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Abstract 
The task of weather forecasting becomes more important under conditions of global warming. Similarly, 
the air pollution prediction has higher value when industrial enterprises neglect environmental pollution 
issues. This research demonstrates how hourly weather and air pollution data can be restructured for the 
forecasting up to 24 hours ahead, and studies the cross-influence of parameters as all of them represent 
the atmosphere as single object from physical world. The parameter differences calculated for different 
points in time are considered as additional inputs and outputs of machine learning model. The prediction 
accuracy is analyzed for twelve regression algorithms using popular metrics like MASE, R2 and MAE. 
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1. Introduction 

In recent years, the application of machine learning algorithms has revolutionized also in the field 
of weather and air pollution forecasting. This article provides a comparative analysis of various 
machine learning techniques, including ensemble methods and neural networks, to evaluate their 
effectiveness in predicting meteorological and air quality conditions. By examining the accuracy 
metrics obtained for each algorithm, this study aims to identify the most reliable configurations, 
ultimately contributing to better environmental and public health strategies. 

2. Weather and Air Pollution Data 

The weather and air pollution data were downloaded from the website openweathermap.org. This 
service allows to retrieve multiple atmospheric characteristics for arbitrary GPS coordinates. The 
main columns of this dataset for Kyiv city are shown below in Fig. 1. This table contains hourly 
data and 33,863 records overall, from Nov 25, 2020 to Oct 05, 2024. 
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Figure 1: The Kyiv city dataset used for training and validation of regression models. 

Table 1: The weather and pollution parameters representing the data model. 

 Model Parameter Parameter Type Description and Measurement Unit 

 UtcTime Primary key 
Number of seconds elapsed since 
1970-01-01T00:00:00 GMT 

 LocalDate Composite key Local date of measurement (Kyiv) 

 LocalHour Composite key Local hour from 0 to 23 (Kyiv) 

 Temperature Measured Air temperature in degrees Celsius 

 DewPoint Measured Dew point in degrees Celsius 

 Pressure Measured Atmospheric pressure in millibars 

 Humidity Measured Air humidity as percentage 

 WindSpeed Measured Wind speed in meters per second 

 WindAngle Measured Wind direction azimuth in degrees 

 WindSine Calculated Sine of wind direction angle 

 WindCosine Calculated Cosine of wind direction angle 

 CloudLevel Measured Sky cloudiness as percentage 

 LevelCO Measured CO pollution level in μg/m³ 

 LevelNO Measured NO pollution level in μg/m³ 

 LevelNO2 Measured NO2 pollution level in μg/m³ 

 LevelO3 Measured O3 pollution level in μg/m³ 

 LevelSO2 Measured SO2 pollution level in μg/m³ 

 LevelNH3 Measured NH3 pollution level in μg/m³ 

 LevelPM2 Measured 
Dust pollution with particles less 
than 2.5 micrometers in μg/m³ 

 LevelPM10 Measured 
Dust pollution with particles less 
than 10 micrometers in μg/m³ 

 SineDay Calculated Sine value for daily cycle 

 CosineDay Calculated Cosine value for daily cycle 

 SineWeek Calculated Sine value for weekly cycle 

 CosineWeek Calculated Cosine value for weekly cycle 

 SineMonth Calculated Sine value for monthly cycle 

 CosineMonth Calculated Cosine value for monthly cycle 

 SineYear Calculated Sine value for yearly cycle 

 CosineYear Calculated Cosine value for yearly cycle 



Despite this work accounts only for data from one city, the first UTC time column in Table 1 above 
is helpful to synchronize records from multiple locations. Correspondingly, the local date and time 
columns are important for customers. The air temperature and dew point are presented in degrees 
Celsius. The atmospheric pressure is measured in millibars (or hectopascals). The humidity and 
cloudiness are both represented as percentages. 

The next subset of weather-related parameters are wind characteristics. The degrees are used 
typically to register wind direction. However, this format is not convenient for machine learning 
algorithms [1] due to the representation gap between 359° and 0°. One of the popular approaches 
for solving this problem is the usage of the sine and cosine of the corresponding angle [5]. These 
columns were calculated using an algorithm written in Python. The reverse transformation is also 
possible when forecasted values of wind sine and cosine are properly normalized. The wind speed 
is measured correspondingly in meters per second. 

The air pollution levels for various indicators shown in Table 1 are measured in micrograms 
per cubic meter (μg/m³). Carbon monoxide stands out as the most significant pollutant due to its 
high concentration. The parameters LevelPM2 and LevelPM10 denote dust pollution with particles 
up to 2.5 and 10 micrometers, respectively. It's important to note that the PM10 value includes the 
PM2.5 level. The particles that are 2.5 micrometers or smaller are particularly harmful as they can 
directly enter the bloodstream. Mid-sized particles can easily pass through the airways and settle in 
the lungs. Lastly, particles larger than 10 micrometers are typically filtered out by the respiratory 
tract and do not reach the lungs. 

The accuracy of the forecast can be enhanced by incorporating cyclical parameters [7], that are 
presented in the lower section of Table 1. For instance, the cosine of daily cycle represents the 
temperature and light variations between day and night. Likewise, the cosine of the yearly cycle 
captures the changes between winter and summer. 

3. Data Imputation and Resampling 

The weather dataset included all necessary records for the specified period. At the same time, the 
pollution data lacked 275 records and contained several negative and outlier values, which were 
removed. The missing entries were subsequently recalculated using the KNNImputer class [8]. 

The machine learning algorithms in the scikit-learn library [9] require that all input and output 
parameters be represented in separate columns. However, this structure is not ideal for time series 
forecasting, where past and future data vary by record number and occupy the same columns. So, 
the dataset was restructured for training and forecasting purposes, with additional weather and 
pollution parameters included. The suffix notation used is detailed in the example below. 

• Temperature-P1, the temperature in 1 hour 
… 

• Temperature-P24, the temperature in 24 hours 
• Temperature-M1, the temperature 1 hour ago 

… 
• Temperature-M24, the temperature 24 hours ago 

Similarly, the dataset was augmented with parameter differences, as described in the list below. 
Strictly speaking this information is redundant, but the layout of samples in the multi-dimensional 
space can be different in relation to internal computations of regression algorithm [16]. 

• Temperature-Diff-P1 = Temperature-P1 - Temperature 
… 

• Temperature-Diff-P24 = Temperature-P24 - Temperature 
• Temperature-Diff-M1 = Temperature - Temperature-M1 

… 
• Temperature-Diff-M24 = Temperature - Temperature-M24 



In time series slang, the two groups of parameters above are often referred to as lags and diffs. 
The periodic parameters do not need to be duplicated, as they precisely represent the moment in 
time for machine learning purposes. The dataset was divided into training and testing segments in 
an 80% to 20% ratio. All training data precede the testing records chronologically, with the split 
date being December 28, 2023. 

In total, there are 8 weather parameters and 8 pollution parameters available for current hour. 
In particular, the feature WindAngle was excluded due to its discontinuous nature. If the past and 
future hours are considered then differences can be added. So, overall 16 weather and 16 pollution 
parameters can be used as inputs and outputs of a machine learning algorithm. When the whole 
24-hour history is taken into account and periodic parameters are added the total number of inputs 
becomes 8 + 8 + (16 + 16) * 24 + 8 = 792. Thus, the total number of possible input combinations is 
2792. Clearly, this work does not attempt to explore this combinatorial space and aims to use more 
affordable approaches to optimize the forecasting accuracy. 

4. Regression Performance Metrics 

The mean absolute scaled error (MASE) is regarded as a superior alternative to the mean absolute 
percentage error (MAPE). A major drawback of the MAPE metric is that it can produce excessively 
large values when the dataset includes samples that are near zero. A classic example of this issue is 
temperature measured in degrees Celsius. 

The main idea behind MASE metric is to compare the performance of a regression algorithm to 
naïve forecast approach when the current value of time series is used as a forecast for next step. 
This is also called as null hypothesis in the terminology of capital markets. So, here’s the formula 
that implements this approach. 

 

(1) 

Here  designates the number of records in the test set,  – the number of steps the forecast is 
made for,  – the actual component output value from the test set,  – the predicted component 
output value. The numerator represents mean absolute error, and denominator represents the error 
of naïve forecast. As can be concluded from the formula, the MASE metric is higher than or equal 
to 0. The lower its value the more accurate predictions were made. The forecast can be considered 
as successful when MASE metric is lower than 1. Correspondingly, when MASE value is higher 
than 1 the forecast cannot be considered as useful, and regression algorithm performs even worse 
than naïve method. The algorithm that calculates MASE metric is presented in Appendix A. 

Another popular metric for regression tasks is R2 score, also called as determination coefficient. 
It has some similarities with a correlation coefficient in the interpretation aspects. Nevertheless, the 
calculation formula is different. 

 
(2) 

Here  designates the mean value for actual component output from the test set. The higher 
the value of R2 score the better, its maximum possible value is 1 for precise forecast. If R2 score is 
higher than 0 the prediction can be considered as successful. If it is lower than 0 than forecast is 
rather harmful and its results better be avoided. 

The mean absolute error (MAE) is the simplest metric. It is convenient for field engineers as its 
values are represented in corresponding measurement units, so that it is easy to verify if the error 
matches the real-world constraints. The calculation formula for MAE error is presented below. 



 
(3) 

As demonstrated in Table 1, up to 16 parameters can be selected as the outputs of a regression 
algorithm. Meanwhile, this research does not attempt to address the multi-objective optimization 
problem. All parameters of the machine learning algorithm are optimized solely to minimize the 
sum of MASE metrics for individual output parameters. 

5. Prediction of Combined Outputs 

The evaluation of input features was accomplished with ExtraTreesRegressor algorithm [12] from 
scikit-learn library [9]. It has limited number of hyperparameters to tune and provides the array of 
feature importances that enable individual feature selection. 

The starting point of this research is to employ a single machine learning model that forecasts 
all 16 output parameters. The users are typically interested in all forecast ranges from 1 hour and 
up to 24 hours ahead. In order to reduce the computational burden and balance the quality of short-
term and long-term forecasting it was desided to tune the model initially for 12-hour forecasting. 

 

Figure 2: The sum of MASE errors for combined forecast depending on history length in hours. 



 

Figure 3: The sum of R2 scores for combined forecast depending on history length in hours. 

The MASE metric dependencies on the history length in hours are illustrated in Figure 2. It is 
evident that difference inputs noticeably improve the quality of prediction. Additionally, periodic 
parameters are quite important for shorter history. Nevetheless, the best results were achieved 
with a 13-hour history and without periodic parameters. Below are the lists representing input-
output configuration for this scenario (400 inputs vs 16 outputs). 

Input features: ['Temperature',	'DewPoint',	'Pressure',	'Humidity',	'WindSpeed',	
'WindSine',	'WindCosine',	'CloudLevel',	'LevelCO',	'LevelNO',	'LevelNO2',	'LevelO3',	
'LevelSO2',	'LevelNH3',	'LevelPM2',	'LevelPM10',	'Temperature-M1',	'DewPoint-M1',	
'Pressure-M1',	'Humidity-M1',	'WindSpeed-M1',	'WindSine-M1',	'WindCosine-M1',	
'CloudLevel-M1',	'LevelCO-M1',	'LevelNO-M1',	'LevelNO2-M1',	'LevelO3-M1',	
'LevelSO2-M1',	'LevelNH3-M1',	'LevelPM2-M1',	'LevelPM10-M1',	'Temperature-Diff-M1',	
'DewPoint-Diff-M1',	'Pressure-Diff-M1',	'Humidity-Diff-M1',	'WindSpeed-Diff-M1',	
'WindSine-Diff-M1',	'WindCosine-Diff-M1',	'CloudLevel-Diff-M1',	'LevelCO-Diff-M1',	
'LevelNO-Diff-M1',	'LevelNO2-Diff-M1',	'LevelO3-Diff-M1',	'LevelSO2-Diff-M1',	
'LevelNH3-Diff-M1',	'LevelPM2-Diff-M1',	'LevelPM10-Diff-M1',	...	,	'Temperature-M13',	
'DewPoint-M13',	'Pressure-M13',	'Humidity-M13',	'WindSpeed-M13',	'WindSine-M13',	
'WindCosine-M13',	'CloudLevel-M13',	'LevelCO-M13',	'LevelNO-M13',	'LevelNO2-M13',	
'LevelO3-M13',	'LevelSO2-M13',	'LevelNH3-M13',	'LevelPM2-M13',	'LevelPM10-M13',	
'Temperature-Diff-M13',	'DewPoint-Diff-M13',	'Pressure-Diff-M13',	'Humidity-Diff-M13',	
'WindSpeed-Diff-M13',	'WindSine-Diff-M13',	'WindCosine-Diff-M13',	'CloudLevel-Diff-
M13',	'LevelCO-Diff-M13',	'LevelNO-Diff-M13',	'LevelNO2-Diff-M13',	'LevelO3-Diff-M13',	
'LevelSO2-Diff-M13',	'LevelNH3-Diff-M13',	'LevelPM2-Diff-M13',	'LevelPM10-Diff-M13'] 

Output features: ['Temperature-P12',	'DewPoint-P12',	'Pressure-P12',	'Humidity-P12',	
'WindSpeed-P12',	'WindSine-P12',	'WindCosine-P12',	'CloudLevel-P12',	'LevelCO-P12',	
'LevelNO-P12',	'LevelNO2-P12',	'LevelO3-P12',	'LevelSO2-P12',	'LevelNH3-P12',	
'LevelPM2-P12',	'LevelPM10-P12'] 



 

Figure 4: The prediction accuracy depending on the forecast range in hours. 

 

Figure 5: The feature importances for combined forecast obtained with extra trees regressor. 

Testing	 mean	 scaled	 error(s)	 (MASE):	 [0.42760494	 1.06906716	 1.41122324	 0.39518139	
0.78960831	1.07409255	1.10271711	1.08403245	0.87116274	1.04628948	0.75481872	0.5116501	
0.75501992	0.75901893	1.02661477	1.03704968],	sum	=	14.11515148	

The performance of this input model for different forecast ranges is demonstrated in Figure 4. 
The R2 score is more relevant in this case, and the best results were obtained for 1-hour forecasting. 
As shown in Equation 1, the MASE metric depends on the forecast range, making the comparison 
of nearby samples unfair. This dependency is presented here for illustrative purposes. 

The feature importances calculated by ExtraTreesRegressor class for a full 24-hour history with 
periodic parameters are presented in Figure 5. It appears that cloudiness and CO concentration are 
the most predictive parameters. Additionally, the cosine representation of yearly and daily cycles 
are quite important. 



6. Prediction of Weather Outputs 

 

Figure 6: The sum of MASE errors for weather forecast depending on history length in hours.  

 

Figure 7: The sum of R2 scores for weather forecast depending on history length in hours. 

While preserving the same input features there is a way to split output parameters on weather 
and air pollution groups. The MASE metrics for the forecasting of weather parameters are shown 
above in Figure 6. The best results were obtained again for 12-hour history and without periodic 
parameters, and this is an improvement in relation to combined forecast. 

Testing	mean	scaled	error(s)	(MASE):	[0.37630252	0.98280471	1.15055085	0.37381643	
0.79749537	1.05510771	1.09868261	1.05295743],	sum	=	6.887717634	



 

Figure 8: The feature importances for weather forecast obtained with extra trees regressor. 

7. Prediction of Pollution Outputs 

The MASE metrics for the prediction of pollution parameters are shown below in Figure 9. The best 
results were obtained for 17-hour history with differences and with periodic parameters. 

Testing	mean	scaled	error(s)	(MASE):	[0.85229725	1.02571192	0.75076816	0.49912568	
0.75825543	0.76679182	1.01558379	1.0260866],	sum	=	6.694620651	

 

Figure 9: The sum of MASE errors for pollution forecast depending on history length in hours. 



 

Figure 10: The sum of R2 scores for pollution forecast depending on history length in hours. 

 

Figure 11: The feature importances for pollution forecast obtained with extra trees regressor. 

And this is another improvement in comparison to the combined forecast. Regarding the shape of 
MASE graph, there is a general rule that initially the prediction accuracy improves when more 
useful information is provided to machine learning algorithm. However, when parameters become 
redundant or start introducing the noise into the system the forecast quality decreases. 

As for input feature selection, there is a possibility to select the most important features using 
SelectFromModel class [15]. At the same time, this research is particularly difficult for weather and 
air pollution datasets and it did not become the part of this article. 

8. Comparison of Regression Algorithms 

Once the split of output parameters allowed to improve the prediction accuracy, it makes sense to 
consider forecasting of a single output. Besides, this can be done using other regression algorithms 
available in scikit-learn library, the MASE metrics obtained are presented in Table 2. 



Table 2a: MASE error obtained for weather parameters and 12-hour forecasting. 

Table 2b: MASE error obtained for weather parameters and 12-hour forecasting. 

Table 2c: MASE error obtained for pollution parameters and 12-hour forecasting. 

 Regression Algorithm Temperature-P12 DewPoint-P12 Pressure-P12 Humidity-P12 

 Gradient Boosting 0.290448 0.804321 0.780185 0.346654 

 Support Vector Machine 0.323052 0.812869 0.782525 0.361426 

 Histo-Gradient Boosting  0.290831 0.803297 0.776752 0.348354 

 Extra Trees Regressor 0.309699 0.830221 0.810966 0.351747 

 Random Forest Regressor 0.312626 0.823599 0.816720 0.351488 

 Elastic Net Regression 0.344540 0.845808 0.800400 0.373180 

 Linear Regression 0.344543 0.845905 0.800894 0.373179 

 Bayes Ridge Regression 0.344551 0.846013 0.800875 0.373198 

 Decision Tree Regressor 0.371178 0.951572 0.943605 0.397570 

 Multi-Layer Perceptron 0.343359 0.856236 0.835506 0.370349 

 Nearest Neighbors 0.508248 1.217463 1.798733 0.421180 

 Ada Boost Regressor 0.423590 1.088373 1.025406 0.506579 

 Regression Algorithm WindSpeed-P12 WindSine-P12 WindCosine-P12 CloudLevel-P12 

 Gradient Boosting 0.765578 0.868253 0.921366 0.986027 

 Support Vector Machine 0.753652 0.890283 0.922716 0.950337 

 Histo-Gradient Boosting  0.775877 0.882801 0.932350 1.022101 

 Extra Trees Regressor 0.777338 0.906263 0.947481 1.041029 

 Random Forest Regressor 0.777611 0.907580 0.949287 1.046414 

 Elastic Net Regression 0.778504 0.924555 0.953478 1.051515 

 Linear Regression 0.778875 0.924119 0.953031 1.051495 

 Bayes Ridge Regression 0.778524 0.924355 0.953108 1.051521 

 Decision Tree Regressor 0.784572 0.925449 0.975530 1.056228 

 Multi-Layer Perceptron 0.791185 0.983977 1.043178 1.050212 

 Nearest Neighbors 0.801563 1.093743 1.179717 1.051063 

 Ada Boost Regressor 0.996020 0.963977 0.994661 1.160933 

 Regression Algorithm LevelCO-P12 LevelNO-P12 LevelNO2-P12 LevelO3-P12 

 Gradient Boosting 0.811747 0.588180 0.641686 0.458602 

 Support Vector Machine 0.819337 0.526212 0.645346 0.463885 

 Histo-Gradient Boosting  0.850712 0.907135 0.681960 0.460109 

 Extra Trees Regressor 0.859329 1.103889 0.719776 0.469639 

 Random Forest Regressor 0.879540 1.163759 0.719972 0.470645 

 Elastic Net Regression 0.882887 1.175872 0.746956 0.481331 

 Linear Regression 0.883199 1.180683 0.748547 0.482141 

 Bayes Ridge Regression 0.883420 1.180751 0.748598 0.482101 



Table 2d: MASE error obtained for pollution parameters and 12-hour forecasting. 

The prediction accuracy has been improved again. The hyperparameters for machine learning 
algorithms listed in a table were manually optimized and they are available in Appendix B. As for 
R2 scores and MAE metrics for the same experiments they are presented in Appendices C and D. 

It was quite expected that decision tree based ensemble methods would take top of the chart. 
The negative surprises are that KNeighborsRegressor provided poor results and AdaBoostRegressor 
failed to forecast many output characteristics. The positive surprise is that Support Vector Machine 
(class NuSVR) took second place. However, this was achieved at the cost of high training time that 
takes tens of minutes on 8-core machine. 

The winner algorithm for this dataset is GradientBoostingRegressor, its training time for every 
model takes about 5 minutes. The HistGradientBoostingRegressor provides similar results, but runs 
much faster, its training time is about 5 seconds per model. As for ExtraTreesRegressor, the time to 
train the model is also short and takes tens of seconds. 

The linear methods occupy the middle of the list and this emphasizes the complexity of current 
task. It is quite unexpected that linear regression outperforms classic machine learning instruments 
like DecisionTreeRegressor and Multi-Layer Perceptron with quasi-Newton optimizer. 

The prediction accuracy is not the only factor for selection of machine learning model. Other 
factors include the training time and the size of the serialized model on the disk. These aspects 
become especially important in cloud environments. Additionally, for selecting an input-output 
model that requires many iterations to complete, faster algorithms are preferred. 

9. Prediction of Parameter Differences 

So far the parameter differences were used only as inputs. At the same time, the differences can be 
forecasted the same way as direct parameters. The future value of a parameter can be calculated as 
the sum of current parameter value and difference forecasted. 

The table 3 below compares these two approaches. Because of Equations 1 and 2 the MASE and 
R2 metrics are not directly comparable. However, the MAE error for differences is calculated using 

 Decision Tree Regressor 0.928463 1.028117 0.739561 0.503332 

 Multi-Layer Perceptron 0.903014 1.280309 0.756154 0.484334 

 Nearest Neighbors 0.943229 0.869021 0.751331 0.524242 

 Ada Boost Regressor 2.415821 13.002211 2.310592 0.546100 

 Regression Algorithm LevelSO2-P12 LevelNH3-P12 LevelPM2-P12 LevelPM10-P12 

 Gradient Boosting 0.632347 0.649840 0.884449 0.888412 

 Support Vector Machine 0.635136 0.682333 0.877520 0.885628 

 Histo-Gradient Boosting  0.672324 0.673715 0.918804 0.916783 

 Extra Trees Regressor 0.686835 0.686608 0.915955 0.930745 

 Random Forest Regressor 0.687291 0.690882 0.923192 0.930449 

 Elastic Net Regression 0.693963 0.753811 0.924101 0.920190 

 Linear Regression 0.694797 0.754685 0.924244 0.920238 

 Bayes Ridge Regression 0.694855 0.754755 0.924272 0.920286 

 Decision Tree Regressor 0.728129 0.775167 0.965425 0.936466 

 Multi-Layer Perceptron 0.711183 0.806256 0.928723 0.927701 

 Nearest Neighbors 0.732473 0.769242 1.045273 1.055532 

 Ada Boost Regressor 2.430591 3.127918 2.956627 2.570652 



equivalent formula, and this metric allows to compare the forecasting accuracy. It appears, that the 
forecast of differences provides an improvement for many weather parameters and some pollution 
parameters. And this happens more often for characteristics with good predictability. 

Table 3a: Metrics obtained for weather parameters using gradient boosting regressor. 

Table 3b: Metrics obtained for weather parameters using gradient boosting regressor. 

Table 3c: Metrics obtained for pollution parameters using gradient boosting regressor. 

Table 3d: Metrics obtained for pollution parameters using gradient boosting regressor. 

 Prediction Type, Metric Temperature-P12 DewPoint-P12 Pressure-P12 Humidity-P12 

 Direct Forecast, MASE 0.290448 0.804321 0.780185 0.346654 

 Difference Forecast, MASE 0.148818 0.483919 0.646530 0.175734 

 Direct Forecast, R2 0.952527 0.846526 0.877577 0.696013 

 Difference Forecast, R2 0.905270 0.226145 0.406070 0.846706 

 Direct Forecast, MAE 1.676653 1.752220 1.887538 6.905454 

 Difference Forecast, MAE 1.666748 1.726670 1.873221 6.814671 

 Prediction Type WindSpeed-P12 WindSine-P12 WindCosine-P12 CloudLevel-P12 

 Direct Forecast, MASE 0.765578 0.868253 0.921366 0.986027 

 Difference Forecast, MASE 0.424841 0.495768 0.534099 0.554002 

 Direct Forecast, R2 0.042988 0.249771 0.245715 0.334586 

 Difference Forecast, R2 0.489904 0.388062 0.323811 0.312515 

 Direct Forecast, MAE 1.210395 0.503919 0.494008 25.698767 

 Difference Forecast, MAE 1.206469 0.504502 0.493705 25.486546 

 Prediction Type LevelCO-P12 LevelNO-P12 LevelNO2-P12 LevelO3-P12 

 Direct Forecast, MASE 0.811747 0.588180 0.641686 0.458602 

 Difference Forecast, MASE 0.474729 0.306328 0.355471 0.241845 

 Direct Forecast, R2 0.719361 0.032797 0.281042 0.532976 

 Difference Forecast, R2 0.338298 0.431516 0.518850 0.778906 

 Direct Forecast, MAE 16.238159 0.855437 3.835031 14.150969 
 Difference Forecast, MAE 16.365860 0.848951 3.934977 14.272140 

 Prediction Type LevelSO2-P12 LevelNH3-P12 LevelPM2-P12 LevelPM10-P12 

 Direct Forecast, MASE 0.632347 0.649840 0.884449 0.888412 

 Difference Forecast, MASE 0.344376 0.365622 0.526062 0.543068 

 Direct Forecast, R2 0.269321 0.377308 0.397727 0.365168 

 Difference Forecast, R2 0.580179 0.512974 0.223234 0.123103 

 Direct Forecast, MAE 1.969536 0.584217 2.667819 3.466319 
 Difference Forecast, MAE 1.940803 0.591039 2.619420 3.488378 



Conclusion 
This work proposes modern approaches for the forecasting of weather and air pollution parameters 
that define input history length, output parameter configuration and selection of machine learning 
algorithm. The best results were obtained for GradientBoostingRegressor class. 

The usage of differences both on input and output sides of the algorithm helps to improve the 
results. The forecasting accuracy varies a lot for different output parameters. In particular, wind, 
cloudiness and air pollution characteristics are quite difficult to predict. 

The selection of output parameters has significant influence on the accuracy of the algorithm. 
And the best results were obtained when individual machine learning model was trained for every 
output feature. Correspondingly, the selection of single multi-output regression algorithm is not 
the optimal choice. As expected, better results require more computational resources. 

Declaration on Generative AI 
The author(s) have not employed any Generative AI tools. 
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A. Appendix: MASE Metric 

The function to calculate the mean absolute scaled error is missing in version 1.6 of scikit-learn 
library, so one of the options is to implement it manually. 

 
def	mean_absolute_scaled_error(dataset_outputs,	\	
				predicted_dataset_outputs,	multioutput	=	'raw_values',	forecast_range	=	1):	
	
				assert	multioutput	==	'raw_values',	"Only	multi-output	mode	is	supported	for	now"	
	
				if	(isinstance(dataset_outputs,	pandas.DataFrame)):	
								dataset_outputs	=	dataset_outputs.to_numpy()	
				if	(isinstance(predicted_dataset_outputs,	pandas.DataFrame)):	
								predicted_dataset_outputs	=	predicted_dataset_outputs.to_numpy()	
	
				if	(len(dataset_outputs.shape)	==	1):	
								dataset_outputs	=	numpy.array([[number]	for	number	in	dataset_outputs])	
				if	(len(predicted_dataset_outputs.shape)	==	1):	
								predicted_dataset_outputs	=	numpy.array	\	
												([[number]	for	number	in	predicted_dataset_outputs])	
	
				record_count	=	dataset_outputs.shape[0]	
				assert	record_count	==	predicted_dataset_outputs.shape[0],	\	
								"The	original	and	predicted	dataset	outputs	should	have	the	same	record	count"	
	
				column_count	=	dataset_outputs.shape[1]	
				assert	column_count	==	predicted_dataset_outputs.shape[1],	\	
								"The	original	and	predicted	dataset	outputs	should	have	the	same	column	count"	
	
				assert	record_count	>	forecast_range,	\	
								"The	number	of	dataset	records	should	be	higher	than	forecast	range"	
	
				scaled_errors	=	[]	
				for	j	in	range(0,	column_count):	
	
								naive_prediction_mismatch	=	0.0	
								for	i	in	range	(forecast_range,	record_count):	
												diff	=	dataset_outputs[i,	j]	-	dataset_outputs[i	-	forecast_range,	j]	
												naive_prediction_mismatch	+=	abs(diff)	
	
								mase_denominator	=	naive_prediction_mismatch	/	(record_count	-	forecast_range)	
	
								current_prediction_mismatch	=	0.0	
								for	i	in	range(0,	record_count):	
												diff	=	predicted_dataset_outputs[i,	j]	-	dataset_outputs[i,	j]	
												current_prediction_mismatch	+=	abs(diff)	
	
								mase_numerator	=	current_prediction_mismatch	/	record_count	
	
								scaled_error	=	mase_numerator	/	mase_denominator	
								scaled_errors.append(scaled_error)	
	
				return	numpy.array(scaled_errors)	



B. Appendix: Hyperparameters 

The Python-based expressions below represent the constructors of regression algorithm objects 
with corresponding hyperparameters, random number generation and parallelization settings. 

 
ExtraTreesRegressor(n_estimators	=	100,	criterion	=	'squared_error',	
				ccp_alpha	=	0.0,	random_state	=	1,	n_jobs	=	8)	
	
RandomForestRegressor(n_estimators	=	100,	criterion	=	'squared_error',	
				max_features	=	0.2,	min_samples_split	=	6,	ccp_alpha	=	0.0,	
				random_state	=	1,	n_jobs	=	8)	
	
HistGradientBoostingRegressor(loss	=	'squared_error',	learning_rate	=	0.1,	
				max_iter	=	100,	min_samples_leaf	=	20,	l2_regularization	=	0.1,	random_state	=	1)	
	
GradientBoostingRegressor(loss	=	'huber',	learning_rate	=	0.15,	
				n_estimators	=	100,	subsample	=	0.9,	criterion	=	'friedman_mse',	
				max_depth	=	5,	alpha	=	0.85,	random_state	=	1)	
	
AdaBoostRegressor(estimator	=	initial_estimator,	
				n_estimators	=	100,	loss	=	'linear',	random_state	=	1)	
	
DecisionTreeRegressor(criterion	=	'squared_error',	max_depth	=	7,	
				min_samples_leaf	=	2,	min_weight_fraction_leaf	=	0.011,	random_state	=	1)	
	
KNeighborsRegressor(n_neighbors	=	24,	weights	=	'distance',	
				algorithm	=	'auto',	p	=	1,	metric='minkowski',	n_jobs	=	8)	
	
NuSVR(nu	=	0.8,	C	=	1000.0,	kernel	=	'rbf')	
	
MLPRegressor(hidden_layer_sizes	=	(200,),	activation	=	'relu',	
				solver	=	'lbfgs',	alpha	=	0.0000,	max_iter	=	1000,	random_state	=	1)	
	
ElasticNet(alpha	=	0.01,	l1_ratio	=	0.01,	fit_intercept	=	True,	precompute	=	True,	
				max_iter	=	1000,	tol	=	0.001,	selection='cyclic',	random_state	=	1)	
	
Ridge(alpha	=	1.0,	fit_intercept	=	True,	solver	=	'svd',	random_state	=	1)	
	
LinearRegression(fit_intercept	=	True,	n_jobs	=	8)	

C. Appendix: R2 Scores 

The R2 scores below were calculated for experiments covered in section 8, when the machine 
learning algorithm had just one output parameter configured. The best algorithm according to this 
metric is still gradient boosting regressor. 

Table 4a: R2 scores obtained for weather parameters and 12-hour forecasting. 

 Regression Algorithm Temperature-P12 DewPoint-P12 Pressure-P12 Humidity-P12 

 Gradient Boosting 0.952527 0.846526 0.877577 0.696013 

 Support Vector Machine 0.941434 0.848278 0.873980 0.684538 

 Histo-Gradient Boosting  0.951968 0.854775 0.878156 0.694654 

 Extra Trees Regressor 0.945569 0.835638 0.866677 0.696572 

 Random Forest Regressor 0.945656 0.849587 0.865073 0.703304 
 Elastic Net Regression 0.936032 0.842633 0.873928 0.679936 



Table 4b: R2 scores obtained for weather parameters and 12-hour forecasting. 

Table 4c: R2 scores obtained for pollution parameters and 12-hour forecasting. 

Table 4d: R2 scores obtained for pollution parameters and 12-hour forecasting. 

 Linear Regression 0.936024 0.842545 0.873843 0.679844 

 Bayes Ridge Regression 0.936022 0.842545 0.873847 0.679803 

 Decision Tree Regressor 0.923702 0.827557 0.833052 0.621333 

 Multi-Layer Perceptron 0.934916 0.840566 0.865753 0.679687 

 Nearest Neighbors 0.845698 0.756060 0.440501 0.583007 

 Ada Boost Regressor 0.907491 0.803719 0.814220 0.529173 

 Regression Algorithm WindSpeed-P12 WindSine-P12 WindCosine-P12 CloudLevel-P12 

 Gradient Boosting 0.042988 0.249771 0.245715 0.334586 

 Support Vector Machine 0.045956 0.193935 0.200256 0.292398 

 Histo-Gradient Boosting  0.054283 0.260373 0.256926 0.335317 

 Extra Trees Regressor 0.051183 0.248838 0.254104 0.332687 

 Random Forest Regressor 0.050198 0.249483 0.255977 0.336622 

 Elastic Net Regression 0.052310 0.215894 0.231853 0.328801 

 Linear Regression 0.051565 0.215517 0.231558 0.328709 

 Bayes Ridge Regression 0.051904 0.214978 0.231439 0.328753 

 Decision Tree Regressor 0.028121 0.204260 0.196661 0.300969 

 Multi-Layer Perceptron 0.018103 0.084832 0.074604 0.311056 

 Nearest Neighbors -0.040610 -0.040357 -0.120212 0.258656 

 Ada Boost Regressor -0.436430 0.197250 0.213247 0.276038 

 Regression Algorithm LevelCO-P12 LevelNO-P12 LevelNO2-P12 LevelO3-P12 

 Gradient Boosting 0.719361 0.032797 0.281042 0.532975 

 Support Vector Machine 0.708032 0.010489 0.208164 0.520055 

 Histo-Gradient Boosting  0.714551 -0.033228 0.287136 0.528286 

 Extra Trees Regressor 0.717004 -0.106754 0.262620 0.514243 

 Random Forest Regressor 0.711519 -0.213147 0.275667 0.517114 

 Elastic Net Regression 0.708426 0.002286 0.260521 0.492557 

 Linear Regression 0.708604 -0.000199 0.260120 0.490879 

 Bayes Ridge Regression 0.708593 -0.000259 0.260093 0.490919 

 Decision Tree Regressor 0.683501 -0.106787 0.211201 0.442830 

 Multi-Layer Perceptron 0.692603 -0.100421 0.237774 0.491020 

 Nearest Neighbors 0.659045 -0.110895 0.176147 0.417633 

 Ada Boost Regressor -0.201680 -31.970616 -2.111877 0.405907 

 Regression Algorithm LevelSO2-P12 LevelNH3-P12 LevelPM2-P12 LevelPM10-P12 

 Gradient Boosting 0.269321 0.377308 0.397727 0.365168 



D. Appendix: MAE Results 

The MAE errors below were calculated for experiments covered in section 8, when the machine 
learning algorithm had just one output parameter configured. The measurement units correspond 
to original parameters listed in Table 1. 

Table 5a: MAE errors obtained for weather parameters and 12-hour forecasting. 

Table 5b: MAE errors obtained for weather parameters and 12-hour forecasting. 

 Support Vector Machine 0.204830 0.314250 0.449990 0.414164 

 Histo-Gradient Boosting  0.252145 0.387741 0.379408 0.354160 

 Extra Trees Regressor 0.240582 0.376137 0.381599 0.330860 

 Random Forest Regressor 0.235017 0.360005 0.392714 0.347618 

 Elastic Net Regression 0.208284 0.306561 0.443459 0.431940 

 Linear Regression 0.207736 0.305467 0.443471 0.432371 

 Bayes Ridge Regression 0.207774 0.305461 0.443459 0.432365 

 Decision Tree Regressor 0.114599 0.198714 0.361705 0.378636 

 Multi-Layer Perceptron 0.188954 0.243697 0.435550 0.426246 

 Nearest Neighbors 0.143160 0.221616 0.239645 0.147215 

 Ada Boost Regressor -3.590727 -4.966839 -1.987259 -1.112341 

 Regression Algorithm Temperature-P12 DewPoint-P12 Pressure-P12 Humidity-P12 

 Gradient Boosting 1.676653 1.752220 1.887538 6.905454 

 Support Vector Machine 1.864859 1.770843 1.893198 7.199709 

 Histo-Gradient Boosting  1.678862 1.749990 1.879230 6.939328 

 Extra Trees Regressor 1.787780 1.808643 1.962007 7.006913 

 Random Forest Regressor 1.804674 1.794218 1.975927 7.001756 

 Elastic Net Regression 1.988903 1.842599 1.936445 7.433865 

 Linear Regression 1.988922 1.842810 1.937639 7.433842 

 Bayes Ridge Regression 1.988969 1.843047 1.937593 7.434224 

 Decision Tree Regressor 2.142672 2.073008 2.282906 7.919711 

 Multi-Layer Perceptron 1.982088 1.865318 2.021378 7.377466 

 Nearest Neighbors 2.933928 2.652254 4.351756 8.390043 

 Ada Boost Regressor 2.445231 2.371029 2.480811 10.091202 

 Regression Algorithm WindSpeed-P12 WindSine-P12 WindCosine-P12 CloudLevel-P12 

 Gradient Boosting 1.210395 0.503919 0.494008 25.698767 

 Support Vector Machine 1.191540 0.516705 0.494732 24.768602 

 Histo-Gradient Boosting  1.226677 0.512362 0.499898 26.638973 

 Extra Trees Regressor 1.228988 0.525980 0.508010 27.132301 

 Random Forest Regressor 1.229419 0.526744 0.508979 27.272650 

 Elastic Net Regression 1.230830 0.536596 0.511226 27.405578 

 Linear Regression 1.231417 0.536342 0.510986 27.405074 



Table 5c: MAE errors obtained for pollution parameters and 12-hour forecasting. 

Table 5d: MAE errors obtained for pollution parameters and 12-hour forecasting. 

 

 Bayes Ridge Regression 1.230863 0.536479 0.511027 27.405747 

 Decision Tree Regressor 1.240425 0.537115 0.523050 27.528412 

 Multi-Layer Perceptron 1.250879 0.571083 0.559321 27.371622 

 Nearest Neighbors 1.267288 0.634789 0.632528 27.393801 

 Ada Boost Regressor 1.574728 0.559475 0.533307 30.257335 

 Regression Algorithm LevelCO-P12 LevelNO-P12 LevelNO2-P12 LevelO3-P12 

 Gradient Boosting 16.238159 0.855437 3.835031 14.150969 

 Support Vector Machine 16.389989 0.765311 3.856904 14.313992 

 Histo-Gradient Boosting  17.017623 1.319318 4.075729 14.197469 

 Extra Trees Regressor 17.189998 1.605473 4.301738 14.491541 

 Random Forest Regressor 17.594297 1.692547 4.302908 14.522573 

 Elastic Net Regression 17.661253 1.710163 4.464175 14.852329 

 Linear Regression 17.667499 1.717161 4.473679 14.877302 

 Bayes Ridge Regression 17.671916 1.717260 4.473991 14.876083 

 Decision Tree Regressor 18.572952 1.495272 4.419984 15.531197 

 Multi-Layer Perceptron 18.063861 1.862054 4.519149 14.944986 

 Nearest Neighbors 18.868328 1.263886 4.490325 16.176416 

 Ada Boost Regressor 48.326031 18.910138 13.809237 16.850893 

 Regression Algorithm LevelSO2-P12 LevelNH3-P12 LevelPM2-P12 LevelPM10-P12 

 Gradient Boosting 1.969536 0.584217 2.667819 3.466319 

 Support Vector Machine 1.978223 0.613429 2.646918 3.455459 

 Histo-Gradient Boosting  2.094050 0.605681 2.771447 3.577015 

 Extra Trees Regressor 2.139244 0.617272 2.762854 3.631489 

 Random Forest Regressor 2.140665 0.621114 2.784683 3.630335 

 Elastic Net Regression 2.161445 0.677689 2.787424 3.590307 

 Linear Regression 2.164044 0.678475 2.787855 3.590496 

 Bayes Ridge Regression 2.164224 0.678537 2.787940 3.590684 

 Decision Tree Regressor 2.267860 0.696888 2.912072 3.653812 

 Multi-Layer Perceptron 2.215080 0.724837 2.801365 3.619614 

 Nearest Neighbors 2.281392 0.691561 3.152924 4.118374 

 Ada Boost Regressor 7.570422 2.812049 8.918261 10.029923 


