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Abstract  
This paper investigates the simultaneous modelling of moisture transport in soil and the growth of the 
root system of plants (specifically, corn) under drip irrigation. To describe moisture transport, a modified 
Richards equation is used, which, in particular, includes fractional-order derivatives to describe the fractal 
properties of the soil. We use a stochastic model of root system growth that takes into account the 
influence of moisture potential field on the growth process. Optimization methods, such as particle swarm 
optimisation (PSO) and genetic algorithms, are used to calibrate the model. The results of the analysis of 
the dataset that contains soil moisture content measurements acquired during cultivation of corn show 
that the combination of integer-
accuracy in predicting the dynamics of the moisture potential field and, accordingly, its availability to 
plants on the test dataset. The best accuracy in the case of the training dataset was provided by the 
fractional-order model. The results of the study demonstrate the potential of the proposed approach for 
its application in decision support systems in agriculture. 
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1. Introduction 

Drip irrigation can lead to significant moisture distribution heterogeneity in soil profile. In this 
regard, within the framework of the irrigation management methodology, which ensures the 
specified levels of soil moisture availability to plants in root-containing zones, it is important to 
simultaneously predict both the moistened zones and the root-containing zones with the 
distribution of the root system in them. Therefore, their scenario modelling based on the 
mathematical models calibrated for a specific soil and crop conditions has significant advantages 
over exclusively experimental studies, providing the opportunity to evaluate soil moisture 
distributions under different weather conditions, irrigation rates and organization of irrigation 
system.  

Such modelling is the basis of decision support systems (DSS) (see, e.g., the review [1]), in 

Such DSSs can be considered as optimization superstructures over moisture transport models [3], 
which are based mainly on the Richards differential equation [4] in a two-dimensional statement, 
or are formed from experimentally determined wetting contours [5]. To further increase the 
accuracy of modelling, more complex models can also be used. They include, in particular, the 
models that take into account fractal properties of soils [6]. An alternative to such models, which 
describe physical processes in soils and are sensitive to the accuracy of parameters measurement, is 
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the use of machine learning algorithms (see, e.g., [7]), the disadvantage of which, in turn, is the 
requirement for large amounts of input data that are not always available in production conditions. 

One of the directions for increasing the accuracy of modelling soil moisture content and 
moisture consumption by plants during irrigation is the simultaneous modelling of moisture 
transfer and the growth of root systems, the peculiarities of development of which is influenced by 
moisture availability [8]. The classical approach here is to represent the root system as a tree with 
subsequent transformation of such a discrete model into a continuous function of root system 
density, which is used in moisture transport models that consider the soil as a continuous porous 
medium. The study of various approaches to such a transformation, their impact on the accuracy 
and speed of modelling, is studied in [9]. More complex models of this class can contain a 
description of the processes of moisture movement in the plant tissue and the interaction of the 
plant with the atmosphere in the form of differential equations [10]. They can also contain a 
description of the influence of chemical compounds concentrations on the processes of root system 
growth and its interaction with the soil [11].  

It should be noted that the study of the practical application of the above-mentioned models and 
their testing using real measured data are limited. Mathematically, this requires solving inverse 
problems for parameter identification, the set of which is often limited exclusively to the 
parameters of the moisture transport equation [12]. Given the complexity of such problems, soft 
computing methods, such as genetic algorithms, are used to solve them [13].  

Considering the case of the experiment in production conditions with limited capabilities for 
monitoring the state of the soil (the availability of automatic measurements only of the suction 
pressure of soil moisture), in this study we build an algorithm for calibrating the moisture 
transport model, combined with a stochastic model of root system growth, in order to most 
accurately determine the moistened zones, the size and distribution of the root system for specific 
observed conditions. In our case, the root system growth model takes into account the influence of 
soil moisture potential field obtained according to the moisture transport model. The latter model, 

evapotranspiration, 
specifically moisture consumption by plants. A combined model calibrated based on the measured 
data for one growing season can be used in future to refine irrigation regimes and the parameters 
of irrigation pipeline placement and the distant between emitters on them when growing the same 
crop in subsequent years. 

2. Moisture transport simulation framework 

Governing equation for moisture transport. For the purpose of modelling, we use the Richards 
equation [4] stated in terms of water head in a two-dimensional approximation, similar to the 
presented in [14]: 

( ) ( )

, ,( ) ( ( ) ) ( ( ) ) 0 0 0
x zs x L x z L z x z

s

H H H
C h S = D k H D k H S, x L , z L ,t

t x z

 



    
+ + −      

   
      (1) 

where 
( , , )

( , , )
P x z t

h x z t
g

=  is the water head, m, 
( , , )

( , , )
P x z t

H x z t z
g

= +  is the full moisture 

potential, m, ( , , )P x z t  is the suction pressure, Pa,   is the density of water, kg/m3, g  is the 

acceleration of gravity, m/s2, ( )C h
h


=


 is the differential soil moisture content, %/m, ( , , )x z t  is 

the volumetric soil moisture content, %, s  is the moisture content in water-saturated soil, %, sS  is 

the specific storage, 1/m, ( ), ( )x zk H k H  are the hydraulic conductivities in the corresponding 

directions considering the soil heterogeneous, m/s, ( , , )S x z t  is the source function, %/s, which 

models the extraction of moisture by plant roots and its supply by subsurface drip irrigation. 



Here ( )

,x LD   is the two-sided fractional derivative of Caputo type of an order   w.r.t. the 

variable x (a derivative w.r.t. the variable z is defined similarly) in the following form, which was 
used in the derivation of the fractional-order mass conservation law in [15]: 
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ion. Water retention curves ( )h  of the soil are represented in (1) 

according to the van Genuchten model [16] in the form 
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The soil is modelled as a layered structure with the values of the coefficients r; s; ,1 / cm ; n 

that change from layer to layer. The dependency of the hydraulic conductivity ( )k h  on water head 

is represented according to the Mualem's model [17] in the form 
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where fk , m/s, is the hydraulic conductivity of saturated soil (filtration coefficient),   is a fixed 

exponent.  
The values of the coefficients in the models (2) and (3), their initial guess at least, are obtained 

using the least-squares fitting to the data of experimental studies conducted using a technique 
described in detail in [18]. Such a technique allow for the determination of k(h) only in a horizontal 
dimension. Thus, we consider a possible heterogeneous case assuming that ( ), ( )x zk H k H  are 

represented by Eq. (3) with   that is equal in both directions and fk  that is different. 

The forms of boundary conditions are given similarly to [19]. They include only gravitational 

flow condition 0
h

z


=


 on the bottom of the domain; symmetric flow conditions 0

H

x


=


 on its left 

and right side; and the condition of flux-controlled interaction with the atmosphere on the upper 
side: 
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where ( , )eQ t x , ( , )pQ t x  are the fluxes, m/s, of evaporation and precipitation.  

Several assumptions are made about evaporation and precipitation fluxes:  

1. When max( ,0, )h x t H , ( , )pQ t x  is set to 0: we assume that there is a surface water run-off 

is water pressure on the surface exceeds a given threshold maxH ; 

2. When soil surface is in a non-saturated state, we assume that the evaporation cannot 
exceed its maximal possible value max ( , ) ( (0, ),0, ) ( ,0, )zE x t k h t x h x t= − ; 

3. 
the spatial extent of the canopy equals to the spatial extent of the root system. 

The function S  models the extraction of moisture by the root systems of plants the way it is 
described in [19]. The distribution of transpiration along the depth z  is described according to [20] 
in the form  
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where rz  is the depth of the root-containing layer, ( )T t  is the transpiration rate, m/s.  

As the default case, we set ( )L z  in the form [21] 
2 3
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In this study we consider one plant with the centre of its root system located in rx x= . In the 

default case, we set the width of the root system equal to pr  and assume that its density decreases 

linearly subject to the horizontal coordinate x [19]:  
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The total moisture extraction function in the default case has the form [19] 
( , , ) ( , ) ( )T z xS x z t S z t S x= .                                              (8) 

To model subsurface drip irrigation we add to ( , , )TS x z t  the density of irrigation water flow 

0( , , ) ( ) ( ) ( )ss ss ss ssQ x z t Q t x z =  where 0 ( )ssQ t  is flow density from one emitter, 1/s, ,ss ssx z  are the 

( )   is the Dirac delta 

function. Finally, we obtain [19] 
( , , ) ( , , ) ( , , )T ssS x z t S x z t Q x z t= + .                                           (9) 

To subdivide evapotranspiration ET  into the evaporation flow eQ  and transpiration T  we use 

the value of an empirical parameter   dependent on the Leaf Area Index [22]: 

( )1 , eT e ET Q ET T−= −  = − .                                      (10) 

ET is calculated within the considered framework using the variety of the Penman-Monteith 
method described in [23]. 

The two-dimensional model based on (1)-(10) assumes that the distance between the emitters is 
sufficient for the formation of uniform wetting in the plane along the pipeline.  

Numerical technique for the direct problem. The discretization of the model (1)-(10) is 
performed using a finite-difference scheme on a grid, which is uniform w.r.t. the space variables 
and non-uniform in time. The solution technique is described in detail in [14]. 

Parameters identification problem. In order to adapt the model to the actual plant growing 
and soil conditions, fitted multipliers are introduced to some of the inputs: ETk  for ET, preck  for 

precipitation, and irrk  for irrigation flow [24]. 

To take into account errors due to the difference in the behaviour of collected soil monolith 
samples and the actual soil in the field, additional parameters that can be fitted include two 
parameters, whose determination accuracy is the lowest: the filtration coefficient fk , or two 

coefficients , ,,f x f zk k  in two dimensions, and the residual moisture content r . Additionally, the 

parameters  , n that influence the shape of ( )h  described by (2) can also be fitted along with an 

empirical parameter   used to split ET into evaporation and transpiration according to (10). 

The fitting procedure assumes that the values , 1,....,iH i N=  of water heads are known in the 

moments of time iT  in the points ( ), 1,....,i ix ,z i N=  ET, 

( )pQ t , and 0 ( )ssQ t . The goal function to be minimized has the form 
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where v  is the set of parameters that are fitted and rk  is the Tikhonov regularization parameter. 

Alternatively to the regularized sum of squares of differences goal function (11), another goal 
function - the average relative error - was considered: 
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where 1N  is the number of non-zero measured water head values. 

Choosing one of the mentioned goal functions, the fitting is performed using the Particle Swarm 
Optimization (PSO) algorithm given in detail in [24].  

3. Root system growth simulation framework 

Root growth model. In this paper we use a root growth model derived from the one described 
in [25]. In it, each root is represented by a tree of branches. Each branch is represented by a list of 
segments, where each segment corresponds to branch growth during one time step. 

For the sake of simplification, considering only the case of one modelled plant, on each time 
step, while solving the problem (1)-(10), two root growth procedures are performed for each branch 
in the tree that describes a root: the production and the branching. 

The production procedure consists in adding a segment to a branch if the length of the branch 

after the growth is less that the given threshold maxL . Denoting as ( )0 0,x y  the final point of the 

last segment of the branch, the newly created segment spans from ( )0 0,x y  to a point  

( ) ( ) ( ) ( )( )1 1 0 0, , , ,s x y x yx y x y p t d d g g= +  +  

where ( ),x yd d  sp is the growth speed, 

m/s, t  is the time step, ( ),x yg g  is the gradient of moisture potential field calculated according to 

the model (1)-(10),   is the coefficient of root hydrotropism intensity. 
The branching procedure is applied at each time step to all root branches, for which the 

following conditions are fulfilled: 

• the level of the branch in the tree is less than a given number max ; 

• the number of sub-branches connected to the branch is less than a given number maxb ; 

• the length of the branch is bigger that ( )1a b br nl l n l+ + +  where al , bl  are the lengths of the 

apical and basal zones where branching does not occur, nl  is the average spacing between 
sub-branches. 

The branching procedure consists in  

• uniformly random selection of a branching point brp  located between al l=  and br bl l l= −  

where l  is the length of the branch up to the selected point and brl  is the total length of 
the branch; 

• uniformly random selection of a branching angle b  between the newly created branch 

and its predecessor in the range  / 2, / 2 −  where   is the given maximum branching 
angle; 



• creation of a new branch, which is connected with its predecessor within the tree and con-

tains one segment that starts at the point brp , is directed according to the selected angle 
b , and has the length sp t . 

After modifying the root system model in the form of a tree, its representation in the 
model (1)-(10) in the form of a root density function is recalculated assuming that the length sp t  

of newly created segments is less than the size of a cell in a finite-difference grid: 

• the depth and the width of the root system are calculated from the extent of all points of 
 

• the moisture extraction function is considered equal to , ,( , , ) ( ) /T p i j pS x z t T t N T=
 for 

( ) ,, i jx z c
 where ,i jc

 is the ( ),i j  cell of the grid, pT
 is the total number of points in root 

s, , ,p i jN
 is the number of points that are located within ,i jc

. 

Simulation procedure and inverse problem. The question posed in this paper is whether it is 
possible, using the above-described procedure for modelling the growth of the root system, to 
obtain such a form of the root system that would improve the accuracy of modelling the dynamics 
of water head according to the goal function (11) in comparison with the use of generalized root 
system density functions, in particular (6)? Will the simulated form of the root system correspond 
to the actual one? 

To answer the first question, the following modelling procedure is proposed. 
In the first stage, the model is calibrated using the root system density function (6) based on 

suction pressure measurements collected during several irrigation cycles mid-season  
In the next step, assuming as fixed the pre-calibrated values of the parameters of the 

model (1)-(10), we search for a density function that minimizes the goal function (11) by generating 
root system models. 

The calculation of the goal function values is as follows. Having fixed values of the parameters 
of the root system growth model, its development is simulated starting from the start of vegetation 
until the start of suction pressure measurement. In this case, it is assumed that the pressures in the 
modelled root-containing zone are maintained by irrigation in a given range. It is assumed that at 
the start of measuring the pressures for the purpose of modelling, the root system has reached its 
maximum size and does not change further. After that, using the modelled root system, a 
simulation of moisture potential dynamic with known data on water inflow is carried out for the 
period, in which the pressures were measured, and based on this simulation, the value of the goal 
function (11) is calculated. 

The initial data for this procedure are an estimate of evapotranspiration during the growing 
season; measurements of suction pressure during one or more irrigation cycles in the period of the 
maximum root system development and the highest water consumption; data on precipitation and 
irrigation rates during this period. 

A problem for the minimization of the goal function (11) by fitting the parameters of the root 
system growth model is approximately solved by a genetic algorithm, in which potential solutions 

are coded by floating-point numbers in the form ( )max max, , , , , , ,s a b np l l l b L  . Maximal tree depth 

max  is here considered as given. 

It is worth noting that, since the root system development model is stochastic, the goal function 
is random. Accordingly, the obtained solution to the minimization problem in the form of a set of 
parameters of the root system growth model means only that for such parameter values, the model 

during the period of the highest water consumption (if the obtained accuracy is higher than in the 



base case). This improvement is not guaranteed for a specific set of root growth model parameters, 
but is achieved for a certain root system shape obtained as a result of the modelling. 

4. Simulation setting  

The initial data for modelling were the measurements obtained using the iMetos micro-
meteostation, on which, in particular, Watermark suction pressure sensors were installed, from 
31.05.2024 to 23.09.2024 during an agronomic experiment on growing corn for seed on an 
experimental field within the Makariv district of the Kyiv region of Ukraine. 

Irrigation pipelines were placed at the depth of 30 cm directly in the rows of plants, the distance 
between which was 70 cm. 

The layout of the Watermark sensors location within the soil massif is shown in Fig. 1. 
The values of the parameters of the van Genuchten and Mualem models obtained after 

processing the data of laboratory studies of soil monoliths are given in Table 1. 
For the purpose of calibrating the model (1)-

suction pressures in the peri
per 1 hour. Two irrigations were carried out during this period: on 04.07.2024 from 15:00 to 19:30, a 
total of 83 m3/ha, and on 06.07.2024 from 12:00 to 19:00, a total of 95 m3/ha. 

Data 
irrigation on 13.07.2024 from 16:30 to 19:30, a total of 59 m3/ha, were used to check the scalability 
of the moisture transport model and to solve the optimization problem for selecting the parameters 
of the root system growth model. When solving the latter problem, the shape of the root system 
on 1.07.2024 was determined by modelling its growth starting from 31.05.2024, assuming that the 
average moisture content in the root zone is maintained in the range from 19.2% (corresponding 
to 20 kPa) to 25.3% (field capacity). 

 

Figure 1: Watermark sensors location within the modelled soil massif 

Table 1 
The parameter values for the  

Layer r, % s, % 
,1 / cm  

n 
Field 

capacity, % 
fk , m/s   

0.1-0.2 m 0.11 0.3655 0.011 2.3 0.253 3.97·10-7 -1.92 
0.3-0.45 m 0.04 0.3412 0.009 1.9 0.215 1.32·10-7 -2.64 



The following computational experiments were conducted: 

• modelling of water head dynamics according to the integer-order model ( 1 = = ) in the 
period between 1.07.2024 9:00 and 17.07.2024 14:00 using root density function (6) without 
calibration; 

• calibration of the integer-order model fitting the values of the empirical coefficients ETk , 

preck
, irrk ,   and the test of model  

• calibration of the integer-order model fitting the values of the empirical coefficients ETk , 

preck
, irrk ,   , and filtration coefficients fk

  

• calibration of the fractional-order model fitting the values of the empirical coefficients ETk , 

preck
, irrk ,  , filtration coefficients fk

, and the orders  ,    of the fractional derivatives 
 

• determination of the optimized values of parameters for the root system growth model 
along with the specific form of the root system using the results of calibration for the inte-
ger-order model (experiment 3); 

• determination of the optimized values of parameters for the root system growth model 
along with the specific form of the root system using the results of calibration for the frac-
tional-order model (experiment 4). 

In all cases, the goal function had the form (11), and the grid size was 50x75 cells. Additional 
computational experiments with the goal function (12) showed that its use does not lead to a 
significant change in the accuracy of the solutions. Conducting experiment 3 in the heterogeneous 
case with the selection of different values of the filtration coefficients in different directions also 
failed to obtain solutions that were more accurate than in the homogeneous case , ,f x f z fk k k= = . 

Also, ineffective were the experiments where, in addition to the filtration coefficients, we fitted the 
values of the residual soil moisture r and the parameters , n  of the van Genuchten model. 

When calibrating the model using the PSO algorithm, the swarm contained 60 particles for the 
integer-order model and 100 particles for the fractional-order model. 50 iterations were performed. 
The values of the inertial weight  , cognitive coefficient p  and social coefficient g  were equal 

to 0.6. The regularization parameter in the goal function (11) was equal to 0.05. The search was 
carried out in the following ranges of parameter values: , [0.8,1]   , , [0.01,10]ET preck k  , 

[0,10]irrk  , [0,2]  , 9 6[10 ,5 10 ] ( / )fk m s− −  . 

When determining the op
shape by the genetic algorithm, the population size was equal to 20. 10 iterations were performed 
with a crossover probability of 0.75 and a mutation probability of 0.05. The search was carried out 

in the following ranges of parameter values: 8 65 10 ,5 10 ( / )sp m s− −     , [0.05,0.5] ( )al m , 

, [0.01,0.1] ( )b nl l m , max [10,100]b  , [0 ,120 ]    , max [0.2,1] ( )L m , [0.1,10] . The maximum 

depth max  of the tree was equal to 3. 

5. Simulation results 

Simulation according to the above-described setting was performed using the software and input 
files accessible through https://github.com/sevaboh/root_growth . Computations were performed 
on the SCIT5 cluster of the Institute of Cybernetics of NAS of Ukraine.  

https://github.com/sevaboh/root_growth


Some of the obtained modelling results are given in Table 2. The measured and simulated water 
head dynamics in the case of the best overall modelling accuracy (integer-order model with root 
system shape fitting) are shown in Fig. 2 (sensor 1, the case of the largest absolute error), Fig. 3 
(sensor 4 with low absolute modelling error), Fig. 4 (sensor 3 located directly near the emitter). The 
simulated water head field 1 hour after the irrigation was finished and the optimized shape of the 
moisture extraction function S are illustrated in Fig. 5. The results demonstrate that: 

• the use of experimentally determined filtration coefficient  values leads to fundamentally 
inadequate modelling results (errors >10 kPa for all sensors); 

• the use of the fractional-order differential model, and the corresponding increase in the 
number of fitted parameters, allowed obtaining better modelling accuracy for the training 

dataset (period 1). However, for the testing dataset (period 2) the relative error 2 ( )F v  in-
creased in comparison with the integer-order model. This may result from overfitting, as 
Watermark sensor measurements represent averaged pressures over a vicinity rather than 
point-wise values. An additional argument in support of this assumption is the fact that in 
the case of the fractional-order model it was not possible to obtain an increase in modelling 
accuracy by fitting root system ; 

• the smallest average absolute error for the testing dataset was achieved in experiment 5, 
which included the selection of root system  shape for the integer-order moisture 
transport model. This effect was achieved primarily due to the smallest errors among all 
experiments in modelling the pressures at the depth of 5 cm (sensors 1 and 12). The soil in 
this depth was the driest with a slight influence of irrigation on moisture content. Accord-
ingly, the pressures and absolute errors of their modelling were the largest; 

• similar simulated water head distributions were obtained with significant differences in the 
values of the parameters of the model (1)-(10), which were selected in different ways. The 
reason behind this observation may be the different-directional effect of different factors on 
processes in the same zones. E.g., when the multiplier for evapotranspiration is increased 
together with the multiplier for the irrigation water flow and evapotranspiration is redis-
tributed between plant transpiration and evaporation from soil surface, a similar water 
head distribution in the root-containing zone could be achieved; 

• significantly different values of the fractional derivative  orders were obtained for different 
directions. This indicates the possible heterogeneity of the structure of the studied soil; 

• when compared to the measurements, in the case of all experiments conducted with the se-
lection of filtration coefficients, a more intensive spreading of moistened front from the 
emitter was simulated (Fig. 3) along with a slower drying of the soil after the third irriga-
tion (Fig. 4). The latter may indicate a change in atmospheric factors, which led to addition-
al inaccuracies in the assessment of evapotranspiration compared to previous periods. 

 

Figure 2: Measured and modelled dynamics of water heads for the sensor 1 

 



Table 2 
Modelling results 

Experiment 1 2 3 4 5 6 

1( ,0)F v , period 1 7759 7696 1686 1417 2884 2791 

1( ,0)F v , period 2 32580 30741 49517 12919 6528 13936 

2 ( )F v , period 1 0.39 0.33 0.15 0.12 0.16 0.17 

2 ( )F v , period 2 0.53 0.42 0.15 0.16 0.16 0.2 

Average absolute errors for the specific sensors, period 2, kPa 
1 54.9 72.4 106.8 40.8 31.3 39.8 
2 30.1 13.1 11.5 9.9 17.7 22.1 
3 21.3 13.5 7.5 9.4 7.7 9.8 
4 16.3 11.1 3.7 4.8 3.8 5.1 
5 16.3 12.0 3.0 2.5 2.9 2.7 
12 14.5 20.4 22.3 29.8 10.7 32.1 
6 21.1 9.6 8.1 12.2 6.9 10.3 
7 22.8 15.6 3.4 4.7 3.6 5.2 
8 17.6 13.0 3.1 4.0 3.2 4.2 
9 30.3 20.8 4.4 3.8 5.3 4.1 
10 20.4 14.0 4.1 5.3 4.4 5.8 
11 18.1 13.8 3.2 2.3 3.0 2.4 

Average between all 
sensors 23.6 19.1 15.1 10.8 8.4 12.0 

 

ETk  1 4.078 4.508 1.157 4.508 1.157 

preck  1 4.065 8.47 8.365 8.47 8.365 

irrk  1 1.057 2.85 1.43 2.85 1.43 
  0.5 0.0797 0.0391 0.159 0.0391 0.159 

fk , layer 1 3.97·10-7 3.97·10-7 1.54·10-8 1.93·10-8 1.54·10-8 1.93·10-8 

fk , layer 2 1.32·10-7 1.32·10-7 5.60·10-7 2.67·10-7 5.60·10-7 2.67·10-7 

  1 1 1 0.812 1 0.812 
  1 1 1 0.902 1 0.902 

 

Figure 3: Measured and modelled dynamics of water heads for the sensor 4 

 



 

Figure 4: Measured and modelled dynamics of water heads for the sensor 3 

 

Figure 5: Modelled water head field 1 hour after the end of watering and the corresponding form 
of moisture extraction function 

The generated optimized root system shapes for the cases of integer and fractional-order models 
are shown in Fig. 6. The found values of the root system growth model  parameters in the case of 
using the integer-order moisture transfer model were equal to 

( ) ( )6

max max, , , , , , , 2.98 10 , 0.24, 0.075, 0.068, 68, 79, 0.79, 6.63s a b np l l l b L  −=  ,  

and, in the case of the fractional order model, to ( )61.88 10 , 0.18, 0.05, 0.065, 37, 61, 0.804, 7.59− .  

Similar values of all parameters, except for the maximum number maxb  of branches of the next 

tree level. This leads to the generation of similar root system shapes (Fig. 6) characterized by the 
predominant distribution breadthwise in the 0-30 cm layer, which occurs at the initial stages of 
development when the moisture from a deeply placed irrigation pipeline does not rise sufficiently 
to the upper soil layers. There is also an increased concentration of root mass in layers below 40 
cm, where irrigation moisture is concentrated under the influence of gravity. 

The difference in the density of the systems shown in Fig. 5 (a) and Fig. 5 (b), due to the 
normalization procedure used for obtaining the root system density function based on these 
models, does not have a significant impact on the modelling of moisture transport. 

During the agronomic experiment, the weight of roots in 10 cm thick layers was measured. 
These measurements were used to assess the adequacy of the modelled shape of the root system to 
the actual one. Since the model does not take into account the different sizes of the root system 
segments, it was assumed that their weight is proportional only to their length. The accumulated 
part of the root system volume (for the model - by length, for the experimental data - by weight) in 
the soil layer, which spans from the surface to a certain depth, is shown in Fig. 7. The volume of 
the root system located in 30 cm thick layers is given in Table 3. 



 
 

Figure 6: Generated forms of root systems: (a)  when the integer-order moisture transport model 
was used; (b)  when the fractional-order moisture transport model was used 

  

Figure 7: Accumulated part of the root system in the layer, which spans from the surface to a 
given depth 

From the obtained data it is clear that, despite significant deviations when the step of 10 cm was 
used (Fig. 7), the volume of the root system generated according to the model in 30 cm thick layers 
adequately describes the experimental data (Table 3). Less smooth changes in the modelled root 

stimation of hydrotropism intensity. The volumes 
of the root system, which was generated using the fractional-order moisture transfer model, fully 
correspond to the experimental ones. When using the integer-order moisture transfer model, a 
larger than experimentally determined volume of the simulated root system is located in the 60-90 
cm layer, but a smaller one in the 30-60 cm layer. 

 
Table 3 
Root system volume in 30 cm layers 

Layer 
Integer-order model  

(% of segment length) 
Fractional-order model  
(% of segment length) 

Experiment  
(% of weight) 

0-30 cm 61,52% 63,65% 59,02% 
30-60 cm 20,34% 25,61% 26,35% 
60-90 cm 18,14% 10,74% 8,59% 

6. Conclusions 

This study presents a novel approach to predict the dynamics of soil moisture availability to plants, 
which proposes to explicitly model the process of root system growth and take into account the 
potential effects of structural fractality of the soil considered as a continuous porous medium. 



When modelling a dataset collected during corn cultivation under subsurface drip irrigation, the 
most accurate predictions were obtained when using the integer-order model together with the 
generated optimized root system  shape. 

Although the fractional-differential model showed the best results for the training dataset, its 
application to the testing dataset led to an increase in errors, which may indicate overfitting. 

Modelling and optimising the root system  improved the accuracy of moisture content 
modelling, especially for the upper soil layers, where, in the case of using the generalized root 
system density function, the errors were the largest. The simulated optimized shape of the root 
system demonstrates its preferential distribution breadthwise in the upper layers and concentration 
in the moistened zone under the emitter. 

The proposed approach can be used to refine irrigation regimes and the parameters of irrigation 
pipelines placement along with the distance between emitter on a pipeline, which is especially 
important for the conditions of limited monitoring of soil moisture status. 
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