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Abstract 
This paper presents a novel intelligent system for optimizing brachytherapy treatment planning using 
advanced mathematical modeling. The system is designed to automate the placement of cylindrical 
radioactive capsules within irregular tumor regions, represented as polyhedra. Capsules are approximated 
by polyhedral shapes and can freely rotate, allowing for precise control of their orientation and spatial 
configuration. Distances between capsules and between capsules and the tumor boundary are incorporated 
into the model as geometric constraints. The placement problem is formulated as a mathematical 
programming model and solved using specialized packing algorithms. Results from numerical experiments 
demonstra  

Keywords  
brachytherapy, mathematical programming, parallelepiped, cylinder, polyhedron 1 

1. Introduction 

Intelligent systems and mathematical modeling are increasingly integrated into modern healthcare 
technologies, enabling more precise, data-driven, and patient-specific approaches to diagnosis and 
treatment. These systems combine computational methods, control theory, and artificial intelligence 
to support clinical decision-making and automate complex medical procedures. One of the key areas 
of application is treatment planning, where intelligent algorithms analyze medical imaging data, 
simulate therapeutic outcomes, and optimize the configuration of medical interventions. Recent 
studies underscore the transformative potential of AI in healthcare [1-4].  

Mathematical modeling in medicine is used for both diagnosis and treatment optimization [5,6]. 
Differential-equation-based models simulate physiological systems like the cardiovascular system or 
tumor growth, offering insights into disease progression and guiding treatment strategies. Statistical 
models evaluate patient outcomes through survival analysis and risk assessment, helping predict 
disease progression and identify effective treatments based on patient data. Machine learning models 
improve diagnostic accuracy and treatment planning by analyzing large datasets, particularly in 
medical imaging and pathology. They are also used to anticipate how patients might respond to 
specific therapies, supporting the development of personalized treatment plans [7].  

An example of the application of information technologies is the planning of retinal laser 
coagulation. Laser coagulation is used to treat various retinal diseases, such as diabetic retinopathy, 
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central retinal vein occlusion, and retinal detachment. Intelligent systems help physicians accurately 
identify optimal coagulation sites [8,9], which enhances the procedure's effectiveness and reduces 
the risk of complications.  

Another example is the radiosurgical treatment of tumors with gamma rays, known as Gamma 
Knife surgery [10,11]. This technology uses computer planning to accurately direct gamma rays at 
the tumor, minimizing the impact on healthy tissues. Gamma Knife is used to treat various brain 
tumors and other conditions, such as arteriovenous malformations and trigeminal neuralgia. Study 
[12] introduces advanced mathematical techniques based on a packing problem, which can be applied 
to optimize the spatial arrangement of treatment targets, helping ensure effective radiation delivery. 

An alternative effective method for treating tumors is brachytherapy, which involves placing 
radioactive material directly inside or near the tumor [13]. The treatment process begins with 
detailed imaging studies to determine the exact size, shape, and location of the tumor. Based on the 
treatment plan, radioactive implants (such as seeds, pellets, or cylinders) are placed inside or near 
the tumor. These implants can be temporary or permanent, depending on the type of cancer and the 
treatment protocol. They emit radiation over a defined period, targeting tumor cells while limiting 
exposure to surrounding tissues. 

To achieve precise placement of cylindrical radioactive capsules during brachytherapy, it is 
necessary to evaluate both their orientation and the distance to the target tissue [14,15]. These 
parameters directly affect the accuracy of radiation dose delivery to the tumor and help reduce 
exposure to surrounding healthy tissues. The orientation of the capsule determines the direction in 
which radiation is emitted. Proper alignment ensures that radiation is focused on the tumor, avoiding 
unnecessary exposure of healthy tissues and improving treatment effectiveness. The distance 
between the capsule and the tumor influences how the radiation dose is distributed A shorter 
distance allows more radiation to reach the tumor, making it critical to measure this parameter with 
precision to achieve the desired therapeutic effect while protecting nearby healthy structures. 

Tasks involving the packing of three-dimensional objects have a wide range of practical 
applications [9,12]. They are used in various fields such as manufacturing, logistics, transportation, 
and scientific research, including medicine. Known methods for modeling the interactions of 
geometric objects, such as phi-functions [16], allow for the formalization of the distance between 
capsules while accounting for their orientation.  

The inherent complexity of brachytherapy treatment planning, arising from the need to precisely 
control capsule orientation, distance, and the dose summation effects of multiple implants, 
necessitates the development of advanced planning systems [17]. Packing algorithms, which have 
demonstrated success in optimizing spatial arrangements in various fields [18], offer a novel 
approach. These methods can be adapted to collectively arrange capsules, simultaneously managing 
both their placement and orientation. The approach is part of an intelligent system being developed 
to enhance the precision and efficiency of brachytherapy treatment planning. 

The foundation of such a system is the problem of packing identical cylinders (or spheroids) 
within a region of irregular geometric shape, represented as a polyhedron. Given that effective 
methods have been developed for solving the problem of packing polyhedra with arbitrary 
orientation in arbitrary regions, it is reasonable to approximate the capsules with polyhedra to a 
specified level of accuracy. The algorithm dynamically determines the number of capsules required 
based on the size and shape of the tumor. The system employs advanced mathematical programming 
techniques to solve the placement problem. Automating the placement process significantly reduces 
planning time. 

While the current study focuses on an idealized geometric model that considers only spatial 
constraints, including free orientation of cylindrical capsules, this abstraction is already 
computationally complex and forms a necessary foundation for further development. In 
collaboration with clinical brachytherapy specialists, the model can be extended to incorporate 
additional constraints such as directional radiation emission (e.g., when the source is placed at one 
base of the cylinder), dose control, and other treatment-specific parameters. 



2. Related works 

Key mathematical models and algorithms in radiation therapy involve several approaches designed 
to refine treatment planning [13]. Linear penalty models employ linear functions to reduce 
deviations from desired dose distributions, offering computational efficiency that is advantageous 
for real-time applications. Dose-volume models prioritize achieving specific dose-volume 
constraints, balancing tumor control with the preservation of healthy tissues. Mean-tail dose models 
are used to minimize the mean dose to the tail of the dose distribution, lowering the risk of 
complications from high-dose areas. Quadratic penalty models utilize quadratic functions to create 
a smoother optimization landscape, which contributes to generating more stable solutions. 
Radiobiological models integrate biological effects of radiation, such as cell survival probabilities, 
and are essential for tailoring treatments to individual patients. Multiobjective models consider 
various goals simultaneously (such as enhancing tumor control while limiting side effects), often 
relying on Pareto optimization techniques to identify balanced solutions. 

3D packing problems, such as bin packing, knapsack, and strip-packing, are indeed NP-hard 
optimization challenges with no known polynomial-time exact solutions. This inherent complexity 
necessitates the development of heuristic and approximation algorithms that balance solution quality 
with computational efficiency.  

Modern methods for solving 3D packing problems include hodograph-based nonlinear 
programming, which optimizes dense placements using hodograph vector functions like the phi-
function technique [16,19] and involves solving systems of nonconvex constraints to avoid overlaps. 
Heuristic strategies, such as genetic algorithms, simulated annealing, and tree-search methods, are 
commonly applied to multi-dimensional knapsack problems. Additionally, voxelization discretizes 
complex shapes into voxels, which are 3D pixels composed of rectangles or parallelepipeds. 

Various optimization algorithms are employed to find the best packing configurations for 
polyhedral objects [20]. These algorithms iteratively adjust the positions and orientations of the 
polyhedra to maximize packing density and minimize void spaces. Paper [21] proposes a heuristic 
algorithm based on the principle of minimum total potential energy for solving 3D irregular packing 
problems. This algorithm is designed to pack a set of irregularly shaped polyhedrons into a box-
shaped container with fixed width and length but unconstrained height. Lamas Fernández [22] 
explored irregular 3D packing using metaheuristics and geometric strategies, introducing the no-fit 
voxel  a 3D extension of the no-fit polygon  to handle irregular shapes and optimize free-rotation 
constraints. Such approaches are particularly relevant in fields like aerospace and archaeology, 
where non-uniform items are frequently encountered. 

3. Mathematical formulation 

The intelligent system proposed in this study is fundamentally represented as a mathematical model. 
Specifically, the tumor is modeled as a convex polyhedron, and the capsules are presented as 
cylinders with defined spatial coordinates and orientation angles. The placement constraints are 
expressed using normalized phi-functions, which quantify distances between capsules and between 
capsules and the tumor boundary. The objective function seeks to maximize the number of capsules 
placed within the tumor while satisfying all geometric constraints. This results in a mathematical 
programming problem that is solved using specialized algorithms. 

Let iС   be cylinders (capsules) with radius r  and height 2h , {1,2,..., }Ni I N = , where N  is a 

sufficiently large number. The location of each cylinder iC  in the Euclidean space 3
R  is defined as 

( , ),i i iu v=   where ( , , )i i i iv x y z=  1 2( , ,..., )nu u u u=  where  ( , ),i i iu v=   ( , , )i i i iv x y z=  are 

coordinates of the pole  a point on the cylinder axis equidistant from its top and bottom bases  and 
( , )i i i  =  are the orientation angles.  The cylinder iC  with placement parameters iu  is denoted 

as ( )i iC u , Ni I . 



The placement region T  (tumor) is specified as a convex polyhedron defined as the intersection 
of half-spaces jH , which are determined by planes jT  given by the normal equations 

0j j j jA x B y C z D+ + + = , {1,2,..., }mj J m = , where m  is the number of half-spaces:  
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The objective is to maximize the number of cylindrical capsules n N  that can be placed within 
the region T  without mutual overlap, maintaining a minimum distance 

1d  between the cylinders 

and to the tumor boundaries 
2d . This formulation ensures a high packing density, providing optimal 

tumor coverage, while the imposed distance constraints help prevent overdose and reduce the impact 
on surrounding healthy tissues. 

The mathematical model of the problem is as follows: 
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N
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In (2), 
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j J
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

 =    

 is a normalized phi-function for iC  and *T  where * 3 \ intT T= R , Ni I [16,19], with the 

inequality 2( )i iu d   ensuring placement of iC  within T , not close 2d  to the frontier of T . Here,

( )p

ij iu  is a normalized phi-function for iC  and jT , mj J . Meanwhile, the inequality 

1( , )ij i ju u d   establishes that the distance between iC  and jC , Ni j I   is not less than 1d .  

The exact number of capsules that can be placed within under the given T  the given minimum 
allowed distances 1d  and 2d  is initially unknown. However, an upper estimate can be made by 

analyzing the ratio of the volumes of the cylinders to the volume of T .  
According to the typology of Cutting and Packing Problems [23] the problem relates to  

Identical Item Packing Problem. Therefore, to obtain a solution to the problem, a sequential addition 
scheme [24] is typically used, also known as block optimization [25]. 

The key point is constructing normalized phi-functions ( )i iu  and ( , )ij i ju u , whose values give 

the distance between the cylinders and from the cylinders to the boundary of T .  An additional layer 
of complexity arises from the presence of orientation angles, which specify the orientation of the 
cylinders. 

In this study, cylinders are the discretized using convex polyhedra which allows for more 
straightforward mathematical modeling of the problem constraints. 



4. Polyhedral packing problem 

4.1. Polyhedral approximation for cylinder 

First of all we define the coordinates of vertices of the polyhedron ( )i iP u  corresponding to the 

cylinder  ( )i iC u . Let 
an  be a number of planes (polygons) discretizing the lateral surface of ( )i iC u . 

Then coordinates of vertices can be calculated as 
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where cos ,  sin ,  c c c

j i j j i j j ix x r y x r z z h = + = − =  , 1,2,..., aj n= . 

Values c

jx , c

jy  and c

jz   are specified in the eigen cylindrical coordinate system where 

2( 1) /j aj n = − , 1,2,..., aj n= . In this way, the lateral surface of each cylinder is discretized using 

an  quadrilaterals with pairwise adjacent edges and two polygons with an  vertices each are used to 

discretize the top and bottom bases of the cylinder (Figure 1). 

 

Figure 1: Illustration of a discretized cylinder. 

The discretization of cylinders by polyhedra requires formulating the problem of packing convex 
polyhedra within a given region. To transition from cylinders to polyhedra, phi-functions are 
necessary for handling interactions between two convex polyhedra [20]. 

To solve problem (1)  (3) we introduce a vector 1 2( , ,..., )Ng g g g=  of homothety coefficients for 

the polyhedra ( ),i i NP u i I  as described in [26]. In what follows, ( )i iP u  with the homothety 

coefficient ig   is denoted as ( , )i i iP u g , Ni I . Then, the expression (3) is written in the form  

 10

1: ( , ) 0, ( , , , ) ,  N

i i i ij i j i j NG u u g u u g g d i j I=       R   

where the inequality 1( , , , ) 0ij i j i ju u g g d −   ensures that ( , )i i iP u g  and  ( , )j j jP u g  placed at the 

distance 1d  while the inequality ( , ) 0i i iu g   guarantees  containment of ( , )i i iP u g  within T , 

maintaining the minimum allowed  distance 2d  from the boundary. 

To solve the problem of packing convex polyhedra, one can use the strategy proposed in [27]. 
The accuracy of cylinder discretization into polyhedra leads to polyhedra with many faces, 

significantly increasing the dimensionality of problem (1)  (3). Therefore, it is necessary to balance 
the required accuracy of the solution with its computational complexity. 



4.2. Solution strategy 

To reduce time and computational costs, the solution to the polyhedron placement problem can 
be divided into several stages. 

Strategy for solving the problem. 
Step 1. Assess the quantity n , which guarantees that ( ),  i i nP u i I  can be placed in T . 

Step 2. Set : 1n n= + . 
Step 3. Set : (0.01,0.01,...,0.01)g = . 

Step 4. Randomly generate a vector v ,  ensuring 
iv T . 

Step 5. Randomly generate vectors ( , )i i i  = , 
ni I , 0 2 , 0 2i i       . 

Step 6. Fix the values of the vectors ( , )i i i  = , setting them as constants.  

Step 7. Form the auxiliary problem 

* max
n

i

i I

g
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Step 8. If * n = , then return to Step 2. 

Step 9. Treat the vector values ( , )i i i  = , ni I , as variables and solve the problem 

* max
n

i

i I

g





=  s.t. ( , )u g Q =  , (6) 
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Step 10. If * n = , then return to Step 2. 

Step 11. An approximate solution to problem (1) is taken to be * : 1n n= − .  

4.3. Special decomposition 

To find local extrema of the nonlinear programming problems (4), (5) and (6), (7), a dedicated 
decomposition has been developed. This method significantly reduces computational costs by 
decreasing the number of nonlinear constraints involved in the optimization process.  

The core idea is to solve the original problem as a sequence of subproblems, each defined over a 
restricted subset of the feasible region. At each iteration, the movement of each capsule is constrained 
by introducing additional constraints that confine it to an individual rectangular container, a 
subregion of the overall placement area. These containers are dynamically adjusted based on the 
current solution.  

This restriction serves two main purposes. Firstly, it reduces the dimensionality of the feasible 
region, making the subproblem easier to solve. Secondly, it allows us to omit certain non-overlapping 
constraints between capsule pairs whose containers do not intersect. Since these capsules are 
guaranteed not to overlap within their respective containers, the corresponding nonlinear 
inequalities can be safely excluded from the subproblem.  

After solving a subproblem, the algorithm checks whether any of the containers begin to intersect. 
If so, the previously excluded constraints between the corresponding capsule pairs are reintroduced 
in the next subproblem. This dynamic constraint management ensures that only relevant constraints 
are considered at each step, significantly improving computational efficiency.  

The local extremum found in each subproblem is used as the starting point for the next iteration. 
This iterative refinement continues until convergence is achieved.  



5. Computational experiments 

In this section, we present the computational experiments conducted to evaluate the performance of 
the developed intelligent system. To assess its effectiveness, several test cases were generated based 
on real brachytherapy treatment data.  For solving nonlinear programming problems, the free solver 
IPOPT [28], which is based on the interior point method, was used. All experiments were performed 
on a personal computer with the following configuration: Intel Core i5-5300U CPU (2 cores, 2.30 
GHz); 8 GB RAM; Windows 10 Pro 64-bit operating system. 

Brachytherapy capsules are known to vary in size depending on the radioisotope and application 
[14,15,29]. Cylindrical capsules are typically 0.5 mm to 1 mm in diameter and 3 mm to 5 mm in 
length. The number of capsules needed depends on the size and location of the tumor. For instance, 
prostate cancer treatment may involve placing between 40 and 100 capsules. Tumor sizes treated 
with brachytherapy vary: prostate tumors range from 2 cm to 5 cm, gynecological tumors from 1 cm 
to 4 cm, and breast tumors from 1 cm to 5 cm.  

The minimum allowable distance between brachytherapy capsules is typically 3 mm, while the 
distance from the capsules to the tumor boundary is generally 1.5mm. This spacing helps ensure 
uniform radiation dose distribution and avoids overlapping radiation zones, which contributes to 
effective tumor treatment [30]. 

The sizes of the placement area were also chosen based on existing treatment practices. Distances 
were varied in the range from 0 to 3 mm different clinical 
cases. A rectangular parallelepiped was chosen as the placement area; however, the system is 
compatible with any convex polyhedron and can be extended to support non-convex geometries as 
well. 

Example 1. The metric characteristics of the cylindrical capsules are radius 0.5r = and half-height 
1.5h = . The placement area is the rectangular parallelepiped with width 20.0014w = , length 
15.505l = , and height 18.0477h = . The minimum allowable distance between capsules is 1 3d =  

while one from capsules to the tumor boundary is 2 1.5d = . A total of 40 capsules were placed. The 

computation time was about 5 minutes. An illustration of the placement is shown in Figure 2.  

 

Figure 2: Illustration of placement for 40 capsules at minimal admissible distances 1 3d = and 

2 1.5d = . 

Example 2. The metric characteristics of the cylindrical capsules are: 0.5r = , 1.5h = . The 
placement area is a rectangular parallelepiped with  12.254w = , 14.2557l = , 12.2075h = . The 
minimum allowable distance between capsules is 1 1d = , and the minimum distance from capsules to 

the tumor boundary is 2 0.5d = . A total of * 100n =  capsules were placed. The computation time 

was about 65 minutes. An illustration of the placement is shown in Figure 3.  



 

Figure 3: Illustration of placement for 100 capsules at minimal admissible distances 1 1d = mm and 

2 0.5d = . 

Example 3. The capsules parameters are: 0.5r = , 1.5h = . The placement area dimensions are: 
5.0694w = , 7.1627 l = , 4.938h = . The distances are:  1 2 0d d= = . A total of 40 capsules were 

placed. The computation time was about 4 minutes. An illustration of the placement is shown in 
Figure 4.  

 

Figure 4: Illustration of placement for 40 capsules at minimal admissible distances 1 2 0d d= = . 

Example 4. The capsule and placement area parameters are: 0.5r = , 1.5h = , 23.0538w = , 

29.3647l = ,  22.5989h = , 1 3d = , 2 1.5d = . A total of * 100n =  capsules were placed. The 

computation time was about 73 minutes. An illustration of the placement is shown in Figure 5.  
The number of capsules has a significant impact on both the computation time and the complexity 

of the placement process. While the system efficiently handles varying quantities, larger numbers of 
capsules naturally require greater computational resources. Additionally, the inter-capsule distance 
directly influences how many capsules can be accommodated within a given tumor volume. Smaller 
distances enable denser packing, which may enhance radiation dose distribution and overall 
treatment effectiveness. The -capsule 
distances ranging from 0 to 3 mm, demonstrating its flexibility in meeting diverse clinical 
requirements. 



 

Figure 5: Illustration of placement for 100 capsules at minimal admissible distances 1 3d =  and 

2 1.5d = . 

The system dynamically adjusts the number and spatial arrangement of capsules based on the 
specific characteristics of each tumor, making it applicable to a wide range of cancer types. By 
employing packing algorithms, it ensures uniform radiation dose distribution while avoiding 
overlapping radiation zones. This spatial optimization contributes to effective tumor treatment. 

and without spacing constraints, confirming its robustness and adaptability. 
Although a rectangular parallelepiped was used as the placement area in the experiments, the 

system is designed to operate with any convex polyhedron and can be extended to non-convex 
geometries. This geometric flexibility enhances its applicability across various anatomical structures 
and clinical scenarios. 

potential, clinical implementation requires careful validation and calibration of model parameters. 
The current approach is based on idealized geometric assumptions. In real-world clinical settings, 
factors such as tissue heterogeneity, anatomical variability, and patient-specific constraints must be 
taken into account to ensure safe and effective treatment planning. 

6. Conclusion 

The intelligent system for planning brachytherapy treatment demonstrates significant potential in 
enhancing the precision and efficiency of treatment. It ensures optimal placement of radioactive 
capsules, achieving the required radiation dose in the tumor while minimizing the impact on healthy 
tissues. Advanced mathematical programming and automation enhance both the precision and 
efficiency of the treatment process, while also reducing planning time, which is critical for patient 
care. icularly the use of normalized phi-functions and 
polyhedral approximations, allows it to adapt to complex geometric constraints and optimize capsule 
arrangements effectively. This formalization not only improves computational efficiency but also 
ensures reproducibility and scalability. Future research should focus on developing more efficient 
methods for constructing phi-functions. These functions are crucial for accurately modelling the 
interactions between capsules and ensuring optimal placement within the tumour. Improved phi-
functions can enhance the precision of the placement algorithm, leading to better treatment 
outcomes. Incorporating advanced optimization techniques, such as machine learning and artificial 
intelligence, can further improve the efficiency and accuracy of the packing algorithm. These 
techniques can help in dynamically adjusting the placement parameters based on real-time data, 



ensuring optimal dose distribution. Although the current model is based on idealized geometric 
assumptions, it provides a robust foundation for future clinical integration. In real-world 
applications, factors such as tissue heterogeneity, anatomical variability, and patient movement can 
significantly affect treatment accuracy. Future work will focus on incorporating these complexities 
by introducing additional constraints and parameters into the optimization model. For example, 
directional radiation emission can be modeled by constraining capsule orientation, and dose control 
can be integrated through radiobiological modeling. These enhancements can be developed in 
collaboration with clinical experts to ensure practical relevance and safety.  
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