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Abstract 
 
The aim of this study is to experimentally evaluate the performance of contemporary deep learning 
models under constrained computational resources and to establish formalized dependencies between 
inference speed and input batch size. The Raspberry Pi 4 Model B single-board computer was used as the 
computing platform, representing a typical example of low-power, resource-limited hardware employed 
onboard unmanned aerial vehicles (UAVs).  
In contrast to existing YOLO-based approaches that remain ill-suited for low-resource UAV platforms, 
this study proposes an alternative method focused on modeling classification time using linear regression. 
The results provide a framework for the development of onboard vision subsystems for domestic UAVs, 
capable of near-real-time image analysis under batch-processing constraints. 
This work presents, for the first time, linear regression models that describe the classification time of 
neural networks with varying architectures—specifically, mobile, balanced, and deep-level models—
depending on the number of images in the input batch. The statistical significance of the resulting 
regression models has been experimentally validated, as well as their consistency with real-world 
measurements obtained during actual single-board computer operation. These regression equations 
enable inference time prediction without the need for repeated empirical testing, thus significantly 
improving the efficiency of neural system configuration in embedded environments. 
Based on the developed models, boundary conditions were identified for the applicability of each 
considered architecture to ensure near-real-time data processing. The results demonstrate that some 
models can handle relatively large data batches without exceeding critical time thresholds, whereas 
others, despite offering higher classification accuracy, exhibit excessive computational complexity and 
require hardware acceleration or optimization. 
The relevance of this research is driven by the growing demand for autonomous image analysis systems, 
particularly in the context of UAV deployment for military operations, reconnaissance, search and rescue 
missions, and monitoring applications. The proposed approach can be integrated into hardware-software 
systems to enable adaptive selection of neural architectures according to operational conditions and 
resource constraints. This creates a foundation for the further development of intelligent UAV systems 
with enhanced autonomy.  
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1. Introduction 

One of the key challenges in processing aerial imaging data is to ensure the high efficiency of 
visual analysis systems under the constrained computational resources typical of onboard 
equipment used in unmanned aerial vehicles (UAVs) [1]. Traditional methods for processing 
streaming video from surveillance cameras require substantial computational power and time, 
rendering them unsuitable for real-time operation—particularly in scenarios where the timely 
detection of target objects is critical [2]. In military applications, for instance, delays in object 
identification may lead to a loss of tactical advantage, while in search and rescue operations, they 
may reduce the effectiveness of victim detection [3]. 
This issue is further exacerbated by the limited energy supply available to UAVs, necessitating the 
use of energy-efficient algorithms. The application of optimized models for real-time classification 
and segmentation can significantly reduce the volume of data transmitted to ground stations, 
thereby improving the overall autonomy and functionality of the system [4]. 
To enable effective processing of video streams from UAV onboard cameras, an approach that 
combines high processing speed with an acceptable level of detection and classification accuracy is 
required. Given the constrained computational resources of such platforms, real-time processing of 
high-resolution full frames using deep models is largely impractical due to considerable hardware 
demands. 
This study proposes a two-stage image processing procedure. It involves an initial downscaling of 
the frame resolution, followed by detailed processing of selected fragments using more accurate 
classification models that are capable of efficient operation on single-board computers. This 
approach reduces the volume of input data processed at each stage, thereby decreasing the overall 
computation time and increasing the system’s efficiency. 
However, it is important to note that downscaling an image is functionally equivalent to 
smoothing or filtering out high-frequency components. This may result in the loss of critical 
information, particularly when target objects are small or when images are captured from high 
altitudes. Consequently, the likelihood of missing objects of interest increases—an important 
drawback in tasks that require precise detection and localization. 
Therefore, optimizing video stream processing onboard UAVs requires careful balancing of 
processing speed and image informativeness. This can be achieved through a combination of 
downscaling, pre-filtering, and the use of adapted deep models. 
We begin by reviewing some of the most widely used deep learning models for object detection in 
UAV-acquired imagery. 
YOLO (You Only Look Once) is one of the most popular deep learning architectures for real-time 
object detection [5]. Its main advantage lies in simultaneously determining object boundaries and 
performing classification in a single network pass, enabling high-speed inference with acceptable 
accuracy (up to 75% mAP in YOLOv8 on the COCO dataset [6]). YOLO performs well in scenarios 
with fixed camera positions or predictable movement, such as ground vehicle navigation systems. 
However, YOLO presents several critical limitations when applied to aerial monitoring with UAVs. 
First, it is poorly adapted to scale variations and perspective distortions, which are inevitable due 
to changes in altitude and camera angles during flight. Second, in dynamic environments with 
highly variable backgrounds and lighting conditions, YOLO often exhibits reduced accuracy due to 
limited contextual adaptability. Even simplified versions like Tiny-YOLO remain too resource-
intensive for deployment on single-board computers such as the Raspberry Pi or OrangePi. 
Thus, despite its overall effectiveness in ground-based applications, YOLO is not an optimal choice 
for onboard deployment in UAVs operating under constrained computational conditions and 
complex aerial dynamics. To overcome these limitations, this paper proposes a different approach 
aimed at quantifying classification performance on single-board computers under batch processing 
conditions. The proposed method involves estimating classification time via linear regression 
models as a function of batch size for various neural architectures. This approach enables a deeper 



understanding of performance boundaries and supports the development of onboard computer 
vision solutions tailored to the constraints of domestic UAVs. 
Several other modern architectures also merit discussion for their potential applicability to various 
computer vision tasks involving UAV imagery. 
Vision Transformers (ViT) [7] employ a self-attention mechanism that effectively captures spatial 
dependencies in images. This architecture demonstrates high accuracy, especially on large datasets. 
However, its significant computational requirements and dependence on powerful hardware limit 
its use in low-resource environments like single-board computers. 
NASNet (Neural Architecture Search Network) [8] is the result of automated architecture 
optimization tailored for classification and detection tasks. While it delivers high accuracy and can 
be adapted to resource constraints, it is impractical for real-time deployment due to its resource 
demands. 
Faster R-CNN is one of the most widely used architectures for object detection, offering excellent 
accuracy in complex scenes with multiple objects [9]. Nevertheless, its computational complexity 
and substantial processing delays make it unsuitable for real-time applications on platforms like 
the Raspberry Pi. 
SqueezeNet [10], by contrast, is explicitly designed for resource-constrained environments. Its 
compact architecture (~1.2 million parameters) enables efficient operation on embedded platforms. 
However, its main drawback remains the notably lower recognition accuracy compared to more 
advanced models. 
Each of these models exhibits specific strengths, yet all suffer from considerable limitations. Their 
complexity, energy consumption, and processing delays hinder real-time deployment on 
autonomous UAV platforms. This creates a demand for thorough analysis of models that not only 
deliver acceptable classification accuracy but also meet strict performance and energy-efficiency 
criteria. 
The objective of this study is to experimentally assess the performance of contemporary deep 
learning models under limited computational resources and to formalize the relationship between 
processing speed and input batch size. The Raspberry Pi 4 Model B was used as the target device 
for evaluation, serving as a prototypical low-power, resource-constrained hardware platform 
commonly employed onboard UAVs. 
For the experiments, four widely adopted convolutional neural network architectures were 
selected, differing in complexity, accuracy, and computational requirements: EfficientNetV2S, 
MobileNetV2, ResNet50, and ResNet101. This selection is based on their prevalence in applied 
computer vision tasks, widespread support across deep learning frameworks, and availability of 
open-source models with well-documented performance metrics. Furthermore, these architectures 
represent distinct categories in terms of the trade-off between accuracy and performance—ranging 
from lightweight mobile models to deep high-precision networks. Evaluating their behavior on the 
Raspberry Pi platform enables the formulation of informed recommendations regarding 
architecture selection based on task-specific requirements and computational constraints. 

 

2. Materials and Methods 

The following neural network models were considered in this study. 
EfficientNetV2S (Efficient Network V2 Small) is a representative of the second generation of deep 
convolutional neural networks, optimized for fast inference and training. The model was developed 
using Neural Architecture Search (NAS) and the compound scaling strategy. A key feature of 
EfficientNetV2S is the combination of traditional mobile blocks (MBConv) with the newer Fused-
MBConv blocks, which significantly reduces processing time without compromising accuracy. Due 
to its balanced architecture, EfficientNetV2S achieves high performance on the ImageNet 
benchmark with a relatively small number of parameters, making it suitable for both server-based 
and embedded applications [11]. 



MobileNetV2 is a lightweight neural network architecture designed for use on mobile and 
embedded devices. It combines depthwise separable convolutions with inverted residual blocks and 
linear bottlenecks, significantly reducing computational overhead. A unique characteristic of 
MobileNetV2 is the transformation order within each block: instead of reducing the number of 
output channels as in conventional networks, the number of channels is first expanded and then 
compressed. This helps retain informative features and minimizes information loss during 
convolutional processing. The architecture is especially well-suited for real-time tasks under 
resource-constrained conditions [12]. 
ResNet50 (Residual Network-50) is a classic deep convolutional neural network architecture based 
on shortcut (residual) connections. ResNet was introduced to address the vanishing gradient 
problem in very deep networks. ResNet50 employs residual blocks with three layers (bottleneck 
blocks), enabling effective signal propagation across deep layers. Due to its high accuracy and 
moderate computational requirements, ResNet50 is widely used in various computer vision tasks 
[13]. 
ResNet101 is an extended version of the ResNet architecture, consisting of 101 convolutional layers 
and using the same bottleneck blocks as ResNet50. The increased depth allows the model to 
capture more complex features, which enhances classification performance, particularly on large 
datasets. However, the larger number of parameters and FLOPs increases processing time and 
makes ResNet101 less suitable for real-time inference. This model is best suited for high-accuracy 
tasks where computational resources are not a limiting factor [13]. 

Table 1 
Key Model Characteristics 

For model deployment and testing, the hardware platform selected was the Raspberry Pi 4 
Model B single-board computer, in order to evaluate the suitability of the networks for integration 
onboard UAVs. 
To ease the processing load on the models by limiting the number of regions passed for 
classification, a study [2] explored a fast filtering method to extract informative image fragments 
from each frame. Specifically, it was demonstrated that for a frame of 1920×1080 pixels, the 
authors’ custom rapid selection algorithm for informative fragments (each 64×64 pixels) processes 
the frame using a sliding window in less than 0.1 seconds. Thus, within this time frame, a 
classification model receives a batch consisting of a variable number of 64×64-pixel images. In 
general, the number of images in a batch may range from several dozen to several hundred, 
depending on the hyperparameters of the frame processing procedure. The authors of the study 
suggest that this number is primarily determined by two factors: the texture variability of 
individual image fragments and the low likelihood of encountering multiple informative fragments 
within a single frame [15]. 
The goal of this work is to determine the maximum allowable batch size for which the 
classification model’s inference time does not exceed 0.85 seconds. This duration ensures that both 

Model Depth Parameters FLOP
s 

Top-1 
Accuracy 

Real-time 
Performance 

EfficientNetV2S ~479 blocks ~22.1M 8.4B 84.9% High 

MobileNetV2 53 layers ~3.4M 0.3B 72.0% Very high 

ResNet50 50 layers ~25.6M 4.1B 76.2% Medium 

ResNet101 101 layers ~44.5M 7.8B 77.4% Low 



the information filtering and the classification of informative image fragments are guaranteed to be 
completed within one second on the given computational device. 
This paper presents the results of an experimental evaluation of the performance of four selected 
convolutional neural network architectures: EfficientNetV2S, MobileNetV2, ResNet50, and 
ResNet101. 
For each model, a series of inference time measurements (i.e., image processing times) was 
conducted across varying input batch sizes, ranging from 1 to 512 images. During testing, a fixed 
hardware configuration and software environment were maintained to eliminate external factors 
that could influence the results. All measurements were performed on Raspberry Pi 4 Model B 
single-board computers, emulating the resource-constrained environment typical of onboard UAV 
systems. This platform presents significant limitations in terms of CPU power, RAM, and energy 
consumption, thereby providing a realistic simulation of real-time operation conditions. 
For further analysis, the data were grouped into six batch size intervals: 0–16; 17–32; 33–64; 65–
128; 129–256; and 257–512. For each interval, observations were aggregated, and the average batch 
processing time was computed in seconds (Table 2). Outlier data were removed using the 
interquartile range (IQR) method to ensure statistical robustness of the results. 

Table 2 
Comparison of Batch Processing Time Across Deep CNN Architectures 

3. Result and Discussion 

Based on the results presented in Table 2, the following conclusions can be drawn. 
MobileNetV2 demonstrates the lowest average processing time across all batch sizes, confirming its 
efficiency for mobile and real-time applications. Its architecture, characterized by a small number 
of parameters and low computational complexity, enables high-speed performance even under 
increased processing loads. 
EfficientNetV2S provides the highest classification accuracy among all models considered, while 
also maintaining high performance. This makes it an optimal choice for systems where a balance 
between recognition quality and processing speed is essential. 
ResNet50 exhibits moderate inference time and represents a well-balanced trade-off between 
accuracy and speed. As a result, it is frequently used as a baseline model in production-level 
computer vision systems. 
ResNet101 is the slowest of all the models across all batch size intervals. Despite offering slightly 
higher accuracy compared to ResNet50, it demonstrates low efficiency in terms of performance, 
which limits its practical applicability in real-time tasks. 

BatchRange EfficientNetV2
S 

MobileNetV
2 

ResNet10
1 

ResNet50 

0-16 0.669 0.324 0.95 0.633 

17-32 1.259 0.51 1.976 1.204 

33-64 2.078 0.74 3.684 1.992 

65-128 3.683 1.248 7.142 3.56 

129-256 7.088 2.291 13.979 6.638 

257-512 13.625 4.369 22.539 13.06 



For all models, an approximately linear relationship between batch size and processing time is 
observed; however, the rate of increase (i.e., the slope of the regression line) varies by architecture. 
Further results are presented below. 
Figure 1 illustrates the empirical relationship between input batch size and the average processing 
time per batch for the EfficientNetV2S model. Prior to regression modeling, the data were cleaned 
to remove statistical outliers. 

 
Figure 1: Inference Time Dependency on Batch Size for EfficientNetV2S With Linear Regression 
Fit. 
Regression Results 
The equation of the linear regression model is: 

 
 
where  

is the average processing time (in seconds), and 𝑥 is the batch size. 
The coefficient of determination is R2=0.95618. 
The red line in Figure 1 represents the linear regression result, which approximates the empirical 
relationship within the investigated range (batch size up to 32). The coefficient of determination 
R2=0.95618 18 indicates a strong linear relationship between batch size and processing time. 
The horizontal dashed line marks the threshold for acceptable processing time, set at 0.85 seconds—
corresponding to typical real-time constraints when accounting for the frame pre-filtering step. 
The vertical dashed line intersects the regression curve at the point corresponding to the maximum 
permissible batch size that does not exceed the specified time limit. According to the regression 
results, this threshold for the given model is 13 images per batch. 



 
Figure 2: Inference Time Dependency on Batch Size for MobileNetV2 With Linear Regression Fit. 
Regression Results 
The equation of the linear regression model is: 

, 
where  

is the average processing time (in seconds), and 𝑥 is the batch size. 
The coefficient of determination is R2=0.97811. 
This indicates a very high degree of agreement between the model and the empirical data. 
The maximum batch size that ensures processing within 0.85 seconds is 58 images per batch. 
Figure 3 presents the results for the ResNet50 model. 

 
Figure 3: Inference Time Dependency on Batch Size for ResNet50 With Linear Regression Fit. 
Regression Results 
The equation of the linear regression model is: 

 
where  

is the average processing time (in seconds), and 𝑥 is the batch size. 
The coefficient of determination is R2=0.99373. This value indicates an excellent linear fit to the 

empirical data. Maximum batch size processed within 0.85 seconds – 14. 



Figure 4 illustrates the relationship between the processing time per image and the input batch 
size for the ResNet101 model, based on a subset of the experimental data (batch sizes up to 32 
included for improved visualization). 

 
Figure 4: Inference Time Dependency on Batch Size for ResNet101 With Linear Regression Fit. 
Regression Results 
The equation of the linear regression model is: 

 
where  

is the average processing time (in seconds), and 𝑥 is the batch size. 
The maximum batch size that allows processing within 0.85 seconds is 7 images. 
 
A summary table (Table 3) is provided below, presenting a comparative overview of the models at 
the processing time threshold of 0.85 seconds. The table includes key characteristics: regression 
slope, intercept, coefficient of determination, maximum allowable batch size, and Top-1 
classification accuracy. 

Table 3 
Comparative Analysis of CNN Architectures: Inference Efficiency and Accuracy Under Real-Time 
Constraints 

The results presented in Table 3 support the following conclusions. 
EfficientNetV2S demonstrates the highest classification accuracy (84.9%) while maintaining 
acceptable inference speed, with a maximum batch size of 13 under the 0.85-second threshold. This 
enables group image processing even in near real-time scenarios, making it one of the most 
suitable models for tasks where high recognition precision is critical. 
MobileNetV2 offers the best performance in terms of speed, with the largest maximum batch size 
(58) and the lowest regression slope (0.0105 s/image). However, it yields the lowest Top-1 accuracy 

Model Max Batch 
(≤0.85s) 

Slope (s/img) Intercept 
(s) 

R² Top-1 
Accuracy (%) 

EfficientNetV2S 13 0.0352 0.3681 0.956 84.9 

MobileNetV2 58 0.0105 0.2302 0.993 72 

ResNet50 14 0.0329 0.3325 0.981 76.2 

ResNet101 7 0.0632 0.4065 0.973 77.4 



(72%) among the models considered. This makes it an attractive option for applications where 
speed is paramount and accuracy is of secondary importance. 
ResNet50 provides a balanced compromise between inference speed and accuracy: it supports 
batches of up to 14 images within the 0.85-second threshold and achieves a classification accuracy 
of 76.2%. This makes it suitable for a wide range of tasks, particularly those requiring moderate 
depth of analysis and computational robustness. 
ResNet101 achieves relatively high accuracy (77.4%) but significantly lower throughput, supporting 
only 7 images per batch within the same time limit. Due to its computational complexity, it is the 
least suitable model for deployment on resource-constrained devices. 
 

4. Conclusions 

The conducted research focused on solving the classification problem under constrained 
computational conditions, aiming to provide practical solutions for the development of onboard 
vision systems for domestic UAV applications. Based on an analysis of existing methods, including 
YOLO-based models that exhibit significant limitations in aerial environments, an alternative 
approach was proposed. To support this, the authors constructed regression models describing 
classification time as a function of batch size for several neural network architectures. The 
obtained results may serve as a foundation for future research in the development of onboard 
image processing technologies for aerial surveillance systems.In this study, linear regression 
models were developed for the first time to describe the classification time of four neural network 
architectures—EfficientNetV2S, MobileNetV2, ResNet50, and ResNet101—as a function of the 
number of 64×64-pixel images in the input batch. The statistical significance and adequacy of the 
regression models were substantiated, confirming their alignment with empirical measurement 
results. 
For each model, the maximum permissible batch size that ensures processing within 0.85 seconds 
(real-time mode) on a Raspberry Pi 4 Model B single-board computer was determined. 
The constructed models enable accurate quantitative estimation of inference time without the need 
for repeated physical measurements, which is particularly valuable for rapid performance 
evaluation on low-power devices. 
MobileNetV2 demonstrated the highest performance, enabling the processing of up to 58 images 
per batch within the 0.85-second threshold, with a strong regression fit (R2=0.993). This makes it an 
appropriate choice for real-time systems with limited computational resources. 
EfficientNetV2S, offering higher classification accuracy (84.9%), supports batches of up to 13 
images. The high coefficient of determination (R2=0.956) confirms the reliability of the regression 
model for this architecture. 
ResNet50 achieves a batch size of 14 images, with strong approximation reliability (R2=0.981), 
although it incurs higher computational costs compared to MobileNetV2. 
ResNet101 showed the lowest throughput—only 7 images per batch—due to its substantial 
computational complexity. Despite its high classification accuracy (77.4%), this architecture 
requires hardware acceleration to be viable for real-time applications. 
The results of this study provide a solid foundation for the informed selection of neural network 
architectures in autonomous image analysis tasks, including onboard deployment in UAVs for 
monitoring, inspection, and reconnaissance. 
The application of these findings is relevant in domains requiring rapid image analysis, particularly 
in military operations, intelligence gathering, search and rescue missions, critical infrastructure 
inspection, agrotechnology, and logistics. Furthermore, the results may be integrated into modern 
monitoring and data analysis platforms to enhance their performance, adaptability to dynamic 
conditions, and overall real-time efficiency. 



In conclusion, the outcomes of this work have practical value both for direct implementation in 
modern embedded AI systems and for guiding the design of next-generation intelligent image 
analysis modules with a focus on performance, autonomy, and energy efficiency. 
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