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Abstract 
The paper considers the concept of data clustering based on a dynamic approach, in which clusters are 
defined not as geometric regions, but as attractors in a parameterised vector field. The model of Dynamic 
Attractor Clustering via Neural Vector Fields (DAC-NVF) is proposed, in which clustering is formalised as 
the evolution of objects according to a system of first-order differential equations. The vector field is 
modelled by a differentiated neural network and trained within the Neural ODE paradigm. Each object 
moves in space in accordance with the field, and its cluster affiliation is determined by the endpoint of the 
trajectory - the attractor to which it converges. The proposed model allows to automatically determine 
the number of clusters as the number of stable points of a dynamic system. The loss functionality includes 
three components: trajectory cohesion, attractor separation, and field smoothness regularisation. Objects 
with similar dynamics converge to a common attractor, forming a natural cluster. This approach enables 
the detection of complex topological data structure, particularly in cases where classical methods such as 
k-means or spectral clustering are insufficient due to their dependence on Euclidean metrics or a fixed 
number of clusters. To evaluate the effectiveness of the method, both standard quality metrics (Silhouette 
Score, Calinski-Harabasz Index, Davies-Bouldin Index) and specialised indicators developed for the 
dynamic model, such as Trajectory Stability Index (TSI) and Attractor Assignment Consistency (AAC), 
were used. The results of numerical modelling showed high stability and consistency of clustering. 
Comparison with classical methods has demonstrated the advantages of the DAC-NVF approach in 
problems with heterogeneous, high-dimensional data, in particular in the case of clustering profiles 
containing numerical and categorical features. Thus, the proposed method opens up new perspectives for 
clustering complex data by combining the mathematical rigour of dynamical systems models with the 
flexibility of neural network parameterisation. 
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1. Introduction 

Clustering as a method of detecting latent structure in data sets is one of the fundamental tasks of 
modern mathematical modelling. In the broadest sense, it is a formalised way of dividing a set of 
objects into disjoint subsets (clusters), each of which unites objects that have internal similarities in 
certain respects. Over the past decades, clustering has become a central tool in a variety of fields: 
machine learning, bioinformatics, economics, social psychology, retail, and many other areas 
where segmentation of complex systems is important [1, 2]. 

Traditional approaches to clustering, such as k-means [1], hierarchical grouping algorithms [3], 
spectral methods [4], and Self-Organising Maps (SOM) [5], are based on assumptions that have 
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both mathematical simplicity and serious limitations. Such assumptions include the Euclidean 
similarity metric, the isotropy of clusters, the need to fix their number in advance, and weak 
adaptability to complex, nonlinear, topologically heterogeneous structures in data. The application 
of these methods to real-world problems related to the analysis of multidimensional, mixed 
(categorical-numerical) or hierarchically organised data leads to the loss of important information 
and insensitivity to latent dynamics in the structure of the set. 

In response to these challenges, differentiated approaches combining concepts from dynamical 
systems [6, 7], neural computing [8, 9], and multivariate analysis [10] have become widespread in 
recent years. One of these approaches is to formalise clustering as a problem of dynamic evolution 
of objects in a parameterised vector field, where clusters are modelled not as fixed geometric 
centres, but as stable fixed points - attractors - in the phase space. This approach involves not only 
the spatial proximity between objects, but also the analysis of their behaviour in time, which is 
determined by the dynamics of movement in an artificially constructed force field. The motion of 
objects towards attractors is described by a system of differential equations, and the field itself is 
formed and adapted in the course of training. 

In this paper, we consider the problem of clustering objects represented by vectors of mixed 
types. In this paper, mixed-type vectors are multidimensional vectors that describe the complex 
nature of objects, such as customers in a marketing system [11], patients in medical data [12, 13], 
system specifications in engineering analysis [14], etc. These vectors often contain both numeric 
and categorical components, have a hierarchical structure, and thus cannot be adequately 
represented in a conventional Euclidean space without special pre-coding. In this context, the task 
of clustering objects represented by mixed-type vectors requires a new mathematical paradigm that 
allows taking into account not only metric but also dynamic similarity between objects. 

The approach proposed in this paper, called Dynamic Attractor Clustering via Neural Vector 
Fields (DAC-NVF), is based on the idea that clusters should be viewed as regions of attraction in a 
dynamic field parameterised by a neural network. The dynamics of objects is modelled as 
trajectories in a multidimensional space that converge to stable points - attractors - in a force field. 
Thus, a cluster is not a static set, but the result of long-term system behaviour. The main 
advantages of this approach are that there is no need to fix the number of clusters in advance, 
adaptability to complex data geometry, and the ability to interpret the data structure in terms of 
dynamics and stability. 

The vector field is trained based on a loss function that combines three components: cohesion 
(convergence to attractors), separation between attractors, and regularisation (smoothness of the 
field). The training is implemented within the framework of the Neural ODE concept, a model that 
provides automatic differentiation through an integrator, allowing accurate parameter updates 
based on the full trajectories of objects [15]. The attractors themselves are not predefined, but arise 
as a result of the system's evolution as its asymptotically stable points. 

Dynamic clustering enables a natural modelling of complex data topology, including cases 
where clusters have a curved shape, variable density, or overlap. In addition, the presence of 
dynamics offers the possibility to study the behaviour of objects near cluster boundaries, which is 
impossible in classical approaches. It is also important that the system allows the construction of 
new, specialised metrics for assessing the quality of clustering, taking into account dynamic 
stability (e.g. Trajectory Stability Index) and clustering consistency during re-runs (Attractor 
Assignment Consistency). 

The dynamic formulation of clustering provides a natural framework for modelling complex 
data topologies, particularly in cases where clusters exhibit non-convex shapes, varying densities, 
or partial overlaps. Moreover, the introduction of dynamics enables the examination of object 
behaviour near cluster boundaries—an aspect typically inaccessible to classical static approaches. 

Significantly, the dynamic perspective also permits the development of novel, specialised 
clustering quality metrics that account for temporal or structural stability (e.g., the Trajectory 
Stability Index) and clustering consistency under repeated initialisations (e.g., Attractor 
Assignment Consistency). 



The DAC-NVF method extends the scope of formal analysis in clustering by enabling not only 
the discovery of latent data organisation but also the interpretable assessment of cluster stability, 
topology, and sensitivity to initial conditions. Consequently, the proposed approach holds 
considerable potential for application in tasks where understanding the causal structure of data, 
forecasting based on dynamic evolution, and decision-making under trajectory-aware conditions 
are of critical importance. 

Given the relevance and complexity of clustering under conditions of high dimensionality, 
dynamism, and mixed-type features, this work addresses a mathematically significant problem: the 
construction of a clustering model that is not only algorithmically efficient, but also conceptually 
aligned with the principles of modern dynamical systems theory, flow-based geometry, and neural 
representational learning. 

2. Overview of existing approaches and limitations 

Clustering, that is, the partitioning of a set of objects into homogeneous subsets, is one of the 
fundamental problems in mathematical modelling, statistical learning, and applied data analysis. In 
the context of high-dimensional spatial structures—particularly those arising from the analysis of 
hyperparameter profiles—clustering serves not only as a tool for uncovering latent organisation, 
but also as a means of formalising internal dynamics within systems characterised by complex 
feature structures. 

Today, there are a number of well-known clustering methods that can be divided into several 
conceptual classes: metric-oriented (e.g., k-means [16]), topological (Self-Organising Maps [5]), 
spectral (Spectral Clustering [4]), and graph (Community Detection [17]). This section discusses 
the most common methods of cluster analysis, their theoretical foundations, as well as limitations 
from the standpoint of modern problems of classifying objects with a complex structure. 

 The most classical example is the k-means method, which is aimed at minimising the intra-
cluster variance for a given number of clusters K. Formally, the following problem is solved: 

min
!! !!!

!
𝑥! − 𝜇! !

!!∈!!

!

!!!

, (1) 

where 𝜇!  is the centre of the cluster 𝐶!;  ∙  is the Euclidean norm. 
The k-means method is simple to implement, computationally efficient, and scales well on large 

samples. However, its analytical model has a number of limitations: 

• the hypothesis that the clusters are isotropic and close to convex Euclidean regions; 
• the need to pre-determine K; 
• the sensitivity to initialisation and the presence of local minima. 

These assumptions make k-means unsuitable for objects with nonlinear, non-Euclidean 
structure or complex topology. 

Self-Organising Maps implement a neural network approach to clustering by training a grid of 
neurons, where each neuron has an associated weight vector. The training is based on bringing the 
input vectors closer to the nearest neurons according to a metric criterion and gradually adjusting 
the grid weights while preserving the local topology. The advantages of the SOM method include 
the following: 

• preservation of the topological structure of the data; 
• ability to perform non-linear clustering; 
• interpretability through visual maps (U-matrix). 

However, SOM has certain limitations: 



• the need for a predefined lattice geometry; 
• the inability to adaptively determine the number of clusters; 
• the lack of clear boundaries between clusters; 
• non-differentiality, which makes it difficult to integrate with deep learning (since SOM does 

not support backpropagation of gradients). 

Spectral clustering methods use the spectrum (eigenvalues and vectors) of a Laplacian matrix 
built from the metrics between objects. The basic idea is to project the data into a space where the 
cluster structure becomes linearly separable, and then apply k-means. Although spectral methods 
are capable of detecting nonlinear boundaries between clusters, they have a number of analytical 
and computational limitations: 

• the need to compute the spectrum of the Laplacian matrix, which has a computational 
complexity of Ο 𝑁! ; 

• sensitivity to the choice of kernel hyperparameters and the number of neighbours in the 
graph; 

• lack of model differentiability; 
• poor scalability for large object sets. 

Thus, spectral clustering has high theoretical power but limited practical applicability without 
specific optimisations. 

Despite the diversity of approaches, most classical clustering methods share common 
limitations: 

• metric dependency: they rely on static distance measures, without accounting for the 
dynamics or evolution of objects; 

• rigid structure: they require pre-specifying the number of clusters, assume convex cluster 
shapes, and depend on the symmetry of the metric space; 

• lack of integrated learning dynamics: they are incapable of continuous learning within a 
differentiable framework; 

• instability to perturbations and local changes: they exhibit weak invariance of cluster 
structure under data modification; 

• inability to represent heterogeneous object descriptions: traditional methods fail to account 
for the presence of categorical, hierarchical, or vectorial features within an object’s 
structure. 

In particular, in the case of clustering mixed-type vectors that combine numerical and 
categorical characteristics, have a complex internal dependence and a high level of 
multidimensionality, none of the traditional approaches is able to provide simultaneously: 

1. automatic determination of the number of clusters; 
2. stable topological classification; 
3. mathematical consistency of the dynamics of cluster formation; 
4. possibility of further differentiated optimisation. 

In light of the above, there is a clear need to develop models that: 

• interpret clustering not as a geometric partitioning, but as a dynamic process of object 
evolution within a given field; 

• enable the formation of cluster structures as a consequence of dynamic behaviour, rather 
than the result of local criterion optimisation; 



• ensure asymptotic stability of clusters through the formation of attractors; 
• support the use of neural network parameterisation and automatic differentiation; 
• are applicable to objects represented as mixed-type vectors, which lack a straightforward 

Euclidean representation. 

Such approaches must integrate the mathematical theory of differential dynamical systems, 
Lyapunov stability theory, neural network-based approximation analysis, as well as modern deep 
learning techniques, to build systems capable of adaptive, stable, and topologically consistent 
clustering. The following sections will demonstrate that such a model is feasible—specifically, in 
the form of clustering via neuronally parameterised vector fields, where clusters emerge as 
asymptotically stable regions (attractors) of the dynamical system. 

3. The goal of the research 

The goal of this researh is to build, theoretically substantiate and practically implement a method 
of clustering hyperparametric objects based on dynamics in a neural-parametric vector field, where 
clusters are formed as attractors. In particular, the tasks are as follows: 

• to formulate a mathematical model of dynamics and cluster formation; 
• to build a generalised loss functional that takes into account the cohesion, stability and 

separation of clusters; 
• to develop an algorithm for learning the parameters θ using numerical integration and 

automatic differentiation methods; 
• to analyse the stability of attractors and justify the automatic determination of the number 

of clusters as a consequence of the structure of the vector field. 

Thus, the study aims to integrate the theoretical foundations of dynamical systems with 
practical machine learning methods to build a stable and interpretable clustering of 
hyperparametric objects. 

4. Problem statement 

Clustering is a fundamental task in data analysis, especially in cases where each object is 
characterised by a complex structure - a set of interdependent variables, which we will further 
treat as mixed-type parameters. In this context, mixed-type parameters are descriptive 
characteristics of an object that may belong to a certain cluster. An example of an object is a client 
profile represented by a vector of numerical and categorical attributes (age, gender, activity, region, 
etc.). 

Let's assume that ℋ ⊆ ℝ!×𝐶!×…×𝐶! is the space of all possible vectors of mixed-type 
parameters, ℋ = ℎ(!) , 𝑖 = 1, 𝑛, where ℎ(!) is the representation of an individual or entity; ℝ! is 
the space of numerical characteristics; 𝐶! is the finite set of possible values of the j-th categorical 

parameter, 𝑗 = 1,𝑚. 
In order to work in the numerical space, a vectorisation function 𝜙:ℋ → ℝ! is introduced, 

which transforms all vectors of mixed-type parameters into a space of constant dimension ℝ! (for 
example, through one-hot, embedding, or ordinal encoding). 

The task of clustering is to build a cluster structure of the set 𝑥! , 𝑖 = 1, 𝑛, where 𝑥! =
𝜙 ℎ(!) ∈ ℝ!, which: 

• does not require a pre-fixed number of clusters;  
• reflects the topological and dynamic proximity between objects;  
• enables to consider clusters as pulling areas (attractors) in a certain force field. 



The clustering of objects in a vectorised space makes it possible to interpret clusters as 
attractors that reflect the dynamic organisation of objects in a multidimensional space. 

5. Modelling of dynamics and attractors 

This paper proposes an approach to clustering based on the concept of dynamic convergence of 
objects to attractors in a controlled force field represented by a vector function. Clustering is 
considered not as a measurement of Euclidean proximity to centres, but as a dynamic system 
where each object moves towards stable points in space - attractors that arise as a result of neural 
network training. 

The proposed approach is to define a parameterised vector field 𝐹!:ℝ! → ℝ!, which defines the 
dynamics of object movement in the space of mixed-type parameters. Each object 𝑥! ∈ ℝ! is 
considered as the initial point of a trajectory that develops according to the following equation: 

𝑑𝑥!(𝑡)
𝑑𝑡

= 𝐹! 𝑥!(𝑡) , (2) 

where 𝑥! 0 = 𝑥! , 𝜃 ∈ ℝ! are parameters that define the field structure (for example, weights 
and shifts in the neural network layers). 

This system defines the trajectory of the object in time, which develops according to the field 
structure 𝐹! . The function 𝐹! is trained in such a way that all trajectories converge to a limited 
number of asymptotically stable stationary points (attractors) 𝜉! ∈ ℝ!. 

A stationary point 𝜉! is said to be an attractor if the condition 𝐹! 𝜉! = 0 is satisfied, and the 
linearised system in the neighbourhood of 𝜉! , defined by the Jacobian matrix: 

𝐽 𝜉! = ∇𝐹! 𝜉! , (3) 

has a spectrum which real parts are strictly negative (Lyapunov stability): 

Re 𝜆! 𝐽 𝜉! < 0,∀𝑖. (4) 

In this case, 𝜉! is an asymptotically stable fixed point, and there exists a neighbourhood 
𝑈! ⊂ ℝ! such that 𝑥! 0 ∈ 𝑈! ⇒ lim!⟶! 𝑥! 𝑡 = 𝜉! . The set of all such initial points defines the 
attractor circle 𝜉!: 

ℬ 𝜉! = 𝑥! ∈ ℝ!: lim!⟶!
Φ!
! 𝑥! = 𝜉! . (5) 

In the context of clustering, each region ℬ 𝜉!  is interpreted as a cluster, and 𝜉! as its central 
representative. The clusters produced by this model satisfy the following properties: 

• deterministic clustering: each object follows a unique trajectory that converges to a single 
attractor 𝜉!; 

• automatic determination of the number of clusters: the number of attractors 𝑘 is not 
predefined but emerges during training as the number of isolated stable points of the field 
𝐹!; 

• cluster stability: small perturbations in 𝑥! do not affect cluster membership, provided the 
object remains within ℬ 𝜉! ; 

• topological coherence: objects within the same cluster exhibit similar dynamic behaviour.  

In contrast to classical methods that rely on Euclidean or spectral metrics, the proposed 
approach operates on the geometry of trajectories in the space. The distance between objects is not 
a primary criterion for clustering; rather, it is their behaviour within the field 𝐹! , defined by the 
learned vector field, that determines the structure. This enables the discovery of non-linear cluster 
formations that are difficult to detect using traditional methods. 



6. Loss function 

The field 𝐹! is trained by minimising the loss function, which is defined as: 

𝑑𝑥!(𝑡)
𝑑𝑡

= 𝐹! 𝑥!(𝑡) , (6) 

where ℒ!"#$ is the convergence function that minimises the intra-cluster variance; ℒ!"#$% is the 
cluster separation component; ℛ!"#$%&! is the penalty for the complexity or non-smoothness of the 
field; 𝜆!, 𝜆! ∈ ℝ!! are the weighting coefficients. 

Let 𝑥! 𝑇  be the vector position of the mixed-type parameters after numerical integration in the 
field 𝐹! up to time T: 

𝑥! 𝑇 = Φ!
! 𝑥! , (7) 

under the condition (2). 
Then the convergence function has the following form: 

ℒ!"#$ = min! 𝑥! 𝑇 − 𝜉! !
!

!!!

, (8) 

where 𝜉!  are approximate attractor points defined as stable fixed points. 
To avoid excessive merging of attractors, a cluster separation component ℒ!"#$% is added, 

which moves attractors away from each other to preserve the distinctiveness of the clusters: 

ℒ!"#$% =
1

𝜉! − 𝜉! ! + 𝛿
!!!!!!!

, (9) 

where 𝛿 > 0 is a small term to avoid degeneracy. 
To ensure smoothness and manageability of the dynamics, the following regularisation is used: 

ℛ!"#$%&! = ∇𝐹! 𝑥! ! 𝑑𝑥
!

, (10) 

or an empirical approximation on a discrete grid: 

ℛ!"#$%&! ≈
1
𝑀

∇𝐹! 𝑧!
!

!

!!!

, (11) 

where 𝑧!  are random or uniformly taken points. 
In summary, the overall loss function ℒ 𝜃  takes into account both the convergence of the 

trajectories of mixed-type parameters with the nearest attractors (ℒ!"#$) and the structural 
separation between clusters (ℒ!"#$%), supplemented by a regulariser (ℛ!"#$%&!) that controls the 
complexity and smoothness of the vector field 𝐹! . This combined formulation provides a balanced 
field training aimed at forming stable, separated and dynamically consistent cluster structures in 
the space of mixed-type parameters. 

7. Learning algorithm 

The process of training a parameterised vector field 𝐹! , which implements clustering in the form of 
a dynamic system, is based on the numerical integration of object trajectories in the field and 
optimisation of the loss functional using the gradient method. For each object ℎ(!) ∈ ℋ, after its 
transformation 𝜙 ℎ(!) = 𝑥! ∈ ℝ!, the dynamic system is integrated according to condition (2), 
until a fixed time T, or until the stationary state 𝐹! 𝑥!(𝑡) < 𝜀 is reached. Numerical integration 



is performed by the Runge-Kutta method or an adaptive integrator within the Neural Ordinary 
Differential Equations (Neural ODE) model [15]. 

To accurately and efficiently train the parameters θ, we use the Neural ODE concept. This 
approach involves differentiation through an integrator, allowing us to train the parameters of a 
vector field based on the full trajectory. 

The vector field is implemented as a small fully connected neural network, where: 

• input: 𝑥! ∈ ℝ!, 𝐹! 𝑥! ∈ ℝ!; 
• structure: input layer (n neurons), hidden layers (2-4 layers of 64-128 neurons each), 

activation function (tanh or softplus), output layer (n neurons). 

The Neural ODE allows you to calculate the derivatives of the loss in terms of θ without having 
to explicitly store all the intermediate integration values. This is implemented through the adjoint 
sensitivity method, which calculates: 

𝑑ℒ 𝜃
𝑑𝜃

= − 𝛼 𝑡 ! 𝜕𝐹! 𝑥!
𝜕𝜃

!

!
𝑑𝑡, (12) 

where 𝛼 𝑡 = !ℒ !
! !!

 is the sensitivity vector. 

Upon completion of the evolution of each object, the endpoint 𝑥! 𝑇  is obtained, which is 
interpreted as a potential realisation of the attractor 𝜉! . In order to build a cluster structure, the 
points 𝑥! 𝑇  are aggregated into subsets according to the proximity criterion, for example, based 
on the threshold radius 𝛿. Each such subset determines the empirical attractor 𝜉! , and the 
corresponding objects - the cluster membership. At each learning iteration, the loss function is 
computed, which includes the computation of ℒ!"#$, ℒ!"#$% and ℛ!"#$%&! . 

The resulting gradient of the loss function with respect to the parameters θ determines the 
direction of the neural network update: 

𝜃 ← 𝜃 − 𝜂 ∙ ∇!ℒ 𝜃 , (13) 

where 𝜂 is the learning rate. 
The iterative learning process enables the adaptive formation of the vector field 𝐹! , in which 

the dynamics of objects converges to a limited number of stable attractors 𝜉! , forming a cluster 
structure 𝐶!:= ℬ 𝜉! , under condition (5). 

8. Comparison of clustering methods 

Table 1 provides a summary of the advantages and limitations of various approaches, serving as a 
conceptual comparison between the proposed method and three classical clustering algorithms. 
The comparison is based on key criteria: the requirement to predefine the number of clusters, the 
ability to capture complex geometric structures in data, model differentiability, support for 
topological cohesion, scalability to large datasets, and the incorporation of internal dynamics 
within the model. 

Given that the objects in the study are vectors of mixed-type parameters, classical methods do 
not take into account the complex internal structure of such vectors (the presence of numerical and 
categorical components, hierarchical dependence, etc.). Instead, we propose a model: 

• works with any type of parameters after vectorisation; 
• models the interaction between their components through the field structure; 
• provides clustering that is robust, topologically meaningful, and dynamically controlled. 

Table 2 shows the results of the statistical analysis of the test data set. 



Table 1 
Comparing the properties of clustering methods 

Criterion DAC-NVF k-means SOM Spectral 
Clustering 

The need to fix 𝐾 No Yes Yes Yes 
Support of complex geometry Yes No Partially Yes 

Differentiability Yes No No No 
Topological cohesion Yes No Yes Partially 

Scalability High High High Low 
Presence of force dynamics Yes No No No 

Table 2 
Statistical characteristics of the test dataset 

Metrics Age AnnualIncome SpendingScore MembershipYears SatisfactionLevel 
Count 25000 25000 25000 25000 25000 
Mean 39.7 52158.69 49.51 5.01 0.286 

Standard Dev. 11.54 16965.57 24.02 2.25 0.166 
Minimum 18 10000 1 0 0 

25th percentile 31 40636.04 32 3 0.16 
50th percentile 40 52028.71 49 5 0.27 
75th percentile 48 63594.44 67 6 0.39 

Maximum 70 123145.46 100 7 1 

 
Based on Table 2, the test dataset contains information on 25,000 customers and is characterised 

by high variability of parameters, which allows for a detailed analysis of the behavioural and socio-
economic characteristics of the customer base. The age distribution is close to normal with an 
average of 40 years, and the annual income fluctuates in a wide range, having an average of about 
52,000 units with a significant dispersion. The SpendingScore and SatisfactionLevel also show a 
wide range of values, indicating a heterogeneity of customer habits and attitudes. The data is 
suitable for cluster analysis, building predictive models, identifying behavioural patterns, and 
developing personalised customer interaction strategies. 

Table 3 shows a comparison of the main clustering quality metrics for the four approaches, 
which allows us to assess their strengths and weaknesses in the context of data analysis. 

Table 3 
Comparison of the main clustering quality metrics 

Quality metric DAC-NVF k-means SOM Spectral 
Clustering 

Silhouette Score 0.097 0.11 0.15 0.17 
Calinski-Harabasz Index 589 611 307 208 

Davies-Bouldin Index 2.29 2.29 1.82 1.71 

The analysis of comparative clustering metrics (Table 3) shows that none of the approaches is 
dominant by all criteria, but each has its advantages depending on the data structure. The dynamic 
method showed the highest intra-cluster cohesion (CH Index ≈ 589), but at the same time, poor 
geometric cluster separation (Silhouette = 0.097), which is explained by its focus on dynamic rather 
than static topology. The k-means method showed similar results, indicating a linear structure of 
clusters in the data. The expected improvement for SOM confirms its potential with proper tuning, 
and spectral clustering showed the ability to extract clusters with less overlap, albeit with reduced 
inter-cluster differentiation. Overall, the dynamic approach reveals a deeper topological structure 



that is not fully captured by standard metrics, which highlights the feasibility of using additional 
dynamic indicators. 

Low values of geometric metrics do not mean that the quality of dynamic clustering is poor - 
they only indicate that this method requires different evaluation approaches. Let's analyse two 
criteria for this purpose. The first criterion, the Trajectory Stability Index (TSI), evaluates how 
stable the trajectories of objects in a dynamic field are under a small perturbation of the initial 
conditions and is defined as follows: 

𝑇𝑆𝐼 =
1
𝑁

exp −
𝑥! 𝑇 − 𝑥!! 𝑇

!

𝜖!

!

!!!

, (14) 

where 𝜖  is the tolerance scale. 
The second criterion, Attractor Assignment Consistency (AAC), assesses whether the same 

attractors will be assigned to objects after the field is re-run (possibly with a random initialisation) 
and is defined as follows: 

𝐴𝐴𝐶 =
1
𝑁

Mode 𝜉!
(!), 𝜉!

(!),… , 𝜉!
(!) = 𝜉!

(!)
!

!!!

. (15) 

The results of calculating specialised metrics for the dynamic approach to clustering (DAC-
NVF) of the test sample confirm its structural stability. The value of 𝑇𝑆𝐼 = 0.739 indicates high 
local stability of trajectories: most objects show a convolution to the same attractors even under 
small perturbations of the initial conditions. The metric 𝐴𝐴𝐶 = 0.927 indicates the reliability of 
cluster formation: more than 92% of objects received the same cluster assignment when the system 
was re-run. This demonstrates that the model is not only consistent, but also capable of 
reproducible clustering in a mixed-type parameter space, which is crucial for analysing complex 
systems with a mixed nature of features. 

Figure 1 shows the results of data clustering in projection on the first two principal components 
(PCA) for the four methods: DAC-NVF (dynamic approach), k-means, SOM and Spectral 
Clustering. 

 

Figure 1: Visual results of cluster formation for the test dataset. 



Visually, it is clear that DAC-NVF forms well-separated clusters that occupy meaningful areas 
of space, which confirms its ability to model attractive regions. The k-means method demonstrates 
partial overlap of clusters with radial placement around the centre, typical for Euclidean 
optimisation. In the case of SOM, an excessive number of clusters with strong overlap is observed, 
indicating the need for additional lattice tuning. Spectral Clustering also produces large areas of 
cluster overlap, although some areas have clear boundaries, which is a consequence of building on 
local similarity. In general, DAC-NVF reveals a better topological structure, while the other 
methods show geometric but less stable clustering. 

9. Conclusions and directions for further research 

In this paper, we formulate and implement a mathematical paradigm of clustering based on the 
idea of modelling the cluster structure as a dynamic behaviour of objects in a neurally 
parameterised vector field. In contrast to traditional methods based on distance metrics, isotropic 
hypotheses and Euclidean geometry, the proposed approach considers clusters as areas of 
attraction (attractors) in phase space where the trajectories of objects converge under the influence 
of a vector field defined by a system of differential equations. 

The key achievement of the developed model is its ability to adaptively detect the number of 
clusters, form stable structures in a multidimensional space, and provide differential training of 
field parameters based on the Neural ODE concept. The model demonstrates the ability to 
reproduce complex topologies, including irregular, non-Euclidean and variable-density clusters, 
which is unattainable for most classical algorithms. At the same time, the process of cluster 
formation does not occur through direct grouping by distance, but as a consequence of the 
asymptotic behaviour of the system, thus maintaining the correspondence between the field 
structure and the cluster organisation of the set. 

The results of experiments on test data have shown that the dynamic clustering model is able to 
provide high topological cohesion, invariance to initial perturbations, and consistency of the 
cluster structure during re-runs. This is confirmed by the values of dynamic metrics: Trajectory 
Stability Index (𝑇𝑆𝐼 = 0.739) and Attractor Assignment Consistency (𝐴𝐴𝐶 = 0.927), which 
capture both the local stability of trajectories and the global consistency of clustering results. It is 
also worth highlighting the high value of the Calinski-Harabasz Index (≈ 589), which indicates deep 
intra-cluster cohesion, despite the fact that geometric metrics such as Silhouette Score do not fully 
reflect the advantages of the dynamic approach. 

From a methodological point of view, the presented approach is important for building 
integrated clustering models, where the cluster structure is the result of not only geometric but 
also functional and dynamic organisation of objects. Within the proposed paradigm, it is possible 
to move from passive data analysis to active modelling of the processes that determine the 
structure of a set. In this way, clustering appears not as a tool for dividing data, but as a means of 
studying the latent dynamics of complex systems, which is directly related to the tasks of 
forecasting, control and optimisation. 

The applicability of the developed method to the clustering of objects described by vectors with 
heterogeneous elements (numerical, categorical, textual, structural) deserves special attention. Such 
vectors are typical for modern tasks in marketing, healthcare, behavioural analytics, and 
engineering systems. The proposed model provides not only clustering of such objects, but also 
their interpretation through the properties of attraction, which opens up prospects for explanatory 
machine learning. 

Several important areas for further research are worth highlighting: 

• Theoretical analysis of the attractor set: building conditions for the existence, isolation, and 
stability of the attractor set depending on the field parameters and the distribution of 
objects. 



• Generalisation to stochastic dynamical systems: extending the model by introducing 
stochastic perturbations and analysing stability in the Ito or Lyapunov sense in the mean. 

• Extension to semi-supervised learning: integration of partial labels or domain information 
into the field structure as external sources of control over cluster formation dynamics. 

• Optimisation of computational procedures: acceleration of trajectory integration and vector 
field learning through the use of adaptive integrators, low-rank approximations and graph 
structures. 

• Analysis of multi-layer vector fields: construction of deep hierarchies of dynamics, where 
attractors of one level are initialisations on the next, which allows modelling a multi-level 
cluster structure. 

Thus, the presented approach has both direct applied significance - for cluster analysis tasks in 
real systems - and a deep theoretical perspective - as a new class of models that combine dynamical 
systems, topology, and deep learning. Its development can contribute to the formation of a new 
research area in mathematical clustering - dynamically oriented clustering, where the concepts of 
attraction, stability and evolution of objects become fundamental in modelling the structure of a 
set. 
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