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Abstracts 
Algorithms for the exchange of information between subscribers are proposed, based on surjective mappings 
of finite associative-commutative rings with unity and systems of linear equations over such rings. The paper 
presents algorithms for constructing finite rings, generating surjective mappings of these rings, as well as the 
information exchange protocol and computational features of the protocol’s implementation. The main 
motivation for the development of such a cryptosystem is that almost all established cryptosystems require 
computations involving either large prime numbers or the construction of finite fields of large order. These 
constructions also necessitate the use of rather complex algorithms. In contrast, the proposed system does not 
require complex calculations, nor the construction of operation tables for rings. Its security relies on the 
combinatorial complexity of the set of surjective mappings and isomorphisms between finite rings of 
relatively small order. The algorithms for solving systems of linear equations, which are integral to the 
information exchange protocols over such rings, exhibit polynomial-time complexity. The operation of the 
cryptosystem is demonstrated through examples. 
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1. Introduction 
In cryptographic applications, finite fields and Diophantine equations, as well as systems of such 
equations, are frequently employed [1, 2]. This is primarily due to the fact that a finite field 
possesses a cyclic multiplicative group, which enables the efficient use of the discrete logarithm 
function, while algorithms for solving Diophantine equations and systems of such equations over 
the set of natural numbers exhibit high computational complexity [3]. Cryptosystems constructed 
on the basis of these structures require the generation of large prime numbers, the construction of 
finite fields of high order, or significant memory resources and computational time for preparatory 
operations [4]. 

The motivation for this work is to develop a cryptosystem based on objects of relatively small size 
that still provides the necessary level of cryptographic strength. A system of this type was proposed 
in [5], and the present work represents a further development of that approach. The foundation of 
the cryptosystem is the use of surjective mappings of finite rings and their isomorphisms, utilizing 
systems of linear equations over residue rings. The security of such a system is based on the 
combinatorial complexity of the set of mappings between rings of relatively small order. 
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2. Necessary definitions and concepts 
Let 𝑍𝑘 denote the finite residue ring modulo 𝑘, that is, 𝑍𝑘 – is an associative-commutative ring (AC-
ring) with unity. Elements 𝑎, 𝑏 ∈ 𝑍𝑘 ∖ {0} are called additive inverses if 𝑎 + 𝑏 ≡ 0 (mod 𝑘), and are 
called zero divisors if 𝑎 ⋅ 𝑏 ≡ 0 (mod 𝑘). Since the ring 𝑍𝑘 has a multiplicative identity, elements 𝑐, 𝑑 
∈ 𝑍𝑘 such, that 𝑐 ⋅ 𝑑 ≡ 1 (mod 𝑘) are called units. The set of units in 𝑍𝑘 forms an abelian group [6]. 

Let 𝐺𝑘 denote a finite AC-ring with unity, isomorphic to the ring 𝑍𝑘, constructed according to a 
given defining sequence for addition with unity. This sequence is referred to as the defining 
sequence and based on the laws satisfied by the addition and multiplication operations of the ring, 
the operation tables for 𝐺𝑘 are constructed (algorithms for constructing the operation tables of 𝐺𝑘 
can be found in [5]). This sequence also specifies the isomorphism between the rings 𝑍𝑘 and 𝐺𝑘, 
which allows one to avoid constructing the operation tables for 𝐺𝑘, since operations can be 
performed in 𝑍𝑘 and, via the isomorphism, the results can be mapped to 𝐺𝑘, where operations in 𝑍𝑘 

are more efficient. 
In the general case, the defining sequence of the ring 𝐺𝑘 𝑎 = (1, 𝑎1, 𝑎2, … , 𝑎𝑘−2, 0) is specified by 

the mapping 𝑓(0) = 0 + 1 = 1, 𝑓(1) = 1 + 1 = 𝑎1, 𝑓(𝑎𝑖) = 𝑎𝑖 +1 = 𝑎𝑖 + 1, 𝑓 (𝑎𝑘−2) = 𝑎𝑘−2 + 1 = 𝑎𝑘−1 = 0, 
where  𝑖 = 0, 1, … , 𝑘 − 1. 

The defining sequence of the ring 𝐺𝑘 is generated by the following algorithm. 

GEN-G(𝑎, 𝑐, 𝑙, 𝑘) 
Input: Order 𝑘 and coefficients of the expression 𝑓 (𝑖) = 𝑎 ⋅ 𝑖 + 𝑐, where 𝑘 = 𝑙𝑚, gcd(𝑎, 𝑚)= gcd(𝑎, 𝑘)=1. 
Output: The addition table row with unity as a one-dimensional array 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘) of length 𝑘.  

Method: 
1. for 𝑖 = 0 to 𝑘 − 1 do 𝑏[𝑖 + 1] ∶= 𝑎 ⋅ 𝑖 + 𝑐 (mod 𝑘) od 
2. According to common rules, transform the array bb and fix its values (creation of the common defining 

sequence). 
3. for 𝑖 = 1 to 𝑘 do 

if (𝑏𝑖 = 0 ∧ 𝑖 ≠ 𝑘) then change 𝑏𝑖 and 𝑏𝑘; 
if (𝑏𝑖 = 1 ∧ 𝑖 ≠ 1) then change 𝑏𝑖 and 𝑏1; 

od 
(* This defines the isomorphism 𝑔(𝑖) = 𝑏𝑖, where 𝑖 = 1, 2, … , 𝑘 *) 

4. Using the array 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘) construct the array 𝑃[1 × 𝑘] (from which, if necessary, the operation tables of 
the ring can be constructed): 

𝑃[0] ∶= 𝑏1;  
for 𝑖 = 1 to 𝑘 − 2 do 𝑃[𝑏𝑖] ∶= 𝑏𝑖+1 od  
𝑃[𝑏𝑘−1] ∶= 0. 

 
The correctness of the algorithm follows from the fact that if gcd(𝑎, 𝑘)=1 and 𝑖 runs through a 

complete residue system, then 𝑎 ⋅ 𝑖 + 𝑐 also runs through a complete residue system [6]. 
The time complexity of the GEN-𝐺 algorithm is 𝑂(𝑘 log2 𝑘), since integer multiplication has 

complexity 𝑂(log2 𝑘), and there are at most 𝑘 such multiplications. 

It should be noted that operator 1) of the GEN-𝐺 algorithm can generate no more than (𝑘 − 2)𝜑(𝑘) 
initial sequences, where 𝜑 – is Euler’s totient function. For cryptographic applications, this number 
is insufficient. Therefore, by agreement between the parties, the initial sequence generated by the 
algorithm is transformed in the same way by operator 2), which defines the cryptosystem as 
symmetric. 

Example1. Generate the defining sequence for 𝑘 = 6 and 𝑓 (𝑖) = 𝑖 + 4. 
The first loop of the algorithm (operator 1) generates the following initial sequence: 

1. 𝑏1 = 4; 𝑏2 = 5; 𝑏3 = 0; 𝑏4 = 1; 𝑏5 = 2; 𝑏6 = 3. 
2. The second operator performs a transformation: it swaps pairs of adjacent elements and performs a single cyclic 

permutation of all elements. The resulting sequence is 2, 5, 4, 1, 0, 3. 
3. The second loop (operator 3) places 0 and 1 in their correct positions and produces the defining sequence and 

isomorphism: 
𝑔(𝑖) = 𝑏𝑖, 𝑖 = 1, 2, … , 6, where 𝑏1 = 1; 𝑏2 = 5; 𝑏3 = 4; 𝑏4 = 2; 𝑏5 = 3; 𝑏6 = 0. 



4. The third loop (operator 4) generates, from the array 𝑏1 = 1, 𝑏2 = 5, 𝑏3 = 3, 𝑏4 = 0, 𝑏5 = 2, 𝑏6 = 4 the sequence 𝑃 = (1, 
5, 3, 0, 2, 4 from which the operation tables of the ring 𝐺6 are constructed. ♠1 

Thus, the isomorphism between the rings 𝐺𝑘 and 𝑍𝑘 is determined by the defining sequence 
generated by the GEN-𝐺 algorithm. Specifically, we have the following 
correspondence: 

, 

 
where the isomorphic mapping g is defined as: 𝑔(𝑘) = 0, 𝑔(1) = 𝑏1 = 1, 𝑔(𝑖) = 𝑏𝑖, 𝑖 = 2, … , 𝑘 − 1. 
 

3. Message Exchange Protocol  
The design of the cryptosystem is based on the following scheme: 

 

Figure. 1: System architecture 

In this scheme, the mappings (see Fig. 1) are defined as follows: 
– 𝜑 is an isomorphism between the rings 𝑍𝑚 and 𝐺𝑚, 
– 𝜓 is a surjective mapping from the ring 𝐺𝑘 onto the ring 
𝐺𝑚, 

– 𝜆 is a surjective mapping from the ring𝐺𝑘 onto the ring 
𝐺𝑚, 

– 𝜓1 is a bijection between the factor set 𝐺𝑘/𝜓 and the ring 
𝐺𝑚, 

– 𝜆1 is a bijection between the factor set 𝐺𝑘/𝜆 and the ring 
𝐺𝑚. 

The message exchange between Alice and Bob is performed according to the following protocol. 
Initially, Alice and Bob exchange, via a secure channel, a quadruple (𝑎, 𝑐, 𝑙, 𝑚), whose elements 

are parameters of the algorithm GEN-G(𝑎, 𝑐, 𝑙, 𝑚). Using the expression 𝑓 (𝑖) = 𝑎 ⋅ 𝑖 + 𝑐, where 
gcd(𝑎, 𝑘)= gcd(𝑎, 𝑚)=1, they generate the initial sequences of the rings 𝐺𝑘 and 𝐺𝑚 and, by agreement, 
construct the defining sequences 𝑏 = (𝑏1 = 1, 𝑏2, … , 𝑏𝑚−1, 𝑏𝑚 = 0) and 𝑐 = (𝑐1 = 1, 𝑐2, … , 𝑐𝑘 = 0) for the 
rings 𝐺𝑚 and 𝐺𝑘 respectively, in the same manner. 

After this, Alice and Bob proceed as follows: 
Step 1. а) Alice constructs a system of expressions in the ring 𝐺𝑚: 

																																																													
1 The symbols ♠ and ■ denote the end of the example and the end of the proof, respectively. 

1 2 3 4 … 𝑘 − 
1 

𝑘 

𝑏1 𝑏2 𝑏3 𝑏4 … 𝑏𝑘−1 0 



 

b) She transforms 𝑙(𝑥) in the ring 𝐺𝑚 as follows: 

𝐿(𝑥) = 𝐵𝑥 + 𝑎 = 𝐵𝑟(𝐵𝑟−1(… 𝐵2(𝐵1(𝑙(𝑥) + 𝑎) + 𝑎1) … + 𝑎𝑟−1) + 𝑎𝑟) + 𝑎𝑟+1, 

where 𝐵𝑖 are non-singular matrices of dimension 𝑝 × 𝑝, 𝑎, 𝑎𝑗 – are vectors of dimension 1 × 𝑝, 𝑖 = 1, 
2, … , 𝑟, 𝑗 = 1, 2, … , 𝑟 + 1. The result of this transformation is a system 

c) She replaces the coefficients in 𝑙(𝑥) and 𝐿(𝑥) with their counterparts from the factor set 𝐺𝑘/𝜆1: 

 
and 

Alice then transmits the expressions 𝑙(𝑥) and 𝐿(𝑥) via a public channel or publishes them on a 
website. 

Step 2.  

a) Bob, using the expressions 𝑙 (𝑥) and 𝐿(𝑥) and the mappings 𝜆1
−1 and 𝜑−1 , finds the expressions 

𝑙(𝑥) and 𝐿(𝑥) in the ring 𝑍𝑚, and selects an arbitrary vector 𝑎 of dimension 1 × 𝑞. 

b) Bob wishes to send Alice a message 𝑣. To do this, he solves the system 𝑙(𝑥) = 𝑣, finds the 

solution 𝑥 and computes the vectors 𝑙 (𝑎) = 𝑑 and 𝐿(𝑥 + 𝑎) = 𝑑1 in the ring 𝑍𝑚. 

c) Bob keeps the vector 𝑣 secret, replaces the values 𝑑 and 𝑑1 with their counterparts from one of 
the factors sets 𝐺𝑘/𝜓 or 𝐺𝑘/𝜆 and sends Alice the pair of vectors (𝑑, 𝑑! ) via a public channel. 

Step 3.  
a) Alice computes the inverse matrices to the matrices 𝐵𝑖 in the ring 𝐺𝑚 (these computations are 

performed in the ring 𝑍𝑚 via the isomorphism 𝜑). 
b) She recovers the value 𝑣, since she possesses all the necessary data. 

Proposition 1. The message exchange according to the protocol is performed correctly. 

Proof. This follows directly from the properties of linear operators, the bijection 𝜆1, and the 
isomorphism 𝜑. Indeed, let us denote the product of matrices 𝐵𝑟𝐵𝑟−1 … 𝐵1 = 𝐷, then 



𝑑1 = 𝐿((𝑥 + 𝑎) + 𝑎1) = 𝐷(𝑙(𝑥 + 𝑎) + 𝑎1) + 𝑏 + 𝑎𝑟+1 = 𝐷(𝑙(𝑥 + 𝑎) + 𝑎1) + 𝑐, 

where 𝑐 = 𝑏 + 𝑎𝑟+1, and 𝑏 is the vector of values obtained by multiplying the matrices 𝐵1, 𝐵2, … , 𝐵𝑟 
by the vectors 𝑎1, 𝑎2, … , 𝑎𝑟. Then 

𝐷−1(𝐷(𝑑1 − 𝑎𝑟+1)) − 𝐷−1𝑏 = 𝐷−1(𝐷(𝑙(𝑥 + 𝑎) + 𝑎1) + 𝑏) − 𝐷−1𝑏 = 𝑙(𝑥 + 𝑎) + 𝑎1. 

Thus, 𝑙(𝑥 + 𝑎) + 𝑎1 − [𝑎1 + 𝑑] = 𝑙(𝑥). ■ 

From Figure 1, it follows that there are at least three paths for ciphertext generation in the 
system: 
1) 𝐺𝑘/𝜓 → 𝐺𝑚 → 𝑍𝑚 → 𝐺𝑚 . Here, the expressions 𝑙(𝑥) and 𝐿(𝑥) are explicitly represented in 

the factor set 𝐺𝑘/𝜓, which, via the bijections 𝜑 and 𝜓1, are mapped to the ring 𝑍𝑚, where 
computations are performed and the ciphertext is constructed in the ring 𝐺𝑚. 
2) 𝐺𝑘/𝜆 → 𝐺𝑚 → 𝑍𝑚 → 𝐺𝑘/𝜓. Here, the expressions 𝑙(𝑥) and 𝐿(𝑥) are explicitly represented in 

the factor set 𝐺𝑘/𝜆, and via the bijections 𝜆1 and 𝜑, these expressions are mapped to the ring 𝑍𝑚, 
where computations are performed and the ciphertext is constructed via the bijections 𝜑 and 𝜓1 in 
the factor set 𝐺𝑘/𝜓. This path corresponds to the protocol described above. 
3) 𝐺𝑚/𝜓 → 𝐺𝑚 → 𝑍𝑚 → 𝐺𝑘/𝜆. Here, the expressions 𝑙(𝑥) and 𝐿(𝑥) are explicitly represented in 

the factor set 𝐺𝑘/𝜓, and via the bijections 𝜓1 and 𝜑, these expressions are mapped to the ring 𝑍𝑚, 
where computations are performed and the ciphertext is constructed in the factor set 𝐺𝑘/𝜆. 

Example 2. Consider the preparatory steps of the protocol. 
Suppose Alice and Bob choose the first path for ciphertext generation, exchange the tuple (7, 5, 2, 25), and fix the 

following defining sequence for the ring 𝐺25 (after executing operators 1) and 2)): 

𝑏 = (1, 6, 8, 10, 2, 4, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 12, 14, 16, 18, 20, 24, 22, 23, 0). 

Operator 3) of the GEN-𝐺(7, 5, 2, 25) algorithm defines the isomorphic mapping 𝜑 ∶ 𝑍25 → 𝐺25, which in this case is: 
     

𝜑(0) = 0, 𝜑(5) = 2, 𝜑(10) = 9, 𝜑(15) = 19, 𝜑(20) = 18, 
𝜑(1) = 1, 𝜑(6) = 4, 𝜑(11) = 11, 𝜑(16) = 21, 𝜑(21) = 20, 
𝜑(2) = 6, 𝜑(7) = 3, 𝜑(12) = 13, 𝜑(17) = 12, 𝜑(22) = 24, 
𝜑(3) = 8, 𝜑(8) = 5, 𝜑(13) = 15, 𝜑(18) = 14, 𝜑(23) = 22, 
𝜑(4) = 10, 𝜑(9) = 7, 𝜑(14) = 17, 𝜑(19) = 16, 𝜑(24) = 23, 

 
where 𝜑(25) = 𝜑(0) = 0, 𝜑(1) = 1, 𝜑(2) = 𝜑(1 + 1) = 6, 𝜑(3) = 6 + 1 = 8, 𝜑(4) = 8 + 1 = 10, … , 𝜑(24) = 23. 

 

Using this isomorphism, operator 4) of the GEN-G algorithm constructs the array 𝑃[1 × 25] (for convenience, it is 
presented as a substitution row). 

 Let the letters of the English alphabet be naturally enumerated, and the defining sequence of the ring 𝐺50, generated by 
the GEN-G algorithm is as follows  

1,5,49,7,10,17,2,34,11,20,39,33,48,3,45,4,37,6,41,13,43,15,36,8,38,9, 
35,12,40,14,44,19,46,16,47,21,31,24,27,42,29,22,32,23,30,25,28,18,26,0. 

Table 1 Numeric equivalents of alphabet symbols 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 



a b c d e f g h i/j k l m n o p q r s t u v w x y z 
 

By defining the bijection 𝜓1 from the ring 𝐺50
2, to the ring 𝐺25 as 

for 𝑖 = 1, 2, … , 50, we obtain the ordinal number j of the class of the element 𝑚𝑖. 

Table 2 Mapping of classes 𝐺50 to 𝐺25 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
7 10 17 2 34 11 20 39 33 48 3 45 4 37 6 41 13 43 15 36 8 38 9 35 12 
40 14 44 19 46 16 47 21 31 24 27 42 29 22 32 23 30 25 28 18 26 0 1 5 49 
a b c d e f g h i/j k l m n o p q r s t u v w x y z 

 
This concludes the preparatory steps. ♠ 

3.1. Cryptanalysis of the Protocol 
Let us consider possible cryptanalysis scenarios for the protocol. The cryptanalyst has access to the 
following data: 

a) The system 𝐿(𝑥), from which the block length of the message can be determined by the 
number of congruences in the system; 

b) The ciphertext length, which can be determined by the number of unknowns in the 
congruences;  

c) Possibly, the orders of the rings 𝐺𝑚 and 𝐺𝑘. 
Unknowns include the isomorphism 𝜑, the bijections 𝜓1, 𝜆1 and the surjections 𝜓 and 𝜆. 
Suppose in case (a), the cryptanalyst has no further information. Then, the only feasible method to 

recover the plaintext is exhaustive search. The complexity of such a search is determined by the 
number of possible ways to encrypt a message, which is composed of:  

1. The number of possible isomorphisms (bijections) 𝜑 – 𝑂((𝑚 − 2)!), where 𝑚is the order of 
the ring 𝐺𝑚, 

2. The number of bijections 𝜓1 and 𝜆1: 𝑂(𝑚!) each, 

3. The number of surjections 𝜓 and 𝜆: 𝑂 !!(!!)!

!
, where 𝑘 = 𝑙𝑚. 

The total complexity, even for such a simple cryptosystem as in the example above, is 

 
If we assume that one combination is generated in 10−14 seconds, then to enumerate all 
combinations would require 

1031
 ⋅ 10-14

 = 1017 

seconds, which is more than 107 years. 
Clearly, if the orders 𝑘 and 𝑚 are chosen to be larger, the brute-force method becomes infeasible.  

b) Suppose in case (b), the cryptanalyst has access to several encrypted messages, i.e., the texts 

																																																													
2 As 𝐺50, you can take any set of power 25 ⋅ 𝑙, and Alice and Bob must equally order the elements of this set and construct a 
bijection 𝜆1. 



 𝑚1 = 𝜑(𝑑11, 𝑑12), 𝑚2 = 𝜑(𝑑21, 𝑑22), 𝑚3 = 𝜑(𝑑31, 𝑑32), 

Since there are (𝑚 − 2)! bijections of type 𝜑 and the vectors 𝑚1, 𝑚2, … belong to different sets, this 
information requires knowledge of the bijection 𝜑, i.e., the defining sequence of 𝐺𝑚. However, these 
objects are not available to the cryptanalyst, and searching for them by brute force requires 
generating (𝑚 − 2)! combinations. Moreover, for these combinations, one must also find the 
symbolic equivalents (which is also 𝑚! combinations), so this information does not allow the 
plaintext to be found in a reasonable time. 

(c) Suppose in case (c), the cryptanalyst has access to both encrypted and decrypted messages, i.e., 
the data 

𝑚1, 𝑚2, 𝑚3, … і 𝑚1 = 𝜉−1(𝜑−1(𝑚1)), 𝑚2 = 𝜉−1(𝜑−1(𝑚2)), 𝑚3 = 𝜉−1(𝜑−1(𝑚3)), … 

where 𝜉−1 maps the numeric text to the symbolic text. 

Since the mappings 𝜉, 𝜑, and the system 𝑙(𝑥) are unknown to the cryptanalyst, it is not possible to 
recover the defining sequence from this data. 

From the above example, it is evident that, in computational terms, the most complex step is the 
construction of inverse matrices in the ring 𝐺𝑚. To simplify these computations, it is preferable to 
use the isomorphism 𝜑 ∶ 𝐺𝑚 → 𝑍𝑚 and perform calculations in the residue ring 𝑍𝑚. Once the inverse 
matrices are found, the reverse substitutions can be performed to obtain the corresponding matrices 
in the ring 𝐺𝑚. 

It is known that the multiplicative group of units of the ring 𝐺𝑘 is an abelian group [6]. In order to 
apply the discrete logarithm function in this group, it must be cyclic, i.e., possess a generator. Thus, 
the question arises: under what conditions is the group of units of the ring 𝐺𝑘 cyclic? The answer is 
provided by 

Theorem 1. The multiplicative group of the ring 𝑍𝑘 is cyclic if and only if k is equal to 2, 4, 𝑝𝑚 or 2𝑝𝑚, 
where 𝑚 ≥ 1 and p is an odd prime [6]. 

4. Message Formation 
From the above, it follows that Alice and Bob must exchange, via a secure channel, the tuple (𝑎, 𝑐, 𝑙, 
𝑘), where 𝑎, 𝑐, 𝑙, 𝑘 are the parameters of the GEN-G(𝑎, 𝑐, 𝑙, 𝑘) algorithm. If the order of the ring k is 
chosen to be a multiple of the order of the ring 𝑍𝑚, i.e., 𝑘 = 𝑙 ⋅ 𝑚, then, based on the coprimality of 𝑘, 
𝑚, and 𝑎, the methods for constructing the rings will be known, and the transformations for 
constructing the defining sequences of the rings can be taken identically for 𝐺𝑘 and 𝐺𝑚. 
Furthermore, from the protocol and the example provided, it follows that, in order to transmit the 
desired message 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑝) it is necessary that the system of equations 

 has a solution for arbitrary values of 𝑏1, 𝑏2, … , 𝑏𝑝. The isomorphism between the rings 𝐺𝑚 and 𝑍𝑚 
allows us to consider only the residue ring 𝑍𝑚. The compatibility criterion for a system of linear 
congruences 𝐴𝑥 ≡ 𝑏 (mod 𝑚) of size 𝑝 × 𝑞, (𝑝 < 𝑞) over the ring 𝑍𝑚 requires the existence of a 
solution to the congruence  

 𝑑1𝑦1 + 𝑑2𝑦2 + … + 𝑑𝑠𝑦𝑠 ≡ 1 (mod 𝑚), 

where 𝑑1, 𝑑2, … , 𝑑𝑠 are the values of the last coordinates in the solutions of the homogeneous system 
𝐴𝑥 − 𝑏𝑥0 = 0 [7]. This condition is satisfied for any 𝑏 if the equations of the system are linearly 



independent and the determinant of the subsystem matrix 𝐴1𝑢 ≡ 𝑏 (mod 𝑚) of size 𝑝 × 𝑝, formed by 
the linearly independent columns 𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝑝 of the system 𝐴𝑥 ≡ 𝑏 (mod 𝑚), is coprime with the 
modulus 𝑚. Then, for the subsystem matrix, there exists an inverse matrix, i.e., from 𝐴1𝑢 = 𝑏 (mod 
𝑚) it follows that 𝐴−1

1 𝐴1𝑢 = 𝑢 ≡ 𝐴−1
1 𝑏 (mod 𝑚) for any 𝑏. A vector 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑞), whose 

coordinate indices 𝑖1, 𝑖2, … , 𝑖𝑝 coincide with those of the vector 𝑢 ≡ 𝐴−1
1 𝑏 (mod 𝑚), and the 

remaining coordinates are zero, will be a solution to the system. 
Thus, Alice needs to construct a system of linear equations in which the equations are linearly 

independent and contain a subsystem whose matrix determinant is coprime with the modulus mm. 
To verify the linear independence of the expressions, Alice must solve the system 𝐴𝑇𝑦 ≡ 0 (mod 𝑚) 
and ensure that this system has only the trivial solution. She then constructs a subsystem with the 
described determinant properties. 

Example 3. Let the letters of the English alphabet be naturally enumerated (see Table 1). 
 
Step 1.  

a) Suppose Alice constructs the following expressions in the ring 𝐺25 (expressions with negative coefficients are shown 
in parentheses, where negative coefficients are replaced by their additive inverses): 

 and transforms them into the form 

 where the matrix 

 

b) Alice replaces the coefficients in the constructed expressions 𝑙(𝑥), 𝐿(𝑥) and the matrix 𝐵1 with their counterparts from 
the factor set 𝐺50/𝜓 and obtaining the expressions 

 which she sends to Bob via a public channel or publishes on her website. 
Step 2.  

a) Bob, using the bijections 𝜑 and 𝜓1 finds the corresponding expressions 𝑙(𝑥) and 𝐿(𝑥) in the ring 𝑍25: 

 

It is easy to verify that in the system of expressions 𝑙(𝑥), the second and third columns form a subsystem whose 

determinant is 7, and 7 is coprime with the modulus 25 in the ring 𝑍25 (the compatibility conditions for the system 𝑙(𝑥) are 

satisfied). 
Bob wishes to send Alice the message 

tara tara tarara. 



b) Bob divides the message into blocks of two symbols per block (spaces between message symbols, corresponding to 
element 49, are omitted for simplicity in this example), and replaces them with their numeric equivalents from Table 1: 

 ta ra ta ra ta ra ra 
. 

 18,0 16,0 18,0 16,0 18,0 16,0 16,0 

c) He solves the system of equations in the ring 𝑍25 

 and finds the solution 𝑥̄ = (0, 14, 1, 0). 
d) The value 𝑣1 = (18, 0) is kept secret. He selects the vector 𝑎 = (0, 1, 0, 1) and computes 𝑑 = 𝑙(𝑎) = (2, 15). He adds the 

vector 𝑎 ̄= (0, 1, 0, 1) to the solutions 𝑥̄ = (0, 14, 1, 0), obtaining 𝑥̄ + 𝑎 ̄= (0, 15, 1, 1) and substitutes this sum into 𝐿(𝑥), thus 
finding 𝑑1 = (12, 9). Bob sends Alice the counterparts of the values 𝑑 and 𝑑1 in the ring 𝐺𝑚. 

 
Alice, using the received counterparts, finds the values 𝑑 and 𝑑1, and performs the following 
computations:  

a) She computes the inverse matrix to 𝐵1
−1 in the ring 𝑍25: 

  

b) She computes 𝐵1
−1(𝑑1𝑡

 − (7, 19)𝑡) = 𝐵1
−1 ((12, 9) − (7, 19))𝑡 = 𝐵1

−1 (5, 15)𝑡 and finds 

𝐵1
−1 (5, 15)𝑡 − (2, 15)𝑡 = (20, 15) − (2, 15) = (18, 0) = 𝑣1. 

а) Bob solves the system of equations 

 and finds the solution 𝑥̄ = (0, 18, 12, 0). 
b) The value 𝑣2 = (16, 0) is kept secret. He selects the vector 𝑎 ̄= (1, 0, 1, 0) and computes 𝑑 = 𝑙(𝑎) = (14, 11). He adds the 

vector 𝑎 ̄= (1, 0, 1, 0) to the solution 𝑥̄ = (0, 18, 12, 0), obtaining 𝑥̄ + 𝑎 ̄= (1, 18, 13, 0), and substitutes this sum into 𝐿(𝑥), thus 
finding 𝑑1 = (3, 3). 

c) Bob sends Alice the counterparts of the values 𝑑 і 𝑑1 in the ring 𝐺𝑚. 
 
Step 3. Alice, using the received counterparts, finds the values 𝑑, 𝑑1 and performs the following 
computations:  
a) She finds the inverse matrix to 𝐵1

−1 in the ring 𝑍25: 
b) She computes 𝐵1

−1 (𝑑1𝑡
 − (7, 19)𝑡) = 𝐵1

−1(21, 9)𝑡 and finds 

𝐵1
−1 (21, 9)𝑡 − (14, 11)𝑡 = (5, 11) + (11, 14) = (16, 0) = 𝑣2. 

a) Bob solves the system of equations in the ring 𝑍25 

 and finds the solution 𝑥 ̄= (0, 14, 1, 0). Since the next block is the same as the first, i.e., 𝑣3 = (18, 0). Bob selects a new vector 
𝑎 ̄= (0, 0, 1, 1), for which he computes 

 𝑑 = 𝑙(𝑎) = (5, 0), 𝑥̄ + 𝑎 ̄= (0, 14, 2, 1), 𝑑1 = 𝐿(𝑥̄ + 𝑎) = (3, 21). 

and sends Alice the counterparts 𝑑 = (5, 0), 𝑑1 = (3, 21) in the ring 𝐺25.  
 
Alice computes  

𝐵1
−1(𝑑1𝑡

 − (7, 19)𝑡) = 𝐵1
−1(21, 2)𝑡 = (23, 0) = 𝑙(𝑥̄ + 𝑎) . 

From which she finds 
(23, 0) − (5, 0) = (18, 0) = 𝑣3. 



Since the next block is the same as the second, i.e 𝑣4 = (16, 0), Bob selects a new vector 𝑎 ̄ = (0, 0, 0, 1), for which he 
computes 
 𝑑 = 𝑙(𝑎) = (21, 14), 𝑥̄ + 𝑎 ̄= (0, 18, 12, 1), 𝑑1 = 𝐿(𝑥̄ + 𝑎) = (20, 18). 

and sends Alice the counterparts 𝑑 = (21, 14), 𝑑1 = (20, 18) in the ring 𝐺25.  
 
Alice computes 

𝐵1
−1(𝑑1𝑡

 − (7, 19)𝑡) = 𝐵1
−1(13, 24)𝑡 = (12, 14) = 𝑙(𝑥̄ + 𝑎) . 

From which she finds 
(12, 14) − (21, 14) = (12, 14) + (4, 11) = (16, 0) = 𝑣4. 

Bob and Alice repeat this procedure as many times as there are blocks in the message (in this case, three more times). 
Thus,  
 
Alice obtains the ciphertext 
 (2,15,12,9) (14,11,3,3) (5,0,3,21) (21,14,20,18) ⋯ ⋯ ⋯ 

After decryption, Alice recovers the message 

18,0 16,0 18,0 16,0 18,0 16,0 16,0 

ta ra ta ra ta ra ra 

♠ .  

In the given example, the same ring was used throughout, but it is possible to change the ring for 
each transmission session or at certain intervals between transmissions. The vectors 𝑎 and 𝑎 ̄, which 
affect the values 𝑙(𝑎) and 𝐿(𝑥 ̄+ 𝑎), can also be varied 

The presented protocol can be made more complex by using different rings or different parameter 
values—matrices and vectors—for each encrypted block. Furthermore, if the ciphertext is represented 
by its counterparts in the ring 𝐺50 

 (44,23,4,48) (6,45,2,19) (11,40,19,0) (38,22,8,15) ⋯ ⋯ ⋯, 

then the cryptanalyst has no access to the systems of expressions, the rings 𝐺25, 𝑍25 or the mappings 
𝜆, 𝜆1, 𝜓, 𝜓1 і 𝜑. 

5. Computational Features 
Given that computations in the ring 𝐺𝑚 are not standard in practice, the efficiency of encryption and 
decryption can be improved by utilizing the isomorphism between the rings 𝐺𝑚 and 𝑍𝑚. Indeed, 
finding the additive inverse of an element 𝑎 in the ring 𝑍𝑚 reduces to computing 𝑚 − 𝑎, and finding 
the multiplicative inverse of aa is performed using the extended Euclidean algorithm to solve the 
equation 𝑎𝑥 + 𝑚𝑦 = 1 (the extended Euclidean algorithm computes the decomposition 𝑎𝑥 + 𝑏𝑦 = 𝑑, 
where d = gcd(𝑎, 𝑏)). The result of this algorithm is the value 𝑥 = 𝑎−1. 

An obvious drawback of the described protocol is that the ciphertext is twice as long as the 
plaintext message. 

Declaration on Generative AI 
During the preparation of this work, the authors used AI program Chat GPT 4.1 for correction of 
text grammar. After using this tool, the authors reviewed and edited the content as needed and take 
full responsibility for the publication’s content.  
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