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Abstract 
Keystroke dynamics recognition is a prominent technique in behavioral biometrics, offering continuous 
and non-intrusive user authentication based on individual typing patterns. It leverages temporal features 
such as key press durations and inter-key latencies, which are distinctive for each user. Despite advantages 
like hardware independence and applicability in security-critical contexts, many existing methods rely on 
the assumption of multivariate normality, which real-world keystroke data often violates, leading to 
reduced recognition accuracy, recall, and specificity. 
To address this limitation, this study explores the impact of data-normalizing transformations designed to 
transform keystroke features toward a multivariate normal distribution. Specifically, it examines the 
decimal logarithm, univariate Box-Cox, and multivariate Box-Cox transformations. The univariate 
transformations normalize each feature independently, without considering relationships between them. In 
contrast, the multivariate Box-Cox transformation processes all features jointly, taking into account their 
correlations, though it requires more complex computations. Parameters for Box-Cox transformations are 
estimated using the maximum likelihood method. 
In contrast to previous work, which utilized a nine-dimensional feature vector composed exclusively of key 
hold durations, the current approach employs a reduced eight-dimensional feature set that combines key 
hold times and inter-key latencies. Despite the lower dimensionality, this set offers a more informative and 
representative characterization of user typing behavior. 
Results demonstrate that applying normalizing transformations improves recognition accuracy, recall, and 
specificity, highlighting the importance of data normalization. Among the constructed models, the eight-
variate prediction ellipsoid based on normalized data using the multivariate Box-Cox transformation shows 
the best recognition accuracy, recall, and specificity, significantly outperforming models built on non-
normalized data. In addition, the use of a reduced eight-dimensional feature vector, combining hold 
durations and inter-key intervals, resulted in a more informative and compact representation of typing 
behavior, which further improved recognition accuracy, recall, and specificity. These findings emphasize 
the key role of data normalization and correct feature selection in enhancing the accuracy, recall, and 
specificity of keystroke dynamics recognition systems. 
Future work should explore the application of alternative normalizing transformations and evaluate the 
proposed approach on larger, more diverse datasets that better capture the variability of user behavior. 
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1. Introduction 

Keystroke dynamics recognition is a behavioral biometric technique that identifies or verifies 
individuals based on their unique typing patterns [1]. It analyzes temporal characteristics such as 
key press durations and latencies between successive keystrokes, which are difficult to replicate and 
remain relatively stable over time. This approach offers a non-intrusive, continuous method of user 
authentication and is commonly applied in areas such as secure system access, fraud detection, and 
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user behavior monitoring, especially in environments where traditional authentication methods may 
be insufficient or inconvenient [2].  

Since keystroke dynamics systems are typically used for user authentication, they are often 
modeled as one-class classification problems, where models are trained only on data from the target 
user and aim to detect deviations that may indicate unauthorized access [3]. 

Many existing methods used for recognition rely on statistical models that assume the underlying 
data follow a multivariate normal distribution [4]. However, in practice, this assumption for 
keystroke dynamics data is often violated [5] due to natural variability in human typing behavior, 
noise, and external factors. As a result, the accuracy, recall, and specificity of recognition can 
decrease significantly when these models are applied to real-world data.  

Given the widespread use of keystroke dynamics recognition, including in security-sensitive 
applications, there is a clear need to improve recognition methods to ensure higher recognition 
accuracy, recall, and specificity. In particular, enhancing mathematical models to better 
accommodate deviations from the multivariate normal distribution can lead to more accurate 
systems. This study addresses this challenge by applying normalizing transformations that aim to 
adjust keystroke data toward a multivariate Gaussian distribution, thereby aligning more closely 
with the assumptions of statistical recognition models. 

2. Literature review 

Keystroke dynamics recognition has become a well-established approach in behavioral biometrics, 
used for verifying individuals based on how they type. It typically extracts temporal features such as 
key press durations and inter-
features are widely used due to their stability and ability to differentiate users. 

A variety of methods have been employed to recognize typing patterns, including tree-based 
models [6, 7], support vector machines [8, 9], neural networks [10, 11], and others. 

In practical applications such as authentication, keystroke dynamics is frequently modeled as a 
one-class classification problem. In this setting, the system is trained solely on data from the target 
class and attempts to detect whether new samples match this profile. This approach is particularly 
suited to real-world conditions, where data from unauthorized users may not be available during 
training. One-class classification is conceptually linked to outlier detection, as it identifies deviations 
from the normal behavior of the target user [12]. 

Several techniques are commonly used in one-class classification, including one-class SVM [13, 
14], autoencoders [15, 16], GANs [17], and prediction ellipsoids [18]. Prediction ellipsoids construct 
a statistical boundary in the form of a multivariate ellipsoid that encompasses the known data. If a 
new point lies outside the ellipsoid, it is considered an outlier. This method is attractive due to its 
simplicity and well-defined mathematical formulation, particularly when the input data is assumed 
to follow a multivariate normal distribution. 

However, the accuracy of prediction ellipsoids depends on how closely the data distribution 
matches the Gaussian assumption [19]. In practice, keystroke dynamics data often deviates from 
normality due to factors such as individual variability, typing inconsistencies, device differences, and 
external noise. These deviations can lead to incorrect estimation of the ellipsoid boundary and result 
in decreased recognition accuracy, recall, and specificity. 

To address this issue, data normalization transformations are used to adjust feature distributions 
closer to a multivariate Gaussian [20, 21]. Common transformations include the decimal logarithm, 
univariate Box-Cox, and multivariate Box-Cox transformations. The univariate approaches adjust 
each feature independently, while the multivariate Box-Cox transformation jointly transforms all 
features while preserving their correlation structure. 

In [22], a nine-variate prediction ellipsoid for normalized data was constructed using the Box-
Cox transformation. However, the feature set in that study included only key hold times, which in 
some cases led to insufficient recognition accuracy. This limitation is addressed in the present study 
by using a broader set of temporal features that better represent user behavior. 



This study investigates the impact of normalizing transformations on recognition accuracy, recall, 
and specificity in keystroke dynamics. The aim is to improve these metrics by applying 
transformations that adjust the data distribution to better align with the Gaussian assumption. 

3. Materials and methods 

Keystroke dynamics recognition relies heavily on the quality, structure, and temporal precision of 
the input data. To evaluate the proposed approach, this study uses the CMU Keystroke Dynamics 
Benchmark Dataset [23], a widely used [24] and publicly available dataset designed for 
authentication research. It contains keystroke data from 51 users, each of whom typed the same fixed 

every session, the password was typed 50 times, resulting in a total of 400 samples per subject and 
20,400 samples in total. 

Each entry includes timestamps for key press and key release events, recorded with sub-
millisecond precision. From these events, 31 timing features are derived, including key hold 
durations (the time from pressing to releasing a key), keydown keydown (DD) intervals, and keyup
keydown (UD) intervals. Feature names follow a standard notation: H.k for hold time of key k, 
DD.k1.k2 for the interval between pressing keys k1 and k2, and UD.k1.k2 for the delay between 

equals the corresponding DD value. 
In this study, a reduced subset of eight features was selected to create vector 𝑋: H.o, UD.o.a, H.a, 

UD.a.n, H.n, UD.n.l, H.l, and UD.l.Return. These features represent a continuous segment of the 
password near its end and include both hold times and inter-key latencies [25]. This selection 
captures individual key behavior and transitions between keys, providing a compact but informative 
representation of typing patterns suitable for multivariate modeling.  

After extracting the feature vectors, an essential preprocessing step involves the identification 
and removal of outliers. Such anomalous observations may arise due to involuntary user behavior, 
external distractions, hardware inconsistencies, or inaccuracies in event logging. If not addressed, 
these outliers can introduce bias into parameter estimation, distort statistical decision boundaries, 
and negatively impact the accuracy of recognition models. The removal of outliers ensures that the 
training dataset more accurately reflects typical user behavior, thereby enhancing the stability and 
interpretability of the resulting model. 

For this purpose, the squared Mahalanobis distance (SMD) is employed, which measures the 
distance between each sample and the center of the distribution, accounting for the covariance 
between features. Under the assumption that the data follows a multivariate normal distribution, the 
SMD of inliers is expected to follow a chi-square distribution with degrees of freedom equal to the 
number of features [26]. This statistical property enables the selection of a significance level to define 
a threshold beyond which samples are considered outliers. 

However, this approach relies on the assumption that the input data follows an approximately 
multivariate Gaussian distribution, which is often not true for raw keystroke dynamics features due 
to inherent variability in human typing behavior. To evaluate whether the distribution significantly 
deviates from the Gaussian, the Mardia test is applied. This test evaluates the joint distribution of 
the features based on two measures: multivariate skewness 𝛽1 and multivariate kurtosis 𝛽2. If the 
test indicates that the data significantly deviates from multivariate normality, a normalization 
transformation must be applied to convert a non-Gaussian data 𝑋 = 𝑋1, 𝑋2, … , 𝑋8

𝑇 to a Gaussian 
vector 𝑍 = 𝑍1, 𝑍2, … , 𝑍8

𝑇. 
Normalizing transformations can be categorized into univariate and multivariate approaches. 

Univariate transformations, such as the logarithmic and the Box-Cox, operate on individual features 
independently. The logarithm is typically used to compress large values and reduce positive 
skewness. 



The Box-Cox transformation (BCT) generalizes this adjustment through a power function 
parameterized by λ . The 
transformation is defined as: 

𝑍𝑗 = 𝑥(λ𝑗) = {
(𝑋

𝑗

λ𝑗 − 1)/λ𝑗, λ𝑗 ≠ 0;

ln(𝑋𝑗),            λ𝑗 = 0,
 (1) 

where 𝑋𝑗 is a j-th non-Gaussian variable; 𝑍𝑗 is a normalized variable; λ𝑗 is j-th transformation 
parameter. 

The univariate BCT is applied element-wise to each feature using a single parameter λ. When 
dealing with multivariate data, this transformation is typically applied independently to each of the 
k features, resulting in k separate transformations, one per feature, with individual parameters drawn 
from the k-dimensional vector Ɵ =  {λ1, λ2, … , λ𝑘}. Determining the optimal values of λ is a crucial 

possible. Maximum likelihood estimation (MLE) is commonly employed to identify these optimal 
parameters: 

𝑙(𝜆) = (𝜆 − 1) ∑ ln(𝑥𝑖)
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where 𝑥𝑖 is the i-th data point; λ is the transformation parameter; N is the number of observations. 
While univariate methods can improve the separate distributions of individual features, they do 

not account for the correlations between variables. This limitation is addressed by multivariate 
normalization, particularly the multivariate BCT, which applies a transformation to the entire feature 
vector. This method preserves the dependency structure among features. The components of the 
transformed vector 𝑍 are defined as in equation (1). However, it requires the estimation of multiple 
transformation parameters by maximizing a multivariate log-likelihood function, which may 
introduce additional computational complexity: 

𝑙(𝑋, θ) = ∑(

𝑘

𝑗=1

λ𝑗 − 1) ∑ ln(𝑥𝑗𝑖) −
𝑁

2
ln[det(𝑆𝑍)] ,

𝑁

𝑖=1

 (3) 

where k is the number of variables; 𝑥𝑗𝑖 is the value of variable j for observation i; λ𝑗 is j-th 
transformation parameter; 𝑆𝑍 is the covariance matrix of the transformed data. 

To evaluate whether the data distribution has been successfully approximated to multivariate 
normality, the Mardia test is applied to assess multivariate skewness and kurtosis before and after 
normalization. If the results confirm sufficient normality, the data can be reliably used in subsequent 
modeling stages. Otherwise, further preprocessing or the application of more robust modeling 
techniques may be necessary. 

The next step involves constructing the prediction ellipsoid, which defines a decision boundary 
for one-class classification. The left-hand side of the comparison is the squared Mahalanobis distance, 
which measures h -hand side is 
a critical value derived from the chi-square distribution, based on the dimensionality of the feature 
space and the desired significance level. 

(𝑋 − 𝑋̄)𝑇𝑆𝑋
−1(𝑋 − 𝑋̄) = 𝜒8, 0.005

2 , (4) 

where 𝑋 is a non-Gaussian random vector; 𝑆𝑋 is a sample covariance matrix for initial data; 𝑋̄ is 
a vector of sample means of the variables; 𝜒8, 0.005

2  is the chi-square distribution quantile with 8 
degrees of freedom and significance level 0.005. 

Assuming multivariate normality, the SMD follows a chi-square distribution with degrees of 
freedom equal to the number of features, in this study, 8. This allows the threshold to be determined 
according to a selected significance level; for one-class classification, a commonly used value is 



0.005 [19]. 
anomaly, likely representing a different class. If the distance is below the threshold, the point is 
accepted as part of the target class. 

In cases where the raw data does not follow a Gaussian distribution, normalization is applied first 
to bring the data closer to multivariate normality. After this step, the eight-variate prediction 
ellipsoid is constructed according to (4): 

(𝑍 − 𝑍̄)𝑇𝑆𝑍
−1(𝑍 − 𝑍̄) = 𝜒8, 0.005

2 , (5) 

where 𝑍 is a Gaussian random vector; 𝑍̄ is a vector of sample means of the variables; 𝑆𝑍 is a 
sample covariance matrix for normalized data; 𝜒8, 0.005

2  is the chi-square distribution quantile with 8 
degrees of freedom and significance level 0.005. 

At a significance level of 0.005 and with 8 degrees of freedom, the corresponding critical value 
from the chi-square distribution is 21.96. Any sample with a Mahalanobis distance below this value 
is considered to lie within the ellipsoid and thus to belong to the target class. 

To evaluate the constructed models, several widely used metrics are applied: accuracy, specificity, 
precision, recall, and the F1 score [27, 28]. These metrics are calculated based on four possible 
recognition outcomes. A true positive occurs when a sample from the target class is correctly 
recognized as a target. A false positive refers to an outlier that is incorrectly identified as belonging 
to the target class. A true negative is an outlier sample that is correctly rejected, and a false negative 
is a sample that is mistakenly rejected as an outlier. 

Accuracy measures the overall proportion of correctly recognized samples, encompassing both 
target and outlier classes. While it provides a general view of system performance, it may be less 
informative when class distributions are imbalanced. Recall, also known as sensitivity, indicates the 
proportion of target samples that are correctly identified, reflecting the system's ability to minimize 
false rejections. Precision expresses the proportion of samples predicted as target that are indeed 
from the target class, and is particularly relevant when the cost of false acceptances is high. 
Specificity measu
against unauthorized access. Lastly, the F1 score is the harmonic mean of precision and recall. It 
provides a single balanced metric that accounts for both false positives and false negatives, which is 
particularly useful in scenarios where both types of errors are costly [29]. 

Accuracy provides a general measure of overall correctness by considering all samples, both target 
and outlier. The probability of recognition is reflected by the combination of recall and specificity. 

4. Experiments 

In this study, the data associated with subject identifier s036 was randomly selected to represent the 
target class, while the data from s022 was used to represent an outlier class. Each subject contributed 
400 keystroke samples. The first step in the analysis involved identifying and removing outliers from 
the target class data. Data preprocessing, normalization, and statistical calculations were performed 
using built-in Microsoft Excel formulas and matrix operations. 

To evaluate whether the target data followed a multivariate normal distribution, the Mardia test 
was applied. The results indicated significant deviation from normality. Specifically, the test statistic 
for multivariate skewness 𝑁𝛽1/6 was 5207.45, exceeding the quantile of the chi-square distribution, 
which is 163.65 for 120 degrees of freedom at a 0.005 significance level. Similarly, the multivariate 
kurtosis statistic 𝛽2 was 211, which is higher than the corresponding normal quantile value of 83.25, 
based on a mean of 80 and a variance of 1.6 at the same significance level. These results suggest that 
the raw data significantly deviates from multivariate normality, indicating the need for 
normalization before further analysis. 

At this stage, where the primary goal is to detect and remove outliers from the target class data, 
the multivariate BCT is applied. This approach is chosen because it adjusts all features 



simultaneously while preserving their correlations. In contrast to univariate transformations that 
process each feature separately, the multivariate form ensures consistent scaling across the feature 
space, which is especially important for computing Mahalanobis distances. Since this distance metric 
assumes that the data follows an approximately multivariate normal distribution, the applied 
transformation helps bring the feature distribution closer to Gaussian, making it suitable for outlier 
detection. 

As a result of applying the maximum likelihood method to the log-likelihood function (3), the 
following parameter estimates were obtained: λ1̂ = 0.0523, λ2̂ = 0.1285, λ3̂ = 2.0907, λ4̂ = 0.1095, 
λ5̂ = 0.6797, λ6̂ = -2.5205, λ7̂ = -0.8415, λ8̂ = -0,8439. 

After applying the eight-variate BCT, the resulting feature set with component (1) was evaluated 
using the Mardia test. The test statistic for multivariate skewness, 𝑁𝛽1/6 = 396.16, exceeds the 
critical value of 163.64 from the chi-square distribution with 120 degrees of freedom at a 0.005 
significance level. Similarly, the test statistic for multivariate kurtosis, 𝛽2 = 94.04, is higher than the 
corresponding quantile value of 83.25, given a mean of 80 and a variance of 1.6.  

These results indicate that, despite the transformation, the data still deviates from multivariate 
normality, mainly due to the presence of outliers, which distort the distribution. Nevertheless, 
working with the transformed dataset remains advantageous, as it shifts the distribution closer to a 
Gaussian form, thereby improving the reliability of Mahalanobis distance calculations in the outlier 
detection process. 

Next, the SMD is computed for each feature vector to detect potential outliers. These distances 
are compared against the critical value of 21.96 from the chi-square distribution with 8 degrees of 
freedom at a significance level of 0.005. In each iteration, only the feature vector with the highest 
SMD, if it exceeds the critical value, is removed from the dataset.  

In the first iteration, the 24th vector, which had the maximum SMD of 55.43, was identified as an 
outlier and excluded. This process is repeated iteratively: after each removal, the normalization is 
applied again using the multivariate BCT, and the SMDs are recalculated for the updated dataset. 
The procedure continues until all remaining vectors have SMD values below the threshold. Table 1 
presents the indices and corresponding SMD values of all removed outliers. In total, 13 vectors were 
excluded. 

Table 1 
Removed outliers 

 SMD Vector index  SMD Vector index 
1 55.43 24 8 26.89 124 
2 33.22 3 9 26.77 36 
3 27.83 37 10 24.88 2 
4 27.69 146 11 24.21 110 
5 27.67 103 12 24.29 281 
6 27.47 35 13 23.82 36 
7 28.18 131    

The final dataset, obtained after the removal of outliers, consists of 387 feature vectors. The vector 
of means: 𝑋̅ = {0.0435; 0.2103; 0.0568; 0.2973; 0.0392; 0.5510; 0.0412; 0.8041}. The corresponding 
covariance matrix is presented in Table 2. 

The sample was randomly shuffled to avoid any bias from the original order of the data. This step 
helps make sure that both the training and test sets are representative of the whole dataset. After 
shuffling, the data was divided into two equal parts: 193 samples were used for the training set, and 
the remaining 194 samples were used for testing. The training set was used to build the prediction 
ellipsoid by estimating the average values and relationships between features. The test set, which 
was not used during training, helped check how well the model works on new, unseen data. This 
approach provides a fair way to measure recognition accuracy, recall, and specificity, and helps 
prevent overfitting to the training data. 



Table 2 
The covariance matrix of the set s036 after the removal of outliers 

 X1 X2 X3 X4 X5 X6 X7 X8  

X1 0.0429 0.0457 0. 0565 -0.0433 0.0559 -0.0447 0.0565 -0.0466  
X2 0.0457 0.012 -0.0324 -0.0229 0.0437 0.0269 0.0483 0.02  
X3 0.0565 -0.0324 0.0441 0.0428 0.0551 -0.0321 -0.0662 -0.036  
X4 -0.0433 -0.0229 0.0428 0.0247 -0.0412 0.0355 -0.0427 0.0322  
X5 0.0559 0.0437 0.0551 -0.0412 0.0428 0.0491 0.041 -0.044  
X6 -0.0447 0.0269 -0.0321 0.0355 0.0491 0.036 0.0311 0.041  
X7 0.0565 0.0483 -0.0662 -0.0427 0.041 0.0311 0.0436 0.0347  
X8 -0.0466 0.02 -0.036 0.0322 -0.044 0.041 0.0347 0.3  

The training set has a mean vector given by 𝑋̅ = {0.0434; 0.2063; 0.0570; 0.3009; 0.0392; 0.5437; 
0.0414; 0.7779}. The corresponding covariance matrix is presented in Table 3. 

Table 3 
The covariance matrix of the training set 

 X1 X2 X3 X4 X5 X6 X7 X8  

X1 0.0433 0.0461 0.0592 -0.0427 0.0571 -0.0416 0.0581 -0.0598  
X2 0.0461 0.011 -0.0324 -0.0224 0.0442 0.0254 0.0491 0.02  
X3 0.0592 -0.0324 0.0446 0.0427 0.0546 -0.0328 -0.0521 -0.038  
X4 -0.0427 -0.0224 0.0427 0.0245 0.0413 0.0355 0.0555 -0.0386  
X5 0.0571 0.0442 0.0546 0.0413 0.0425 0.031 0.041 -0.0312  
X6 -0.0416 0.0254 -0.0328 0.0355 0.031 0.023 0.0329 0.041  
X7 0.0581 0.0491 -0.0521 0.0555 0.041 0.0329 0.0443 0.0364  
X8 -0.0598 0.02 -0.038 -0.0386 -0.0312 0.041 0.0364 0.295  

The Mardia test indicates that the training set does not follow a multivariate normal distribution. 
The test statistic for multivariate skewness 𝑁𝛽1/6 was calculated as 1849.77, which exceeds the 
quantile of the chi-square distribution of 163.65 at 120 degrees of freedom and a 0.005 significance 
level. Additionally, the test statistic for multivariate kurtosis, 𝛽2, was found to be 149.04, surpassing 
the corresponding normal distribution threshold of 84.69, based on a mean of 80, a variance of 3.32, 
and the same significance level. These results indicate a significant deviation from multivariate 
normality, supporting the need to apply a normalizing transformation. 

As a result of applying the univariate decimal logarithm transformation, the normalized training 
set has a mean vector of  𝑍̅ = {-1.3663; -0.7339; -1.2478; -0.5333; -1.4102; -0.2767; -1.3874; -0.1627}. The 
corresponding covariance matrix is presented in Table 4. 

Table 4 
The covariance matrix of the normalized training set by decimal logarithm 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8  

Z1 0.0232 0.038 0.0373 -0.0349 0.0379 0.0414 0.0375 0.0212  
Z2 0.038 0.043 -0.0238 -0.0281 0.0397 0.0270 0.0222 0.016  
Z3 0.0373 -0.0238 0.0231 0.0356 0.0336 -0.0214 -0.032 -0.0227  
Z4 -0.0349 -0.0281 0.0356 0.011 0.0312 0.0356 0.0477 -0.0347  
Z5 0.0379 0.0397 0.0336 0.0312 0.0232 0.036 0.0212 -0.0323  
Z6 0.0414 0.0270 -0.0214 0.0356 0.036 0.0292 0.0217 0.011  
Z7 0.0375 0.0222 -0.032 0.0477 0.0212 0.0217 0.024 0.0232  
Z8 0.0212 0.016 -0.0227 -0.0347 -0.0323 0.011 0.0232 0.038  

The normalized training set by decimal logarithm does not satisfy the assumption of multivariate 
𝑁𝛽1/6 = 



546.59, exceeds the quantile of the chi-square distribution, which is 163.65 at 120 degrees of freedom 
and a significance level of 0.005. In addition, the test statistic for multivariate kurtosis, 𝛽2 = 101.39, 
is greater than the value of 84.69, based on a normal distribution with a mean of 80, a variance of 
3.32, and a 0.005 significance level. These results confirm significant deviation from multivariate 
normality. However, the transformation improved the distribution, bringing it closer to the Gaussian. 

The univariate BCT was applied to the training set. Using the maximum likelihood estimation 
method for the logarithmic function (2), the following parameter estimates were obtained: 
λ1̂ = 0.0501, λ2̂ = 0.1127, λ3̂ = 2.0209, λ4̂ = 0.9140, λ5̂ = 0.9446, λ6̂ = -2.6803, λ7̂ = -1.1806, λ8̂ = -0.9382. 
As a result of applying the univariate BCT with components (1), where each variable is transformed 
independently of the others, the normalized training set has the following mean vector: 𝑍̅ = {-2.9101; 
-1.5283; -0.4933; -0.7298; -1.0090; -1.9666; -36.4872; -0.5659}, the corresponding covariance matrix is 
presented in Table 5. 

Table 5 
The covariance matrix of the normalized training set by univariate BCT 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8  

Z1 0.0125 0.0233 0.0597 -0.036 0.032 0.0231 0.1373 0.0112  
Z2 0.0233 0.1550 -0.0445 -0.0294 0.032 0.1492 0.3963 0.0887  
Z3 0.0597 -0.0445 0.0612 0.0512 0.0632 -0.0487 -0.0487 -0.0446  
Z4 -0.036 -0.0294 0.0512 0.0255 0.0516 0.0273 0.0291 0.035  
Z5 0.032 0.032 0.0632 0.0516 0.0436 0.034 0.0127 0.0436  
Z6 0.0231 0.1492 -0.0487 0.0273 0.034 0.9331 1.3638 0.3221  
Z7 0.1373 0.3963 -0.0487 0.0291 0.0127 1.3638 38.0950 0.9601  
Z8 0.0112 0.0887 -0.0446 0.035 0.0435 0.3221 0.9601 0.3178  

The training set normalized using the univariate BCT does not deviate from multivariate 
 

𝑁𝛽1/6 = 163.03, does not exceed the quantile of the chi-square distribution, which is 163.65 for 120 
degrees of freedom at a 0.005 significance level. Similarly, the test statistic for multivariate kurtosis, 
𝛽2 = 80.98, remains below the critical threshold of 84.69, calculated for a normal distribution with a 
mean of 80 and a variance of 3.32. These results indicate that the distribution of the training set 
normalized using the univariate BCT follows an approximately multivariate normal distribution. 

The eight-variate BCT was applied to the training dataset. The parameter estimates were obtained 
by maximizing the log-likelihood function (3), resulting in the following values: λ1̂ = 0.0668, 
λ2̂ = 0.2385, λ3̂ = 1.9483, λ4̂ = 0.7088, λ5̂ = 0.8871, λ6̂ = -2.5191, λ7̂ = -1.1207, λ8̂ = -0.9131. Unlike the 
univariate approach, where each variable is transformed independently, the eight-variate BCT 
accounts for the joint structure of the data, preserving the correlations between features. 

Table 6 
The covariance matrix of the normalized training set by the eight-variate BCT 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8  

Z1 0.0113 0.0228 0.0411 -0.0373 0.0319 0.0225 0.108 0.01  
Z2 0.0228 0.102 -0.0446 -0.011 0.032 0.109 0.261 0.072  
Z3 0.0411 -0.0446 0.0619 0.0521 0.0647 -0.0498 -0.0491 -0.0456  
Z4 -0.0373 -0.011 0.0521 0.029 0.0424 0.028 0.0289 0.0327  
Z5 0.0319 0.032 0.0647 0.0424 0.0452 0.0345 0.0126 0.0437  
Z6 0.0225 0.109 -0.0498 0.028 0.0345 0.76 1.029 0.289  
Z7 0.108 0.261 -0.0491 0.0289 0.0126 1.029 25.985 0.785  
Z8 0.01 0.072 -0.0456 0.0327 0.0437 0.289 0.785 0.312  



After transformation with components (1), the normalized training set was characterized by the 
following mean vector: 𝑍̅ = {-2.8368; -1.3729; -0.5113; -0.8118; -1.0637; -1.8200; -31.5424; -0.5597}, the 
corresponding covariance matrix is provided in Table 6. 

To assess the deviation of the distribution of the normalized training set from multivariate 
𝑁𝛽1/6 = 162.07, 

does not exceed the quantile of the chi-square distribution, which is 163.65 with 120 degrees of 
freedom at a significance level of 0.005. The test statistic for multivariate kurtosis, 𝛽2 = 80.95, is lower 
than the corresponding quantile of the normal distribution, 84.69, calculated for a mean of 80 and a 
variance of 3.32. Based on these results, the distribution of the normalized training set is considered 
approximately multivariate normal. 

5. Results 

The next step is the construction of mathematical models in the form of prediction ellipsoids and the 
comparison of recognition metrics. The first model corresponds to the prediction ellipsoid 
constructed for non-Gaussian data (4) (PENGD), the original training set without any normalization. 
The second model is a prediction ellipsoid for normalized data (5) using the univariate decimal 
logarithm transformation (PE-Log). The third model is a prediction ellipsoid for normalized data (5) 
transformed by the univariate Box-Cox transformation (PE-UBCT). The fourth model is a prediction 
ellipsoid for normalized data (5) by the eight-variate Box-Cox transformation (PE-EBCT). 
Recognition metrics for all models are presented in Table 7. 

Table 7 
Comparison of prediction ellipsoids 

Model Specificity Recall Precision F1 score Accuracy 
PENGD 0.9625 0.9588 0.9254 0.9418 0.9613 
PE-Log 0.9750 0.9639 0.9492 0.9565 0.9714 

PE-UBCT 0.9900 0.9845 0.9795 0.9820 0.9882 
PE-EBCT 0.9900 0.9897 0.9796 0.9846 0.9899 

PENGD uses non-Gaussian data without any normalization. While this model demonstrates 
relatively high performance, with an accuracy of 96.13%, its precision (92.54%) is notably lower than 
its recall (95.88%), indicating a higher rate of false positives relative to false negatives.  

Applying the univariate decimal logarithm transformation (PE-Log) leads to a noticeable 
improvement across all metrics, particularly in precision (94.92%) and F1 score (95.65%), suggesting 
better balance between false positives and false negatives. This transformation brought the data 
closer to a Gaussian distribution, but the distribution still showed significant deviation from 
normality. As a result, recognition metrics improved, but not as much as with a more powerful 
normalizing transformation. 

The univariate Box-Cox transformation (PE-UBCT) further enhances performance, achieving an 
F1 score of 98.20% and accuracy of 98.82%. The improvements in both precision (97.95%) and recall 
(98.45%) reflect a strong ability to correctly recognize both target and negative instances.  

The highest performance is achieved by the prediction ellipsoid for normalized data using the 
eight-variate Box-Cox transformation (PE-EBCT). It shows the highest recall (98.97%) and F1 score 
(98.46%), as well as a specificity of 99.00% and overall accuracy of 98.99%. These findings indicate 
that multivariate transformations provide better recognition metrics, as they preserve the 
correlations between features. 

The results show that applying prediction ellipsoids for normalized data greatly improves 
recognition accuracy, recall, and specificity. While univariate transformations lead to noticeable 
improvements, the eight-variate Box-Cox transformation provides the most accurate and balanced 
results, as it takes into account the relationships between features. 



6. Discussion 

The results demonstrate that applying a prediction ellipsoid for normalized data significantly 
improves the recognition accuracy, recall, and specificity when the training set deviates from 
multivariate normality. Among the tested transformations, the eight-variate BCT achieved the most 
accurate and balanced results, as it preserves the correlations between features. 

The univariate decimal logarithm transformation brought the data closer to multivariate 
ated that the distribution still exhibited a statistically significant 

deviation. As a result, the corresponding model PE-Log showed improvement in recognition metrics 
compared to the non-normalized PE-NGD, but its performance was lower than that of the prediction 
ellipsoid for normalized data using other transformations. The PE-UBCT model showed further 
improvement, as it more effectively corrected skewness and kurtosis in individual variables. 
However, since it transforms features independently, it does not preserve inter-feature dependencies, 
which results in lower recognition accuracy, recall, and specificity compared to the multivariate 
transformation. 

In all models, prediction ellipsoids were constructed using a significance level of 0.005. This 
threshold is commonly used in one-class classification and outlier detection tasks, where high 
specificity is desirable. A stricter significance level results in a smaller ellipsoid, reducing the false 
positive rate, but may also exclude borderline true positives. The balance between sensitivity and 
specificity must therefore be considered when selecting this parameter. 

Another important aspect is the size and representativeness of the training data. Since the 
prediction ellipsoid relies on estimating the mean vector and covariance matrix, it requires a 
sufficient number of samples to ensure stability. In this study, 13 data points were removed as outliers 
before model construction. While this removal improved the approximation to multivariate 
normality, it may also have excluded meaningful variation in the data, especially if the outliers 
reflected rare but valid behavior. 

Although the eight-variate transformation provided the best results in this experiment, selecting 
an appropriate normalization method remains a nontrivial task, particularly when the data have 
complex, multimodal, or heavy-tailed distributions. 

The dataset used in this study is limited to input sequences of fixed structure and moderate length, 
which may not fully capture the diversity observed in real-world typing behavior. In practical 
scenarios, longer input sequences, such as passwords or phrases containing 20 22 characters, are 
generally more suitable, as they allow for more comprehensive feature extraction. Moreover, in this 
work, only eight features were selected from the available data, which may restrict the model's ability 
to fully represent the user's typing dynamics. In addition to the length and content of the typed 
password, other important factors were not included in this study. Contextual influences, such as 
the user's physical condition, emotional state, time of day, or even environmental conditions like 
temperature or humidity, can affect how a person types. These factors may lead to changes in typing 
rhythm or key timing and could have a noticeable impact on recognition accuracy in real-world 
applications [30]. Although this study focused only on timing features from controlled input, future 
work could benefit from considering these real-life conditions, as they may help improve the 
reliability and robustness of keystroke-based biometric systems.  

7. Conclusions 

This study explored the impact of non-Gaussian data and examined how the application of prediction 
ellipsoids for normalized data affects keystroke dynamics recognition accuracy, recall, and 
specificity. A new, reduced feature set was used, consisting of hold time and inter-key time features. 
This combination reflects different aspects of user behavior, key press duration, and transition time 
between keys, allowing the model to capture more diverse typing characteristics and improve 
recognition outcomes. 



The results demonstrated that the application of prediction ellipsoids for normalized data 
significantly enhances the recognition accuracy, recall, and specificity. Among the evaluated 
transformations, the eight-variate Box-Cox transformation achieved the most accurate and balanced 
results. This confirms the advantage of multivariate normalization, which preserves correlations 
between features and brings the data closer to a multivariate normal distribution. In contrast, 
univariate transformations: decimal logarithm and univariate Box Cox, showed only moderate 
improvements, as they treat each feature independently and do not account for inter-feature 
dependencies. 

Despite the improvements achieved in this study, there are still some limitations and 
disadvantages. 

One disadvantage is the need for a large and representative dataset. Building a reliable prediction 
ellipsoid requires enough data to accurately estimate both the average values and the relationships 
between features, typically at least 100 samples in the training set. Another disadvantage is the 
difficulty of selecting an appropriate normalizing transformation. While the multivariate Box-Cox 
transformation gave the best results, choosing the most suitable normalization method is not always 
an easy task, especially when the data contains outliers or has a complex structure. 

A key limitation of this work is that 13 outliers were removed before model construction. 
Although this improved the fit to a multivariate normal distribution, it may have excluded rare but 
valid typing patterns. 

Future research will focus on several directions to further improve keystroke dynamics 
recognition. First, more advanced normalization techniques could be explored. While the 
multivariate Box-Cox transformation showed the best results in this study, it may not be optimal for 
all datasets. The Johnson transformation, for example, may provide better adaptability to complex 
or multimodal data distributions, especially when the deviation from normality is strong. Second, it 
would be beneficial to use a more comprehensive dataset that includes a larger number of features. 

he current dataset contains only 10 
characters, while longer sequences, such as those with 20 to 22 characters, are generally preferred, 
as they allow for more detailed feature extraction and better capture of individual typing patterns. It 
would also be useful to consider contextual factors that can influence keystroke dynamics, such as 
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