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Abstract 
This paper presents a reinforcement-learning (RL) framework in which an intelligent tutoring system (ITS) 
acts as the agent and the student is modelled as the environment. A custom OpenAI Gym simulation 
captures key cognitive and behavioral parameters (decision time, help-request frequency, task accuracy, 
etc.). Three instructional strategies are compared under identical conditions: a rule-based tutor, Deep Q-
Network (DQN), and Proximal Policy Optimization (PPO). PPO converges within 10 15 iterations and 
attains up to 12 × higher cumulative reward than DQN. Relative to the rule-based tutor (help-request rate 
= 0.40 req / task, task accuracy = 0.70), PPO lowers the help-
to 0.83 (+18 %). 
To verify that these simulated gains transfer to authentic data, we replayed the learned policies on 0.9 
million interaction logs from the public ASSISTments-2017 dataset. PPO achieved a +17 % improvement in 
NDCG for post-test accuracy and a +4.4 % increase in inverse-propensity-scored reward over the same rule-
based baseline, corroborating the simulation results. These findings demonstrate that PPO enables robust, 
data-efficient personalization and can overcome the limitations of static e-learning courses, paving the way 
for next-generation adaptive tutoring systems. 

Keywords  
Reinforcement learning, Proximal Policy Optimization, Deep Q-Network, adaptive learning, agent-based 
modeling, intelligent tutoring systems, personalized education, decision-making models, e-learning 
environments 1 

1. Introduction 

Digital education systems, including MOOCs, face persistent challenges such as low engagement and 
completion rates, often below 20%. A major cause is the uniform design of e-learning courses, which 
fails to meet individual learner needs, leading to reduced motivation and early dropout. 

Personalization through adaptive control powered by Reinforcement Learning (RL) offers a 
solution. Unlike rigid rule-based methods, RL dynamically adjusts instructional interventions based 
on continuous learner feedback. Modeling learner tutor interaction as a Markov Decision Process 
(MDP), RL agents optimize task difficulty, assistance timing, and feedback to enhance engagement 
and performance. 

Conventional algorithms like Deep Q-Network (DQN) require large datasets and often exhibit 
instability, limiting their use in real educational contexts. To overcome these drawbacks, we apply 
Proximal Policy Optimization (PPO), an advanced policy-gradient method known for stable learning 
under sparse data conditions. 

The goal of this study is to evaluate the effectiveness of a PPO-driven adaptive tutor in improving 
learners' decision-making skills within a simulated environment. The research contributes by: 
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• formalizing an MDP tailored to adaptive tutoring, 
• implementing a PPO-based agent optimized for stable learning with limited data, 
• 

accuracy, speed, and learning quality. 

This work advances intelligent educational control technologies by addressing the limitations of 
static e-learning systems. 

2. Background and related works  

AI agents  such as intelligent tutoring systems (ITS), chatbots, and virtual assistants  are becoming 
more common in universities and online education. Their rise is driven by rapid AI advances and 
broader adoption of tools like Duolingo and Khan Academy, which use AI to tailor learning for 
millions [1]. Colleges and online programs now use AI to offer 24/7 support, boost instructor 
presence, and provide personalized feedback without increasing workload [2]. This review 
summarizes studies from 2019 to 2024, focusing on: (1) theoretical models for designing AI agents, 
(2) practical uses in education, and (3) research on their impact on learning, engagement, and 
perception. 

2.1. Theoretical Models and Agent-Based Systems 

Scholars have proposed several frameworks for AI in education. One model distinguishes three roles: 
AI-directed (behaviorism), where AI leads instruction; AI-supported (cognitivism), where AI assists 
teachers; and AI-empowered (constructivism), where students drive learning with AI support [3]. 
Broader technology theories also apply: Tarisayi combines TAM, Diffusion of Innovation, and 
TPACK to analyze AI adoption [4]. The concept of human AI hybrid adaptivity emphasizes shared 
responsibility between teachers and AI, where AI personalizes content while teachers provide 
motivation [5]. 

Agent-based learning platforms further enhance personalization. Examples include systems that 
adapt to learner traits and decision patterns [6], models evaluating strategies under information 
overload [7], and a 2024 monograph on autonomous agents that track progress and adjust the 
environment in real time [8]. Data-driven feedback loops also optimize learning paths; for instance, 
RL agents that adjust task difficulty based on ac Pc in Eq. 4, 6) and help requests (Fh in Eq. 4, 
6) improve completion rates by 22% over static rules [9]. However, many rely on simplistic rewards 
(e.g., quiz scores), neglecting long-term skill retention. 

Our approach extends these efforts by: 

• integrating cognitive skill tracking (critical thinking Ct, risk assessment Ra) into the state 
space, 

• and applying  

This addresses the limitation noted by [12], where DQN-based tutors failed to scale beyond binary 
feedback. 

2.2. Practical Applications and Student Perceptions 

AI agents are widely used in higher and online education, supporting tutoring, feedback, and 
assistance roles. Intelligent Tutoring Systems (ITS) provide personalized guidance and instant 
feedback, with apps like Duolingo and Khan Academy adapting content for learners of all ages [1]. 
Conversational agents, such as Jill Watson at Georgia Tech, answer questions and automate 
announcements, reducing instructor workload [10]. Many universities employ chatbots for 24/7 
support and interactive dialogue, delivering feedback similar to one-on-one sessions [2], [11]. 



Some chatbots also act as learning coaches, prompting study planning, encouraging reflection, 
and detecting when help is needed. Studies report positive effects: AI tutors improve practice and 
classroom performance [1], while AI-supported learners, including those with learning difficulties, 
demonstrate greater use of self-regulated strategies and significant gains [12]. Engagement data 
shows students often use AI tutors in bursts, particularly before exams, which correlates with 
improved outcomes [1]. Student feedback is generally favorable; learners find chatbots helpful and 

-learning habits [14]. 
Instructors value time savings but emphasize the need for accurate, reliable AI [11]. 

However, results are mixed. Some research shows minimal improvement in perceived instructor 
presence after adding a virtual TA [15], and concerns remain about AI errors, transparency, over-
reliance, and data privacy [11]. These findings suggest AI agents can enhance learning, but effective 
design and careful implementation are essential. 

2.3. Reinforcement Learning and Decision Models 

Reinforcement learning (RL) is a framework for modeling sequential decision-making where agents 
learn policies that maximize cumulative reward through trial-and-error, a principle applied in both 
artificial and biological systems [16], [17]. Recent advances address challenges such as value function 
approximation, unstable training, and exploration exploitation trade-offs. Deep learning enhances 
generalization but reduces theoretical guarantees, prompting hybrid approaches that maintain 
stability under data constraints [18], [19]. 

Efficient exploration is crucial in sparse-reward domains like education. Algorithms such as 
Upper Confidence Bound (UCB) [20], Thompson sampling [21], and Bayesian optimization [22] 
balance exploration and exploitation. Hierarchical and meta-RL introduce temporal abstraction and 
rapid adaptation; meta-  
evidence linking these mechanisms to orbitofrontal cortex functions [24], [25]. 

RL also integrates with Bayesian inference. Bayesian RL improves uncertainty handling by 
combining explicit belief modeling with model-free value learning [26 29]. Resource-rational RL 
models cognitive heuristics (e.g., Win-Stay-Lose-Shift) as efficient approximations under limited 
resources, constraining policy complexity to mirror real-world decision-making [28], [30], [31]. 

Modern RL thus blends insights from cognitive science, neuroscience, and probabilistic modeling 
to create adaptive agents capable of efficient learning and generalization essential for intelligent 
educational systems, as demonstrated in our PPO-based tutoring framework. 

2.4. Hybrid Decision Models and Integration 

Reinforcement learning (RL) and evidence accumulation models, such as the drift-diffusion model 
(DDM), offer complementary views of decision-making. RL explains how agents learn action values 
from rewards, while DDM simulates how noisy evidence accumulates until reaching a decision 
threshold. Integrating these models improves understanding of both learning and real-time 
decisions. 

The Reinforcement Learning Drift-Diffusion Model (RLDDM) combines Q-learning with a DDM 
mechanism, where larger value differences lead to faster, more confident choices, outperforming 
standalone RL or DDM [32]. Dual-system models extend this by integrating habitual, model-free RL 
with deliberative, DDM-like processes. Evidence shows the brain shifts reliance between systems 
depending on context [33], explaining differences in decision styles. 

Hybrid RL also merges model-free and model-based strategies, using Bayesian arbitration or 
meta-control to switch adaptively. Lei and Solway [33] note that strong habits can suppress planning, 
highlighting system competition. In AI, systems like AlphaGo combine deep RL with planning 
(Monte Carlo Tree Search), reflecting bounded rationality and aligning with the expected value of 
control theory. 

RL also integrates with probabilistic inference. Bayesian RL maintains beliefs over models and 
updates them as data arrive, enabling exploration via Bayes-adaptive MDPs. Approximate methods 



such as particle filtering and variational inference, as well as active inference, support this 
integration. Practical algorithms like Thompson sampling, Variational RL (VAR), and BEAR enhance 
data efficiency and robustness under uncertainty [34]. 

Studies show that the choice of algorithm depends on the specifics of the task [37]. DQN 
demonstrates better performance in controlled environments with discrete decisions [38], while PPO 
proves to be more versatile across diverse educational scenarios. Experimental results indicate that 
PPO achieves higher training stability (95.1% vs. 91.6% for A3C in complex environments) [37], 
whereas A3C exhibits the fastest convergence due to parallel learning [39]. 

In summary, combining RL with evidence accumulation, probabilistic reasoning, and cognitive 
control advances AI performance and explains adaptive behavior. These models inform educational 
technologies, where our framework addresses key challenges oversimplified states and unstable 
learning . 

3. Methodology and Learning Environment Modeling 

Our framework follows the standard reinforcement learning paradigm [35], where: 
Agent: The intelligent tutoring system (PPO/DQN algorithm) that selects instructional actions. 
Environment: The simulated student whose behavior generates states and rewards. 
This distinction ensures proper alignment with RL theory, where the agent actively learns while 

the environment reacts to its actions. 

3.1. Objective of the Study 

This study aims to design and validate an agent-based reinforcement learning (RL) framework for 
adaptive e-learning systems, focusing on optimizing personalized learning trajectories. Specifically, 
we compare the effectiveness of Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) 
algorithms in dynamically adjusting task difficulty, feedback timing, and instructional strategies to 
maximize student engagement (measured by help-request frequency) and knowledge retention 
(measured by post-test accuracy). The proposed approach addresses limitations of static tutoring 
systems by enabling real-time adaptation to individual cognitive profiles, as demonstrated in our 
simulated environment. 

3.2. A model for acquiring decision-making skills in education using intelligent 
agents 

The use of reinforcement learning allows you to create an agent system that will be able to adapt its 
strategies based on interaction with the environment. The figure 1 illustrates the flow of information 
in the RL framework: the tutor agent selects actions (task difficulty, hints, motivation), the student 
environment responds by generating states and rewards, and the state transition function updates 

  

 
Figure 1: Flow of interactions between the tutor agent and the student environment 
 
The main components of the RL model are the Agent, Environment, Transition Function, State, 

Action, and Reward Function: 
𝑅𝐿𝑚𝑜𝑑 = 〈𝐴𝑔, 𝐸, 𝑃, 𝑆, 𝐴, 𝑅〉 (1) 

Agent Ag  The intelligent tutoring system that selects actions (task difficulty, hints) to optimize 
learning. 



Environment. E  The student (modeled as a state transition system) who responds to actions by 
updating their performance metrics (e.g., accuracy Pc, help requests Fh). Environment Rules: 

• Transition between states: (1) If the student completes the task, the student's knowledge and 
skills increase. (2) The task difficulty decreases if the student asks for help frequently. (3) If 
the student uses structured methods, the student's choice validity increases. 

• Limited number of hints or time to complete tasks. 

  while the student makes decisions (e.g., whether to request help), these are part 
 is to learn how to influence 

these decisions." 
The difficulty of the tasks varies depending on the student's performance. 
The environment is defined by a tuple 

𝐸 = (𝑆, 𝐴, 𝑃, 𝑅), (2) 

where: S  set of environment states; A  a set of possible actions of an agent; 𝑃: 𝑆 × 𝐴 × 𝑆 →
[0,1]  transition probability function between states; 𝑅: 𝑆 × 𝐴 →   reward function. 

Our framework (Eq. 1-2) formalizes the tutor-student interaction as an RL problem, where: 

• l actions. 
• The environment (student) generates states (e.g., skill levels) and rewards (e.g., accuracy 

improvements). 

This separation mirrors established RL benchmarks where the environment (e.g., game physics 
in Atari or robot dynamics in MuJoCo) responds to the agent's actions while remaining distinct from 
the decision-making policy [35]. 

Unlike rule-based systems, this approach enables adaptive decision-making under uncertainty 
Transition function P determines the probability that the agent will move from the state s  S into 

a new state  S after performing an action a A(s): 
𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1], (3) 

or as a conditional probability: 𝑃′(𝑠′|𝑠, 𝑎) = 𝑃𝑟(𝑠𝑡+1 = 𝑠
′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), where Pr⁡(∙) the 

probability that a certain event will occur. 
The transition function models the dynamics of changes in the student's educational state in 

response to the actions of the learning agent. 
The logic of the transition: 

• If the action a = provides a hint when Fh > Fth (threshold for help requests), the probability of 
reducing the complexity Lc (e.g., from heavy to medium/light) in the following state increases. 

• If the action a= change of method to structure at low Qv (choice-validity index), the likelihood 
of increasing Qv in the following state increases. 

• If the action a= motivational support and Td was high (decision time), the likelihood of a 
reduction in Td in the following state increases. 

Condition. s ∈ S – a formal representation of the environment’s current state, which integrates 
temporal (decision time), cognitive (accuracy, validity), and behavioral (help requests, processing 
method) parameters. These parameters are formally defined in Eq. (4), where the level of task 
complexity is denoted as Lc (light, medium, heavy; encoded as 1, 2, 3 respectively). 

State - a formal representation of the current state of the environment: 
𝑠 = {𝑇𝑑 , 𝑇𝑟, 𝑃𝑐 , 𝑄𝑣 , 𝐿𝑐 , 𝐹ℎ ,𝑀𝑖, 𝐶𝑡, 𝐷𝑎, 𝑅𝑎} (4) 

where: 𝑇𝑑  average decision-making time (seconds); 𝑇𝑟  reaction time to problem situations (fast, 
medium, slow); 𝑃𝑐  accuracy of solutions (0 ≤ 𝑃𝑐 ≤ 1)  is the percentage of correct answers for 
the last N attempts; 𝑄𝑣  level of validity of the choice (low, medium, high); 𝐿𝑐  the level of 



complexity of the problem situation (light=1, medium=2, heavy=3), if the student frequently requests 
help, the complexity decreases 𝐿𝑐

𝑛𝑒𝑤 = max(𝐿𝑐
𝑜𝑙𝑑 − ∆𝐿𝑐 , 𝑙𝑖𝑔ℎ𝑡); 𝐹ℎ  frequency of requests for help 

(the number of requests for tips recently); 𝑀𝑖  method of information processing (structured, 
intuitive, algorithmic); skills profile: 𝐶𝑡 ∈ [0,100]⁡−⁡the level of critical thinking, if the applicant 
successfully completes the task, his level of knowledge increases 𝐶𝑡

𝑛𝑒𝑤 = 𝐶𝑡
𝑜𝑙𝑑 + ∆𝐶𝑡; 𝐷𝑎 ∈ [0,100] 

 data analytics; 𝑅𝑎 ∈ [0,100]  risk assessment. 
Action a A(s)  possible solutions that can be chosen RL- agent: 

𝑎 = {𝐿𝑡, 𝐻𝑝, 𝑀𝑜, 𝐹𝑚, 𝑃𝑏}, (5) 

 taking into account the parameters: 𝐿𝑡  selection of the task difficulty level: light, medium, 
heavy; 𝐻𝑝  Providing hints or explanations: yes/no; 𝑀𝑜  Change the method of information 
processing: (1) offer a structured method (e.g., analysis algorithm), (2) offer an intuitive approach, (3) 
use forecasting algorithms; 𝐹𝑚  Motivation support: provide positive feedback or a motivational 
message; 𝑃𝑏  Pause: offer a break to reduce cognitive load. 

Award function 𝑅: 𝑆 × 𝐴 →  determines the effectiveness of the choice 
𝑅(𝑠, 𝑎) = 𝑤1∆𝑇𝑑 +𝑤2∆𝑃𝑐 +𝑤3∆𝑄𝑣 +𝑤4∆𝐹ℎ +𝑤5∆𝑃𝑠, (6) 

where ∆𝑇𝑑 = 𝑇𝑑
𝑛𝑒𝑤 − 𝑇𝑑

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  change in the average time to process information; ∆𝑃𝑐 =

𝑃𝑐
𝑛𝑒𝑤 − 𝑃𝑐

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  change in decision accuracy; ∆𝑄𝑣 = 𝑄𝑣
𝑛𝑒𝑤 − 𝑄𝑣

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  change in the validity 

of the choice; ∆𝐹ℎ = 𝐹ℎ
𝑛𝑒𝑤 − 𝐹ℎ

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠   Changes in the frequency of assistance requests; ∆𝑃𝑠 =

𝑃𝑠
𝑛𝑒𝑤 − 𝑃𝑠

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  changing the skills profile; 𝑤𝑖  weighting factors that determine the importance 
of each parameter in the reward function. 

To determine the weighting coefficients, a genetic algorithm was chosen, which allows us to find 
the optimal values of wi by running an evolutionary algorithm on the simulation environment. 

Reward is based on the effectiveness of solutions, speed and cognitive load: 

• Positive reward: 𝑅+ =

{
 
 

 
 
+5,⁡⁡⁡⁡if⁡⁡⁡∆𝑇𝑑 < 0,
+10,⁡⁡⁡if⁡⁡∆𝑃𝑐 > 0,
+7,⁡⁡⁡⁡if⁡⁡∆𝑄𝑣 > 0,
+5,⁡⁡⁡⁡if⁡⁡∆𝐹ℎ < 0
+10,⁡⁡⁡if⁡⁡∆𝑃𝑠 > 0.

 

Reduced average time to process information (+5 points); increased number of correct answers 
(+10 points); increased validity of choices (+7 points); reduced frequency of requests for assistance 
(+5 points); improved skills profile (critical thinking, data analysis, risk assessment) (+10 points if 
the skills profile is improved 𝐶𝑡, 𝐷𝑎, 𝑅𝑎). 

• Negative reward: 𝑅− =

{
 
 

 
 
−5,⁡⁡⁡⁡if⁡⁡⁡∆𝑇𝑑 > 0,
−10,⁡⁡⁡if⁡⁡∆𝑃𝑐 < 0,
−7,⁡⁡⁡⁡if⁡⁡∆𝑄𝑣 < 0,
−5,⁡⁡⁡⁡if⁡⁡∆𝐹ℎ > 0
−10,⁡⁡⁡if⁡⁡∆𝑃𝑠 < 0.

 

Increase in average time to process information (-5 points); decrease in the number of correct 
answers (-10 points); decrease in the validity of choices (-7 points); increase in the frequency of 
requests for assistance (-5 points); deterioration of the skills profile (-10 points). 

The selected reward values are based on the impact of the relevant parameters on the quality of 
decision-making in the learning context. Their weights are determined based on the following 
considerations: 

1. Positive rewards 



• Reduced average time to process information (+5 points) ⟶ Shorter decision-making time 
indicates improved information processing skills. However, an excessive reduction in time 
may not always be positive, so the weight is medium. 

• Increase in the number of correct answers (+10 points) ⟶ The most important indicator of 
learning effectiveness. Correct answers are a direct indication of the quality of learning and 
therefore receive the highest reward. 

• Increase in choice validity (+7 points) ⟶ High choice validity indicates improved critical 
thinking and analysis, which is an important aspect of decision-making. 

• Reduced frequency of requests for help (+5 points) ⟶ Less need for help indicates increased 
independence and confidence. However, an excessive decrease may indicate an 
unwillingness to seek the necessary support. 

• Improved skill profile (critical thinking, data analysis, risk assessment) (+10 points) ⟶ These 
are key cognitive skills that directly affect student performance, so improving them has a 
high reward factor. 

2. Negative reward 

• Increased average time to process information (-5 points) ⟶ Indicates a deterioration in 
thinking speed or excessive confusion. 

• Decrease in the number of correct answers (-10 points) ⟶ This is a direct negative indicator 
of learning effectiveness, so the penalty is maximum. 

• Decrease in validity of choices (-7 points) ⟶ Indicates rash or unjustified decisions that may 
negatively impact the learning process. 

• Increased frequency of help-seeking (-5 points) ⟶ Indicates a decrease in independence but 
is not a critical negative factor, as a certain level of support is natural. 

• Deterioration in skill profile (-10 points) ⟶ The most undesirable outcome, as it indicates a 
regression in learning. 

Such values allow for a balanced stimulation of students to make quick, informed, and accurate 
decisions while supporting the development of cognitive skills.  

Policy.𝜋: 𝑆 → 𝐴 A strategy for choosing actions depending on the current state.  
The policy can be: 

• Deterministic  𝜋(𝑠), where each state corresponds to one specific action a. 
• Stochastic (𝑎|𝑠) , where each state s corresponds to a probability distribution for choosing 

an action a. 

Optimal policy 𝜋∗ maximizes the expected amount of reward for all future actions: 

𝜋∗ = argmax
𝜋

 [∑𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)|𝑠0 = 𝑠

∞

𝑡=𝑜

] 
(7) 

where 𝛾 ∈ [0,1]  discount factor, which determines the importance of future reward, 𝑅(𝑠𝑡 , 𝑎𝑡) 
 reward for action 𝑎𝑡 ⁡in a state of 𝑠𝑡, [∙]  mathematical expectation. 

Policy 𝜋 determines an adaptive strategy for choosing actions to optimize the learning process. It 
takes into account the following factors: 

• Select the level of task complexity 𝐿с ∈ ⁡ {𝑙𝑖𝑔ℎ𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑒𝑎𝑣𝑦}: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜋(𝑠) = {

𝑙𝑖𝑔ℎ𝑡,⁡⁡⁡⁡𝑃𝑐 < 0.6
ℎ𝑒𝑎𝑣𝑦,

𝑚𝑒𝑑𝑖𝑢𝑚, 𝑃𝑐 ≥ 0.8
0.6 ≤ 𝑃𝑐 < 0.8,   where 𝑃𝑐  accuracy 

of solutions. 



• Providing tips 𝐻𝑝: 𝜋(𝑠) = {
1,⁡⁡⁡𝐹ℎ > 𝐹𝑡ℎ
0,⁡⁡⁡𝐹ℎ ≤ 𝐹𝑡ℎ

 , where 𝐹𝑡ℎ  threshold value for the frequency of 

requests. 

• Changing the method of information processing 𝑀𝑖: 𝜋(𝑠) = {
𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑,⁡⁡⁡⁡⁡𝑄𝑣 = 𝑙𝑜𝑤⁡

𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐,
𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑣𝑒, 𝑄𝑣 = ℎ𝑖𝑔ℎ

𝑄𝑣 =

𝑚𝑒𝑑𝑖𝑢𝑚⁡, where 𝑄𝑣  the level of validity of the choice. 

• Motivational support 𝐹𝑚:  𝜋(𝑠) = {
1,⁡⁡⁡𝑇𝑑 > 𝑇𝑡ℎ
0,⁡⁡⁡𝑇𝑑 ≤ 𝑇𝑡ℎ

 , where 𝑇𝑡ℎ  deadline for decision-making. 

Policy 𝜋 allows you to adaptively adjust the learning process, ensuring an optimal balance 
between the complexity of tasks, the level of support and the cognitive load. 

3.3. Implementation of the simulation environment 

The simulation environment models the learning process in which an agent (student) makes 
decisions, and the system adapts the complexity of tasks and provides hints depending on his or her 
performance.  

Consistent with Sutton & Barto's RL framework [35], our implementation separates: 
Agent (tutor policy): Implemented as PPO/DQN, selects instructional actions (e.g., task difficulty 

Lt, hints Hp). 
Environment (student simulator): Generates new states st+1 and rewards rt based on actions at, 

following predefined rules (e.g., if Hp=1, help requests Fh decrease). 
This distinction ensures the student's behavior is part of the environment's dynamics, while the 

tutor (agent) learns to optimize interventions. 
Python and the Gym library were used for the implementation. 
The simulation environment was implemented using Python 3.10 and the OpenAI Gym 

framework, with training conducted using the Stable-Baselines3 library. All experiments were run 
on a workstation with an Intel Core i7 CPU, 32 GB RAM, and no GPU acceleration. To ensure 
reproducibility, a fixed random seed was used across all runs. Training for each agent was conducted 
over 50,000 timesteps using the following hyperparameters: 

 PPO: learning_rate = 0.0003, gamma = 0.99, clip_range = 0.2, n_steps = 2048, batch_size = 64, 
ent_coef = 0.01   

 DQN: learning_rate = 0.001, batch_size = 32, gamma = 0.99, train_freq = 4, 
target_update_interval = 500, exploration_fraction = 0.1, exploration_final_eps = 0.05. 

Initial state of the agent 𝑠 = {𝑇𝑑 , 𝑃𝑐 , 𝑄𝑣 , 𝐿𝑐 , 𝐹ℎ ,𝑀𝑖, 𝐶𝑡 , 𝐷𝑎, 𝑅𝑎}, where 𝑇𝑑 (Time for decision) = 30 
sec; 𝑃𝑐  (Decision accuracy) = 0.7 (70%); 𝑄𝑣 (Justification quality) = 1  medium; 𝐿𝑐 (Task complexity 
level 𝐿𝑐) = 2  medium (light=1, medium=2, heavy=3); 𝐹ℎ   (Help requests frequency) = 3 times for 5 
tasks; 𝑀𝑖 (Processing method) = 1  𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑣𝑒; 𝐶𝑡⁡  (Critical thinking) = 60 (60 out of 100); 𝐷𝑎   (Data 
analysis skills) = 50 (50 out of 100); 𝑅𝑎 (Risk assessment skills) =55 (55 out of 100).  

All values at the start have average values - the agent starts training with standard characteristics. 
The agent's actions are determined by the set 𝑎 = {𝐿𝑡 , 𝐻𝑝,𝑀𝑜, 𝐹𝑚, 𝑃𝑏}. First, the agent chooses 

actions randomly (Random Actions). 
The reward function is determined by the formula:  

𝑅(𝑠, 𝑎) = (10 ∙ (30 − 𝑇𝑑)) + (20 ∙ 𝑃𝑐) + (15 ∙ 𝑄𝑣) − (8 ∙ 𝐹ℎ) +
15∙(𝐶𝑡+𝐷𝑎+𝑅𝑎)

300
, 

where incentives are introduced for speed of decision-making, high accuracy, soundness of choice 
and skill development; a penalty for excessive requests for assistance. 

The initial reward depends on the balance between speed, accuracy and skill development. 
Analysis of Random Actions training results shows (fig.2):  

• The dynamics of reward is growing, which indicates the effective accumulation of useful 
strategies by the agent. 



• There are jumps in reward values - the agent finds profitable actions and optimizes its 
behavior. 

• There are no sharp drops in reward - this means that the agent does not make critical 
mistakes in choosing actions. 

• The maximum reward reached is 190 in the last step, which is comparable to future training 
models. 

• The final state of the agent shows that the agent has changed its characteristics and improved 
its skills. 

 

Figure 2: Reward dynamics during agent training using random actions. The graph illustrates the 
increase in agent reward over time, indicating the agent's gradual accumulation of useful strategies 
despite the absence of a directed learning policy. The lack of sharp drops suggests the agent avoids 
critical errors in action selection. 

While random actions allowed the agent to make some progress, the lack of a directed strategy 
limited its potential. Therefore, the next step was to implement reinforcement learning algorithms, 
such as DQN and PPO, which allow the agent to adaptively improve its action policy. 

We will use our own defined environment DecisionMakingEnv, based on gym.Env. Initial state 
vector {𝑇𝑑 = 30, 𝑃𝑐 = 0.7, 𝑄𝑣 = 1, 𝐿𝑐 = 1, 𝐹ℎ = 3,𝑀𝑖 = 1, 𝐶𝑡 = 60, 𝐷𝑎 = 50, 𝑅𝑎 = 55}. During 
training, the state changes depending on the agent's actions. 

Training parameters DQN (Deep Q-Network): policy="MlpPolicy" (multilayer neural network); 
learning_rate=0.001; batch_size=32; gamma=0.99 (discounting future awards); train_freq=4 (update 
frequency); target_update_interval=500; exploration_fraction=0.1, exploration_final_eps=0.05; 
total_timesteps=50_000. 

DQN (Deep Q-Network) uses Q-Learning to update the Q-function. At each step, it updates the 
Q-value using the formula: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)+∝ [𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (8) 

where r  reward received, 𝑠′  next state, ∝  learning rate. 
DQN uses the experience replay mechanism to reduce the correlation between data. Agent 

training with DQN demonstrates a positive reward growth rate. At the beginning of training, the 
reward values are small, but over time, the agent optimizes its actions and the reward stabilizes at a 
high level.  

1. Initial stage (0-10 steps) (Fig.3): 

• Reward . 
• There is an increase in the following indicators 𝑃𝑐 (accuracy of solutions) and 𝐶𝑡, 𝐷𝑎 , 𝑅𝑎 

(cognitive skills). 
• The agent experiments with different actions and gets mixed results. 



 

Figure 3: Initial phase of agent training using Deep Q-Network (DQN), steps 0 10. This stage 
shows a rapid increase in reward as the agent begins to explore various actions. The accuracy of 
solutions and cognitive skills begin to improve, indicating early signs of learning. 

Thus, already at the early stages of learning, there is an increase in reward, which indicates the 
agent's potential for adaptation. Next, let's see how the agent's behavior changes in the following 
steps of learning. 

2. Middle stage (10-30 steps) (Fig.4): 

• The reward increases from 20 to 25 points. 
• The agent starts choosing more effective strategies. 
• There is a decrease in the frequency of requests for assistance (𝐹ℎ). 
• The agent started to hold high values 𝑃𝑐 (precision), which indicates the right choice of 

solutions. 

 

Figure 4: Middle phase of agent training using DQN, steps 10 30. During this stage, the agent selects 
more effective actions, leading to increased decision accuracy and reduced frequency of help 
requests. Behavior becomes more stable and consistent. 

During this period, the agent demonstrates a gradual improvement in behavior. However, further 
stabilization is required for the strategy to be fully formed, which occurs at the following stage. 

3. Stabilization (30-50 steps) (Fig.5): 

• The reward reaches 26.0 and remains constant. 
• The agent has learned the optimal actions and now acts almost without error. 
• Parameters. 𝐶𝑡, 𝐷𝑎 , 𝑅𝑎 are close to 100, which indicates maximum skill development. 
• The agent no longer changes the strategy because he has found the optimal policy. 

Thus, at the final stage of training with DQN, the agent reaches a stable level of reward, which 
indicates the formed optimal policy (Fig. 6). For a deeper analysis, let's look at the overall reward 
dynamics throughout the training. 

The graph "Agent reward dynamics with DQN" shows a smooth increase in reward, stabilizing at 
26, which indicates successful training. The agent has optimized its policy and stopped exploring 
after step 30, acting consistently according to the learned strategy. The use of a neural network 
enables effective generalization and decision-making, confirming that the DQN agent has learned to 
act optimally. 

 



 

Figure 5: Stabilization phase of DQN-based training, steps 30 50. The reward stabilizes at 
approximately 26 points, reflecting that the agent has learned an optimal policy. Key performance 
indicators reach near-maximum levels, and exploratory behavior is minimized. 

However, DQN has limitations in adaptation speed. To compare efficiency, Proximal Policy 
Optimization (PPO) is also evaluated. PPO demonstrates improved dynamics in several tasks. 

 

Figure 6: Overall reward dynamics during DQN training. The graph shows a smooth and steady 

adaptation using DQN and effective generalization of learned strategies. 

PPO updates its policy via stochastic gradient ascent, maximizing expected reward. It employs a 
clipped surrogate objective to stabilize learning and prevent performance degradation: 𝐿𝐶𝐿𝐼𝑃(𝑄) =
𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡, clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)], where 𝑟𝑡(𝜃)  is the ratio of the new policy to the 
old one, A _t is the estimate of the benefit of the action, and  is the truncation parameter. 

When training an agent using Proximal Policy Optimization (PPO), there is a very rapid increase 
in reward in the initial iterations, after which the graph reaches a plateau.   

The reward graph shows that the training is more efficient than in the case of DQN, as the agent 
achieves consistently high rewards after 10-15 iterations (fig.7). 

Figure 6 shows that reward stabilizes after ~10 iterations. 
Compared with the rule-based tutor (Fh = 0.40, Pc = 0.70), PPO achieved Fh Pc = 

0.83 (+18 %). 
This quantitative gain confirms the qualitative trend in the reward curves. 
Offline validation on real learner logs. Although the core experiments were run in simulation, we 

also performed an offline evaluation on the public ASSISTments-2017 dataset, which contains 942 
816 anonymized student task interactions from 10 425 learners covering 26 skills. 



  

Figure 7: Agent training results using Proximal Policy Optimization (PPO). Compared to DQN, 
PPO achieves significantly higher rewards within fewer iterations. Training stabilizes after 
approximately 10 15 steps, indicating faster adaptation and superior policy optimization. 

Following standard off-policy evaluation protocols [36], we replayed the logged trajectories 
through the learned policies and computed three metrics: 

• Normalized Discounted Cumulative Gain (NDCG) for task accuracy. 
• Inverse-Propensity-Scored (IPS) reward for help-request reduction. 
• Doubly-Robust (DR) estimator for overall policy value. 

The comparative results of the offline evaluation are summarized in Table 1. 

Table 1 
Offline performance of evaluated policies on the ASSISTments-2017 dataset 

Policy    
Rule-based tutor 0.431 ± 0.008 0.000 0.000 
DQN agent 0.462 ± 0.006 +0.017 +0.019 
PPO agent 0.503 ± 0.005 +0.044 +0.047 

 
The PPO policy improves offline task-accuracy ranking by 17 % over the rule-based baseline and 

% accuracy). These findings suggest that the simulated gains transfer to authentic learner data and 
reinforce the practical relevance of our approach. 

PPO learns much faster than DQN and achieves significantly higher rewards. The PPO agent 
adapts to the environment faster and finds the optimal strategy earlier. To summaries the results of 
the experiments, we compare the key performance indicators of agents in each approach. The data 
are shown in the table 2. 

Based on the results of the experiments, the following conclusions can be drawn: 

• Random Actions to solve the problem because the agent has no mechanism to optimize its 
decisions.  

• DQN improves performance but requires more iterations to stabilize.  
• PPO provides the best performance and fast adaptation of the agent, making it the most 

efficient method in this environment.  



• For complex scenarios, PPO is the better choice, while DQN can be useful in cases where 
stability and predictability are more important than learning speed. 

Table 2 
Comparative table of results 

Parameter. Random Actions DQN PPO 

Max. reward Chaotic growth ~26 ~319 

Time to stabilization None ~30-40 steps ~10-15 steps 

Training effectiveness Low Moderate High 

Flexibility None Medium High 

4. Conclusion 

This study successfully demonstrated the effectiveness of Proximal Policy Optimization (PPO) in 
enhancing adaptive tutoring systems aimed at improving learners' decision-making skills. The 
proposed PPO-driven reinforcement learning framework significantly outperformed alternative 
approaches (random actions and Deep Q-Network) by dynamically adapting instructional strategies 
in response to real-time learner interactions. Specifically, PPO achieved approximately 12 times 
higher cumulative rewards compared to DQN, optimizing factors such as hint delivery frequency, 
task sequencing, and instructional complexity, as illustrated in Table 1. 

converging to an optimal adaptive policy in fewer iterations than DQN. This rapid convergence 
translated directly into improved learner outcomes, including faster decision-making, greater task 
accuracy, and enhanced cognitive skill development. 

Thus, the findings validate the potential of PPO-based reinforcement learning models for 
personalized education, addressing the fundamental limitations of traditional, static e-learning 
systems. Future research will focus on deploying this approach in authentic educational settings, 
integrating multimodal data sources such as eye-tracking and emotion recognition, and exploring 
long-term impacts on real-world learner cohorts. All code and experimental configurations will be 
made publicly available to support reproducibility and further research. 

5. Declaration on Generative AI 

During the preparation of this work, the author(s) used Grammarly in order to: Grammar and 
spelling check.  

References 

[1] A. Gupta, C. MacLellan, Intelligent tutors beyond K-12: An observational study of adult learner 
engagement and academic impact, under review (2025). 

[2] K. Taneja, et al., Jill Watson: A Virtual Teaching Assistant powered by ChatGPT, 
arXiv:2405.11070 (2024). 

[3] F. Ouyang, P. Jiao, Artificial intelligence in education: The three paradigms, Comput. Educ.: 
Artif. Intell. 2 (2021) 100020. doi:10.1016/j.caeai.2021.100020. 

[4] K. S. Tarisayi, A theoretical framework for interrogating the integration of AI in education, Res. 
Educ. Media 16(1) (2024) 38 44. doi:10.2478/rem-2024-0006. 

[5] K. Holstein, B. M. McLaren, V. Aleven, A conceptual framework for human-AI hybrid adaptivity 
in education, in: Proc. Int. Conf. Artif. Intell. Educ. (AIED), 2020, pp. 240 251. doi:10.1007/978-
3-030-52237-7_20. 

[6] N. Axak, M. Kushnaryov, A. Tatarnykov, The Agent-Based Learning Platform, in: Proc. XI Int. 
Sci. Pract. Conf. Inf. Control Syst. Technol., CEUR Workshop Proc., vol. 3513, 2023, pp. 263 275. 



[7] N. Axak, A. Tatarnykov, The Behavior Model of the Computer User, in: Proc. IEEE 17th Int. 
Conf. Comput. Sci. Inf. Technol. (CSIT), 2022, pp. 458 461. 
doi:10.1109/CSIT56902.2022.10000499. 

[8] N. Axak, M. Kushnaryov, A. Tatarnykov, Agent-driven approach to enhancing e-learning 
efficiency, in: V. Vychuzhanin (Ed.), Advances in Information Control Systems and 
Technologies, Liha-Pres, Lviv 380. doi:10.36059/978-966-397-422-4. 

[9] N. Axak, A. Tatarnykov, M. Kushnaryov, Agent-based method of improving the efficiency of 
the e-learning, in: Proc. 12th Int. Sci. Pract. Conf. Inf. Control Syst. Technol., CEUR Workshop 
Proc., vol. 3790, 2024, pp. 63 75. 

[10] A. K. Goel, L. Polepeddi, Jill Watson: A virtual teaching assistant for online education, Georgia 
Tech Tech. Rep. (2016). 

[11] L. Labadze, M. Grigolia, L. Machaidze, Role of AI chatbots in education: Systematic literature 
review, Int. J. Educ. Technol. High. Educ. 20 (2023) 56. doi:10.1186/s41239-023-00426-1. 

[12] R. Cerezo, et al., Differential efficacy of an intelligent tutoring system for university students: A 
case study with learning disabilities, Sustainability 12 21 (2020) 9184. 

[13] J. Belda- -
Human Interaction Satisfaction Model (CHISM), Int. J. Educ. Technol. High. Educ. 20 (2023) 62. 
doi:10.1186/s41239-023-00432-3. 

[14] I. González Díez, et al., Perceived satisfaction of university students with using chatbots as a 
tool for self-regulated learning, Educ. Inf. Technol. 28 (2023) 7665 7692. 

[15] R. Lindgren, S. Kakar, P. Maiti, K. Taneja, A. Goel, Does Jill Watson Increase Teaching Presence? 
in: Proc. 11th ACM Conf. Learn. Scale, 2024, pp. 269 273. 

[16] M. Janssen, C. LeWarne, D. Burk, B. B. Averbeck, Hierarchical reinforcement learning, 
sequential behavior, and the dorsal frontostriatal system, J. Cogn. Neurosci. 34 (2022) 1307 1325. 
doi:10.1162/jocn_a_01869. 

[17] Y. Lei, A. Solway, Conflict and competition between model-based and model-free control, PLoS 
Comput. Biol. 18 (2022) e1010047. doi:10.1371/journal.pcbi.1010047. 

[18] J. Jih, Reinforcement Learning with Function Approximation: From Linear to Nonlinear, J. Mach. 
Learn. 2 3 (2022) 161 193. doi:10.4208/jml.230105. 

[19] A. Triche, A. S. Maida, A. Kumar, Exploration in neo-Hebbian reinforcement learning: 
Computational approaches to the exploration exploitation balance with bio-inspired neural 
networks, Neural Netw. 151 (2022) 16 33. 

[20] S. Flore, L. Albin, S. Csaba, Balancing optimism and pessimism in offline-to-online learning, 
arXiv:2502.08259 (2025). 

[21] C. Wu, T. Li, Z. Zhang, Y. Yu, Bayesian optimistic optimization: Optimistic exploration for 
model-based reinforcement learning, Adv. Neural Inf. Process. Syst. 35 (2022) 14210 14223. 

[22] J. Bayrooti, C. H. Ek, A. Prorok, Efficient Model-Based Reinforcement Learning Through 
Optimistic Thompson Sampling, arXiv:2410.04988 (2024). doi:10.48550/arXiv.2410.04988. 

[23] J. Beck, R. Vuorio, E. Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, S. Whiteson, A survey of meta-
reinforcement learning, arXiv:2301.08028 (2023). doi:10.48550/arXiv.2301.08028. 

[24] F. Robertazzi, M. Vissani, G. Schillaci, E. Falotico, Brain-inspired meta-reinforcement learning 
cognitive control in conflictual inhibition decision-making task for artificial agents, Neural 
Netw. 154 (2022) 283 302. doi:10.1016/j.neunet.2022.06.020. 

[25] R. Hattori, N. G. Hedrick, A. Jain, et al., Meta-reinforcement learning via orbitofrontal cortex, 
Nat. Neurosci. 26 (2023) 2182 2191. doi:10.1038/s41593-023-01485-3. 

[26] D. Arumugam, M. K. Ho, N. D. Goodman, B. Van Roy, Bayesian Reinforcement Learning with 
Limited Cognitive Load, Open Mind 8 (2024) 395 438. doi:10.1162/opmi_a_00132. 

[27] M. Binz, E. Schulz, Modeling human exploration through resource-rational reinforcement 
learning, Adv. Neural Inf. Process. Syst. 35 (2022) 31755 31768. 

[28] C. Wang, Y. Chen, K. P. Murphy, Model-based policy optimization under approximate Bayesian 
inference, in: ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, 
2023. 



[29] M. K. Eckstein, S. L. Master, R. E. Dahl, L. Wilbrecht, A. G. Collins, Reinforcement learning and 
Bayesian inference provide complementary models for the unique advantage of adolescents in 
stochastic reversal, Dev. Cogn. Neurosci. 55 (2022) 101106. doi:10.1016/j.dcn.2022.101106. 

[30] P. Kang, P. N. Tobler, P. Dayan, Bayesian reinforcement learning: A basic overview, Neurobiol. 
Learn. Mem. (2024) 107924. 

[31] T. L. Griffiths, N. Chater, J. B. Tenenbaum (Eds.), Bayesian Models of Cognition: Reverse 
Engineering the Mind, MIT Press, 2024. 

[32] [D. G. Dillon, E. L. Belleau, J. Origlio, M. McKee, A. Jahan, A. Meyer, D. A. Pizzagalli, Using Drift 
Diffusion and RL Models to Disentangle Effects of Depression on Decision-Making vs. Learning 
in the Probabilistic Reward Task, Comput. Psychiatry 8 1 (2024) 46. doi:10.5334/cpsy.108. 

[33] Y. Lei, A. Solway, Conflict and competition between model-based and model-free control, PLoS 
Comput. Biol. 18 5 (2022) e1010047. doi:10.1371/journal.pcbi.1010047. 

[34] R. F. Prudencio, M. R. O. A. Maximo, E. L. Colombini, A Survey on Offline Reinforcement 
Learning: Taxonomy, Review, and Open Problems, IEEE Trans. Neural Netw. Learn. Syst. 35 8 
(2024) 10237 10257. doi:10.1109/TNNLS.2023.3250269. 

[35] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., MIT Press, 
Cambridge, MA, 2018. 

[36] N. Jiang, L. Li, Doubly robust off-policy value evaluation for reinforcement learning, in: Proc. 
33rd Int. Conf. Mach. Learn. (ICML), PMLR, 2016, pp. 652 661.  

[37] N. De La Fuente, D. A. V. Guerra, A comparative study of deep reinforcement learning models: 
DQN vs PPO vs A2C, arXiv:2407.14151 (2024). 

[38] L. L. Scientific, Performance comparison of reinforcement learning algorithms in the CartPole 
game using Unity ML-Agents, J. Theor. Appl. Inf. Technol. 102 16 (2024). 

[39] A. Moltajaei Farid, J. Roshanian, M. Mouhoub, On-policy Actor-Critic reinforcement learning 
for multi-UAV exploration, arXiv:2409.XXXX (2024). 


