. Thooriqoh, B. M. Mulyo, A. Rakhmadi, Advanced RESTful API Testing: Leveraging Newman's

Command-Line Capabilities with Postman Collections, in: Proceedings of the 10th Information
Technology International Seminar, Indonesia, (2024) 188-193, doi: 10.1109/ITIS64716.2024.10845315.

https://automatenow.io/advantages-and-disadvantages-of-using-jmeter/
https://testsigma.com/blog/jmeter-vs-postman/
https://www.postman.com/product/what-is-postman/

[35] V. S. Susan Rini, When Postman Goes That Extra Mile to Deliver Performance to APIs, Software
Testing Magazine, 2024. URL: https://www.softwaretestingmagazine.com/tools/when-postman-
goes-that-extra-mile-to-deliver-performance-to-apis.

[36] NashTech, Performance testing with Postman: Is it worth?, 2024.
URL: https://blog.nashtechglobal.com/performance-testing-with-postman-is-it-worth.

[37] C.-H. Hsieh, Z. Wang, Q. Zhang, Y. Song, X. Wu, Z. Wang, Evaluation System for Software Testing
Tools in Complex Data Environment, in: Proceedings of the 4th International Conference on
Information Communication and Signal Processing, 2021. doi: 10.1109/ICICSP54369.2021.9611846.

[38] V. Shvedun, et al., Statistical modelling for determination of perspective number of advertising
legislation violations, Actual Problems of Economics 184 10 (2016) 389-396.

[39] S. Khlamov, et al., Machine Vision for Astronomical Images using The Modern Image Processing
Algorithms Implemented in the CoLiTec Software, Measurements and Instrumentation for
Machine Vision, (2024) 269-310. doi: 10.1201/9781003343783-12.

[40] V. Savanevych, et al., Mathematical methods for an accurate navigation of the robotic telescopes,
Mathematics 11 10 (2023) 2246. doi: 10.3390/math11102246.

[41] S. Khlamov, et al., Astronomical knowledge discovery in databases by the CoLiTec software, in:
Proceedings of the 12th IEEE ACIT 2022, Ruzomberok, Slovakia, September 26th 28th, (2022)
583-586. doi: 10.1109/ACIT54803.2022.9913188.

[42] Y. Romanenkov, V. Mukhin, V. Kosenko, et al., Criterion for Ranking Interval Alternatives in a
Decision-Making Task, International Journal of Modern Education and Computer Science
(IJMECS) 16 2 (2024) 72-82. doi: 10.5815/ijmecs.2024.02.06.

[43] S. Khlamov, et al., CoLiTec software for the astronomical data sets processing, in: Proceedings
of the IEEE 2nd International Conference on Data Stream Mining and Processing, Lviv, Ukraine,
August 21st 25th, 2018, pp. 227-230. doi: 10.1109/DSMP.2018.8478504.

https://www.softwaretestingmagazine.com/tools/when-postman-goes-that-extra-mile-to-deliver-performance-to-apis
https://www.softwaretestingmagazine.com/tools/when-postman-goes-that-extra-mile-to-deliver-performance-to-apis
https://blog.nashtechglobal.com/performance-testing-with-postman-is-it-worth/

