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Abstract 
The article is devoted to the development and training of a deep learning model for automatic road sign 
recognition based on computer vision technologies. It thoroughly examines the process of forming and 
preprocessing the training dataset, including scaling, normalization, and the use of data augmentation 
methods to improve model accuracy and generalization. Special attention is given to comparing different 
approaches to neural network design — including recurrent networks, transformers, and convolutional 
neural networks (CNNs) — in order to determine the most effective architecture for real-time image 
classification of traffic signs. As a result of the architectural analysis, the MobileNetV2 model was selected 
— a lightweight, fast, and accurate neural network specifically adapted for use on devices with limited 
computational resources. Within the scope of the study, the network was optimized through 
regularization techniques, the addition of dropout layers, quantization, and the use of data variation 
methods to enhance training quality. The model was implemented in Python using the TensorFlow and 
Keras libraries, which provide ease of development, scalability, and hardware acceleration support. 
Training was performed on the Kaggle platform with GPU usage, enabling high efficiency without 
compromising performance. The proposed approach lays the foundation for deploying efficient, low-cost, 
and accessible road sign recognition systems that can be integrated into driver assistance systems and 
mobile applications, contributing to improved road safety. 
The article also discusses the results of experimental validation, where the model demonstrated 
impressive accuracy and robustness in recognizing road signs under various conditions. These results 
confirm that the proposed approach can be effectively deployed in real-world scenarios, further 
enhancing its potential for integration into driver assistance systems and mobile applications. This system 
has the potential to significantly improve road safety by providing drivers with real-time, accurate 
information about traffic signs, thereby reducing the risk of accidents and improving overall traffic flow. 
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1. Introduction 

The increase in the number of vehicles on the road increases the risk of accidents, many of which 
are caused by human error, such as inattention, fatigue or misinterpretation of road signs. 
Therefore, the development of effective automatic sign recognition systems is an important area 
for improving road safety. 

Despite the availability of modern ADAS solutions, their high cost and the need for additional 
equipment limit their widespread use. Low-cost alternatives often have inferior accuracy or 
significant delays in operation, making it impossible to use them effectively in real time. The 
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variability of road signs, which can vary in size, lighting, viewing angles and weather conditions, 
creates additional complexity. 

This article discusses an approach to developing an affordable and efficient model that can be 
implemented in road sign recognition systems that do not require specialised hardware, working 
on the basis of a video stream from a smartphone camera or dashcam. The main challenge is to 
ensure high accuracy and processing speed, which requires model optimisation and the use of data 
augmentation methods for training. 

2. Choose the type of neural network for road sign recognition 

Traffic	sign	recognition	is	a	fundamental	and	challenging	task	in	the	field	of	computer	vision,	as	
it	 requires	 not	 only	 high	 classification	 accuracy	 but	 also	 real-time	 processing	 and	
computational	 efficiency—especially	 in	 the	 context	 of	 autonomous	 driving	 and	 advanced	
driver-assistance	 systems	 (ADAS).	 One	 of	 the	most	 critical	 factors	 influencing	 the	 success	 of	
such	 systems	 is	 the	 choice	 of	 neural	 network	 architecture,	 as	 it	 directly	 affects	 both	
performance	and	resource	consumption.	Therefore,	 selecting	 the	most	appropriate	model	 for	
this	specific	application	is	essential.		
A	variety	of	neural	network	architectures	can	be	utilized	for	analyzing	visual	data,	including	

recurrent	 neural	 networks	 (RNNs),	 Vision	 Transformers	 (ViTs),	 and	 convolutional	 neural	
networks	(CNNs).	Each	of	these	paradigms	has	unique	strengths	and	trade-offs.	RNNs	are	well-
suited	 for	 sequential	 data,	 ViTs	 have	 shown	 great	 potential	 in	 capturing	 long-range	
dependencies	 in	 images,	 and	 CNNs	 excel	 at	 extracting	 local	 spatial	 features	 through	
hierarchical	 layers.	 However,	 in	 the	 context	 of	 traffic	 sign	 recognition,	 convolutional	 neural	
networks	 remain	 the	 most	 effective	 and	 practical	 choice	 due	 to	 their	 balance	 of	 accuracy,	
speed,	and	relatively	low	computational	demands	[1].		

2.1. Recurrent neural networks (RNNs) and their limitations 

Recurrent neural networks (RNNs) are designed to work with sequential data. The ability to take 
into account the temporal context is their main characteristic. This is achieved through the use of 
hidden states that ‘remember’ the results of previous processing stages. The main idea of the model 
is described by the formula [2]: 

h!  =  f W!x!  +  W!h!!!  +  b , (1) 

where ht – is the hidden state at step t, which stores information about the current and previous 
elements of the sequence; 

xt – is the input vector at step t; 
Wx,Wh – weight matrices responsible for the connections between the input and the state, as 

well as between the current and the previous states and b is the displacement vector; 
f – is a nonlinear activation function (usually ReLU or tanh). 
However, they should not be confused with regression models, which, on the contrary, are used 

to predict outcomes based on input variables, either continuous or categorical [3]. Although RNN 
networks are sometimes used for image sequence processing tasks (e.g. video stream), road sign 
recognition in a video stream is a task that requires local processing of each frame, the context 
between frames plays a minor role, as each sign is processed independently. The use of RNNs will 
not be appropriate for this task and will only complicate the model without adding any significant 
advantages. However, it should be noted that this type of neural network can also be actively used 
in ADAS, for example, to solve the problem of predicting the movement of potential obstacles. 



2.2. Transformers and their disadvantages for character recognition 

Transformers, in particular Vision Transformers (ViT), are modern constructs that have 
demonstrated high accuracy in many computer vision tasks. Their work is based on the self-
attention mechanism, which allows the model to analyse global dependencies between parts of the 
data (in our case, an image).This mechanism is described by the formula [4]: 

A 𝑄,𝐾,𝑉 = softmax
𝑄𝐾!

𝑑!
𝑉, 

(2) 

where Q, K, V  – are matrices of queries, keys and values obtained through linear 
transformations from the input data; 

dk – the dimension of the key space; 
QKT – characterises the similarity between data elements; 
softmax – is a function of normalising weights to make them probabilities. 
To process images, transformers break them into small patches: 

𝑥patch ∈ 𝑅 !×!×!  →  𝑥patch ⋅𝑊 ∈ 𝑅! , (3) 

where P×P – is the size of the patch, C is the number of channels (for images, this is usually 
RGB: C=3); 

W – is a weighting magic that converts the patch into a vector of dimension D. 
Transformers are able to process global context, which is important for classifying complex 

scenes or analysing interactions between objects. However, they have a quadratic computational 
complexity (O(n2)), even on medium-resolution images, which makes them difficult to use on 
mobile devices. Transformers are also overpowered for the task of road sign recognition. Road 
signs usually have distinct local features that can be efficiently extracted using simpler types of 
neural networks. However, transformer-based methods can be beneficial in tasks that require 
complex environment analysis and trajectory planning, such as maze navigation using 
coevolutionary algorithms like SAFE, where spatial awareness and exploratory behavior are 
prioritized [5]. 

2.3. Convolutional neural networks (CNN) - the optimal solution 

Convolutional Neural Networks (CNNs) are the best for image processing and visual data 
analysis. Their architecture is based on the biological laws of the human visual system, especially 
on the mechanisms of local feature extraction in the brain. Classical CNNs consist of a combination 
of several types of layers in different architectural approaches, each of which performs recognition 
and selection of certain features. The convolutional layer is the main one, which uses a set of filters 
(called convolutional kernels) to scan the image and extract local features such as edges, corners, 
and textures. The formula for the convolution operation: 

𝑦 𝑖, 𝑗 = 𝑥 𝑖 +𝑚, 𝑗 + 𝑛!!!
!!!

!!!
!!! ⋅ 𝑤 𝑚, 𝑛 , (4) 

where x(i,j) – is the value of the input image pixel at coordinates (i,j); 
w(m,n) – convolution kernel at position (m,n); 
k×k – the size of the convolution kernel; 
b – is the offset added for each output neuron; 
y(i,j) – is the output value resulting from the convolution. 
Convolutional kernels allow the model to automatically detect local features such as edges, 

corners, and textures, which is critical for road sign recognition. After convolutional layers, 
pooling is usually used to reduce the dimensionality of the feature map and increase the robustness 
to small shifts [6]: 



𝑦 𝑖, 𝑗 = max!,!{ 𝑥 𝑖 +𝑚, 𝑗 + 𝑛 },  (5) 

where m,n – is the size of the subsample; 
x(i,j), y(i,j) – are the same as in formula (4). 
Where max-pooling is used to select the maximum value in each region. The final stage is the 

fully connected layers that perform the classification: 

𝑦 =  𝑊𝑥 +  𝑏,  (6) 

where x – is a feature vector obtained from the previous convolutional layers; 
W – weight matrix; 
b – offset; 
y – is the output vector of classes (in our case, the probability for each sign). 
Thus, in the initial convolutional layers, CNNs detect basic features such as edges or corners of 

each object. Then, as the depth increases, the network begins to identify more complex patterns, 
such as geometric shapes or even individual parts of road signs. Compared to fully connected 
networks, convolutional operations significantly reduce the number of parameters. For example, 
for a 64 × 64 × 3 image, if only a fully connected layer is used, 12.3 million parameters are required 
for a layer of 1000 neurons. Using the principle of local filters described above, this figure in CNN 
can be reduced to several thousand. For road sign recognition, local patterns such as sign shape, 
textures, or contrast are important, and CNNs automatically extract these patterns due to their 
architecture [7].  

Thus, convolutional neural networks are the best choice for road sign recognition due to their 
ability to extract local features, robustness to biases, computational efficiency, and ability to work 
in real time. 

3. Architecture selection 

Convolutional neural networks (CNNs) are well-suited for traffic sign recognition due to their 
ability to extract local visual features like shape and texture, which are crucial under varying 
conditions. A wide range of CNN architectures exist, from simple models like LeNet-5 to more 
advanced ones such as VGG, Xception, ResNet, EfficientNet, and MobileNet.  

For real-time or resource-constrained applications, lightweight models like MobileNet offer a 
good balance of speed and accuracy. More complex networks like ResNet-50 are better suited for 
high-performance environments. This section focuses on selecting an architecture that aligns with 
the system’s computational constraints and performance requirements. 

3.1. Xception architecture 

The Xception architecture is an extension of the Inception model, built on the concept of depthwise 
separable convolutions. This technique splits standard convolutions into two steps: a depthwise 
convolution, which processes each input channel separately, and a pointwise convolution, which 
combines information across channels. This significantly reduces the number of parameters and 
computations. Xception takes input images of size 299x299x3 (RGB). It begins with a standard 
convolution layer, followed by a series of depthwise separable convolutions combined with ReLU 
activations and batch normalization. The core of the model consists of 36 convolutional layers 
organized into 14 modules with skip connections, similar to those in ResNet [8]. A schematic 
representation is shown in Figure 1. 



 
Figure 1: Schematic representation of the Xception architecture [9]. 

The output of the model is a vector derived from the Global Average Pooling layer with a size 
corresponding to the number of classes. As a result, Xception provides high accuracy of image 
classification on large datasets such as ImageNet. However, the high number of parameters (about 
22 million) and significant computational requirements make it less suitable for use on resource-
constrained devices such as mobile phones. 

3.2. EfficientNet architecture 

EfficientNet, introduced by Google Research in 2019, is an optimized architecture for image 
classification. Its core idea is Compound Scaling, a method that uniformly scales a model’s depth, 
width, and input resolution to improve performance efficiently. The baseline model, EfficientNet-
B0, is built upon MobileNetV2 and incorporates inverted residual blocks along with the Swish 
activation function. The architecture includes convolutional layers combined with batch 
normalization and activation, ending with global average pooling and a final fully connected layer 
[10, 11].  

 
Figure 2: Schematic representation of the EfficientNet architecture [11]. 

EfficientNet achieves a strong balance between accuracy and efficiency through compound 
scaling of depth, width, and resolution. As shown in Figure 2, it outperforms many traditional 
models, though even its compact versions are typically more resource-intensive than MobileNet, 
making the latter more suitable for real-time or resource-constrained applications. 

3.3. MobileNet architecture 

MobileNet is specifically designed for mobile devices, employing depthwise separable convolutions 
to minimize computational complexity. Unlike traditional convolutions, which process both spatial 
data (within an image) and channel dependencies (across different color channels) in a single 
operation, depthwise separable convolutions split this into two stages: the depthwise convolution 
operates on each channel individually, focusing only on spatial data, while the pointwise 
convolution uses 1x1 filters to merge information across channels. This method significantly 
reduces the number of computations required. While a conventional convolution has a 
computational complexity of 𝑂(𝐷!!×𝑀 ⋅ 𝑁), where Dk is the size of the convolution kernel, M is the 
number of input channels, and N is the number of output channels, a deeply separated convolution 
has a complexity of (𝐷!! ⋅𝑀 +𝑀 ⋅ 𝑁). The key difference is also shown in Figure 3 [12]. 



 
Figure 3: Comparison of conventional and distributed convolution [13]. 

MobileNet is optimized for speed and efficient use of limited memory resources, making it ideal 
for mobile and embedded devices. Its architecture is composed of a series of sequential blocks that 
include depthwise separable convolutions, Batch Normalization, and ReLU6 activations, which help 
prevent oversaturation of activations in resource-constrained environments. Pointwise (1x1) 
convolutions are employed to combine information across channels, while convolutional pooling is 
used in some configurations to reduce the spatial dimensions of data. 

MobileNet’s flexibility is further enhanced by key parameters: the Width Multiplier (α), which 
adjusts the number of channels in each layer (e.g., α=0.5 reduces the number of channels by half), 
and the Resolution Multiplier (ρ), which alters the resolution of input data to balance speed and 
performance. In its default configuration, MobileNet processes 224×224×3 images, generates a class 
probability vector, and uses Global Average Pooling to minimize the risk of overfitting, ensuring 
efficient learning in resource-limited settings. 

Given the system's requirements, the MobileNetV2 architecture was selected, as it utilizes 
backpropagation to minimize parameters without compromising accuracy. While Xception and 
EfficientNet offer higher accuracy, their computational complexity exceeds the needs of a mobile 
application. MobileNetV2 guarantees performance and compatibility with most devices, which is a 
critical factor [14]. Additionally, accuracy is improved by augmenting the data during training, 
incorporating Dropout layers to mitigate overfitting, and quantizing the model to reduce its size 
and accelerate computation without a notable loss in performance. 

4. Technologies for implementing a neural network 

The choice of programming language is essential for implementing a neural network for traffic 
sign classification. Python, C++, and C# are the main contenders, each with unique advantages and 
drawbacks. Python is widely used in machine learning due to its simple syntax and a vast 
ecosystem of libraries like TensorFlow, Keras, PyTorch, and NumPy, which support data 
processing, model training, and deployment. It also integrates well with cloud platforms like 
Google Colab and Kaggle, providing easy access to computational resources. However, Python’s 
performance is lower than C++ for computationally intensive tasks. 

C++ is known for its high performance and control over hardware, making it ideal for resource-
demanding applications. It supports GPU computations via CUDA and libraries like TensorFlow 
and PyTorch, but its complexity and limited tools for neural network development make it less 
flexible than Python. C# is commonly used for Windows and mobile app development but has a 
less developed machine learning ecosystem, with tools like ML.NET not offering the same 
functionality as Python-based frameworks. 

Given Python’s advantages, it was chosen for the neural network development due to its 
flexibility, ease of use, and extensive library support, which facilitates rapid model prototyping and 
integration with cloud platforms. Python’s ability to leverage GPUs and optimize models with 
TensorFlow Lite compensates for its performance limitations, ensuring real-time processing speed. 

For the framework, TensorFlow with Keras was selected due to its support for distributed 
computing, easy model building, and deployment on various platforms. TensorFlow’s extensive 



tools for data handling, optimization, and integration make it ideal for this project. Keras simplifies 
the process of creating, training, and evaluating models with its high-level API, while TensorFlow’s 
advanced features like the TensorFlow Data API and TensorFlow Addons provide additional 
support for data augmentation and model customization [15]. 

For model training, the Kaggle platform was chosen due to its significant advantages over other 
free environments. Kaggle provides access to two NVIDIA Tesla T4 GPUs simultaneously, allowing 
efficient processing of large datasets and faster model training. The platform offers up to 30 hours 
per week of free GPU usage, with long sessions of up to 9 hours, enabling continuous 
experimentation and lengthy computations. In contrast, Google Colab provides free GPU access but 
limits continuous sessions to 4 hours and a total of 12 hours per day, with breaks between sessions. 
Kaggle also offers an easy way to upload custom datasets, which will be useful during model 
training. 

For data preparation, Python is used due to its versatility and extensive library support. 
Libraries like NumPy are used for working with numerical arrays, pandas for handling tabular 
data, OpenCV for image preprocessing (resizing, normalization, augmentation), and Matplotlib for 
visualizing preparation stages. 

5. Creating a dataset 

The problem of creating an effective dataset for traffic sign recognition is crucial for quality 
model training. Most existing datasets, like GTSRB, use images with a size of 33×33 pixels. While 
this size is optimal for neural network training due to its compactness, it doesn't reflect real-world 
conditions. In practice, traffic signs are often captured in high-resolution video streams (e.g., 
512×512 pixels or more), and resizing them to 33×33 pixels leads to a loss of important details. This 
is especially critical for real-time systems on client devices. 

One possible solution is to "cut" the input image into smaller sections that match the model’s 
input size. For instance, a large image can be split into 33×33 pixel fragments, and predictions are 
made for each fragment. However, this approach has several drawbacks: it significantly increases 
the number of predictions, affecting real-time processing speed, requires more memory and 
computational power, and complicates the client-side application architecture. 

Another approach is to use deep learning methods like Super-Resolution to enhance image 
resolution before inputting them into the model. While this provides more details and potentially 
improves prediction accuracy, it has its own limitations: Super-Resolution increases processing 
time per frame, and artificially enhanced images may contain artifacts, which could reduce model 
accuracy. 

Considering these limitations and popular solutions for adapting models to existing datasets, it 
was concluded that this approach would not significantly improve performance. Therefore, a 
decision was made to create a custom dataset tailored to the specific requirements of the task. 

 
Figure 4: Example of a part of road sign classes for emulating a dataset 

The main idea is to use road sign images with an initially higher resolution, which avoids the need 
to reduce the input layer of the model. However, collecting ready-made images of a higher 
resolution will be much more time-consuming, which does not fit into the timeframe of the system 
development. Therefore, it was decided to emulate the dataset through the following preparation 
stages: 



• to create the background and prepare for the generation of compositions, about 2000 
random images with natural environment, city roads, etc. were collected. These images will 
correspond to the type of data that the system will receive in real use 

• due to the limited resources for training the model in this work, it was decided to use only 
20 classes of road signs (Figure 4), which are the most common and important for traffic 

• part of the sign images were taken from open datasets, such as Traffic Signs in Post-Soviet 
States, which contain real high resolution images of road signs. The rest of the images were 
collected manually. 

After completing the preparatory stage, a Python script was developed that contains an 
algorithm for creating a dataset with the overlay of objects (road signs) on random images. A 
diagram of this algorithm is shown in Figure 5. 

 
Figure 5: Data synthesis algorithm for the dataset 

At the initial stage, the necessary directories for image processing are created. The input 
directory contains base images that will serve as backgrounds for overlaying. The second directory 
holds the set of objects (traffic signs) to be overlaid on the base images. An output directory is also 
created to store the results. At this stage, it is checked whether all images are in compatible formats 
for processing and whether there are enough base images and objects to ensure the required data 
volume. To ensure proper scaling of objects before overlaying, the average size of the base images 
is calculated. The algorithm computes the average width and height of all images in the input 
directory, and these values are used as a reference to resize the objects to the correct proportions, 
maintaining the natural appearance of the overlaid elements. 

 
Figure 6: How the algorithm works and examples of images in the dataset 

Next, the base images are scaled or made square, if necessary, to ensure consistency with other 
images in the dataset. The objects to be overlaid are loaded and resized according to the average 
size of the base images. During processing, random rotation is applied within a specified range (-
20° to +20°), adding variation to the appearance of the overlaid elements. For each base image, a 
random position is selected for the object overlay. The algorithm ensures that the object fully fits 
within the bounds of the base image and does not extend beyond its edges. The overlay is applied 
considering transparency, if present in the object images. After processing, the image is saved in 



the output directory, typically in PNG format. If the dataset includes multiple object classes, the 
algorithm repeats the steps for each class separately.  

The finished images are divided into classes and split into training (80%) and test (20%) 
samples. An example of the generated data is shown in Figure 6. This approach ensures the 
variability of the dataset and its adaptation to the real conditions of the model. 

6. Creating and training a model 

The architecture of our modified MobileNetV2 is designed to efficiently extract object features 
while minimizing computational costs. It consists of several groups of layers, each of which 
processes certain aspects of the input data and gradually builds the feature space (Figure 7). The 
model's input data is 224×224×3, and it starts with an augmentation block that applies random 
scaling and rotation. Reflections are not used because they could, for example, turn a “Turn Left” 
sign into a “Turn Right” sign while maintaining the original class, which would confuse the model 
[16]. 

 
Figure 7: Simplified view of the model architecture 

The model begins with a standard 3×3 convolution layer with stride 2 and ReLU6 activation, 
reducing spatial dimensions and detecting basic features. The core of the architecture is a series of 
inverted residual blocks, each following a specific pattern: 

1. First, an expansion phase increases the number of channels in the input tensor by a certain 
factor, allowing the model to shift toward higher-level features that better capture complex 
structures like sign contours and textures. 

2. Then, depthwise convolutions process each channel individually to extract localized spatial 
features, such as circular shapes or distinctive angles common in traffic signs. 

3. Next, a compression phase reduces the number of channels back to the original size, 
improving computational efficiency by retaining only the most relevant features. 

4. Finally, a skip connection links the input and output of the block, preserving low-level 
features like colors or contrast, which are crucial for recognizing traffic signs. 

 
After passing through the bottleneck layers, the model performs GlobalAveragePooling, which 

compresses each feature map into a single value. This operation creates a compact, high-level 
feature vector that summarizes the entire input image and significantly reduces the number of 
parameters. This vector is then passed to a fully connected (dense) layer, where each output 
corresponds to a specific class. The softmax activation function ensures the outputs represent class 
probabilities that sum to one. To improve training stability and generalization, the model uses 
BatchNormalization to normalize intermediate layer outputs and Dropout (rate 0.5) to randomly 
deactivate neurons during training. These techniques help prevent overfitting, especially when 
training data is limited or imbalanced. 



Initially, the base MobileNetV2 model is loaded with pretrained weights (e.g., from ImageNet) 
and frozen, meaning its parameters remain unchanged. Only the new top layers are trained to 
adapt to the specific traffic sign recognition task, allowing fast and stable convergence. After the 
top layers are trained, the model enters a fine-tuning phase. Some base layers are unfrozen, and 
training continues with a lower learning rate. This gradual adaptation refines deeper features to 
better match the new dataset while preserving the benefits of pretraining, often resulting in 
significantly improved accuracy.  

Now that the model is ready for training, we proceed to load the dataset. For deep learning tasks 
with large image collections, loading all images into memory at once is inefficient and often leads 
to memory overflow. In our case, with 16,000 images sized 224×224 pixels, doing so could crash the 
runtime environment. To handle this, we use TensorFlow’s tf.data.Dataset API, which allows for 
streaming and preprocessing data on-the-fly in small batches, greatly reducing memory usage. 

The dataset is organized into train and test folders, each containing subfolders for every class. 
File paths and labels are generated automatically based on these subfolder names. Each image is 
read from disk using tf.io.read_file, decoded into RGB format, resized to 224×224 pixels with 
tf.image.resize, and normalized to values between 0 and 1. Using tf.data.Dataset.from_tensor_slices, 
the file paths and labels are combined into a dataset object. The pipeline then applies: 

• shuffle to randomize data order 
• batch(32) to process in small chunks 
• prefetch to load future batches in the background for better performance 
 
Training proceeds in two stages. In the first stage, the base MobileNetV2 layers remain frozen to 

retain knowledge from pretraining. Only the added classification layers are trained, allowing the 
model to adapt to the new dataset. The model is compiled with the Adam optimizer, which 
balances gradient direction and variance, and sparse categorical crossentropy is used as the loss 
function, suitable for multiclass classification with integer labels. The process is controlled by 
several callbacks: 
 

• ModelCheckpoint – saving the best version of the model 
• EarlyStopping – stopping when there is no improvement for 15 epochs 
• ReduceLROnPlateau – reduce the learning rate in case of stagnation 
 
At this stage, the model is trained for a limited number of epochs (15 in our case), primarily to 

quickly adapt the newly added classification layers to the new dataset. The goal is not full 
convergence, but rather initial tuning of the top layers.  

Once this initial training is complete, we unfreeze a portion of the base model—typically the 
upper layers, which capture more task-specific features. This allows the model to refine not only 
the new top layers but also adjust deeper feature representations for better accuracy. 

In our case, we unfreeze all layers after index 100, keeping the earlier ones frozen to maintain 
stability. For this fine-tuning phase, we use a lower learning rate (1e-5) to avoid drastic weight 
updates that could disrupt the pretrained knowledge. This phase runs longer (around 50 epochs) to 
allow the model to gradually refine its internal representations. Training curves (Figure 8) show 
how the model’s performance improves over time. Initially, validation accuracy may remain low as 
the model focuses on learning basic patterns. However, with continued training and fine-tuning, 
both accuracy and loss improve significantly, indicating successful adaptation. 



 
Figure 8: Accuracy and loss plots for model training 

Throughout both training stages, the model was trained within optimal limits to avoid 
underfitting or overfitting. Early in fine-tuning, training accuracy reached 75% while validation 
accuracy was 68%, indicating initial adaptation. As training progressed, these improved to 85% and 
76%, respectively. By the final epochs, the model achieved 99% training accuracy and 87% 
validation accuracy, demonstrating strong generalization to unseen data. These results confirm the 
effectiveness of the chosen training strategy and parameter settings. 

 
Figure 9: Confusion matrix and classification report 

The confusion matrix analysis (Figure 9) confirms strong model performance, with most 
predictions correctly aligned along the diagonal, indicating high classification accuracy across 
categories. Some misclassifications are observed, primarily between visually similar signs—such as 
left and right turn warnings—which is expected and acceptable within the task's scope. The 
classification report shows an overall accuracy and average metrics (macro and weighted) of 86%, 
which is a solid result for multi-class image recognition. Classes like 0, 1, 4, 9–14, and 16 achieved 
excellent precision, recall, and F1-scores (0.91–1.00), while classes such as 2, 5, 7, 15, and 18 showed 
lower scores due to visual similarity. Notably, class 7 had high recall but low precision, indicating 



overprediction. Still, balanced macro and weighted averages confirm that the model performs 
reliably across all classes. 

An additional manual test was conducted using a separate set of 30 randomly selected images 
not involved in training or validation. The model correctly classified 28 out of 30, achieving an 
accuracy of 93.3%, with only 2 misclassifications (Figure 10). Overall, the results confirm that the 
model is both effective and reliable for traffic sign classification. Despite initial fluctuations in 
accuracy, the model consistently improved and maintained strong performance across training, 
validation, and independent testing stages. 

 
Figure 10: Model performance on the test set 

7. Conclusions 

The study presented an efficient method for developing a road sign recognition model suitable for 
mobile devices with limited computational resources. A key accomplishment was the enhancement 
of the training sample generation process, where data augmentation and synthetic data generation 
techniques increased the model's robustness to variations in lighting, perspective, and noise. 

The selection of the MobileNetV2 architecture proved to be a practical choice for image 
classification in resource-constrained environments. By employing stepwise training—freezing the 
initial layers to preserve pre-trained features and adapting the model to a new class set—we 
achieved high classification accuracy. Additionally, model optimisation through quantisation 
significantly reduced its size while maintaining the necessary predictive accuracy. 

Experimental results validated the effectiveness of the proposed approach: the model achieved 
high accuracy in road sign recognition under real-world conditions, demonstrating its potential for 
practical deployment. These methods can be applied to further enhance computer vision models 
designed for environments with limited computational capacity. 

Declaration on Generative AI 
During the preparation of this article, the authors used Gemini 2.5 Flash artificial intelligence tools 
to assist with grammar and spelling correction, as well as to check the translation of some syntactic 
structures. The final content has been carefully reviewed and edited by the authors, who are solely 
responsible for the accuracy and integrity of the publication. 



References 

[1] Graupe, D. (2016). Deep Learning Neural Networks: design and case studies. World Scientific 
Publishing Company. 

[2] Cardot, H. (2011). Recurrent neural networks for temporal data processing. BoD – Books on 
Demand. 

[3] Anatoliy Doroshenko, Dmitry Zhora, Olena Savchuk, and Olena Yatsenko. Application of 
Machine Learning Techniques for Forecasting Electricity Generation and Consumption in 
Ukraine. Information Technology and Implementation (IT&I-2023), November 20-21, 2023, 
Kyiv, Ukraine. CEUR Workshop Proceedings (CEUR-WS.org), vol-3624, pp. 136-146. 
https://ceur-ws.org/Vol-3624/Paper_12.pdf. 

[4] Doshi, K. (2021) Transformers explained visually (part 3): Multi-head attention, Deep Dive – 
TowardsDataScience. URL: https://towardsdatascience.com/ transformers-explained-visually-
part-3-multi-head-attention-deep-dive-1c1ff1024853.  

[5] Omelianenko I., Doroshenko A., Rodin Y. Autonomous navigation through the maze using 
coevolution strategy. In: I. Sinitsyn, Ph. Andon (Eds.) Proceedings of the 14th International 
Scientific and Practical Programming Conference (UkrPROG 2024). Kyiv, Ukraine, May 14–15, 
2024. P. 301–311.  https://ceur-ws.org/Vol-3806/S_29_Omelianenko_Doroshenko_Rodin.pdf. 

[6] Ozturk, S. (2022). Convolutional neural networks for medical image processing applications. 
CRC. 

[7] Liang, Q., Wang, W., Liu, X., Na, Z., Jia, M., & Zhang, B. (2020). Communications, signal 
processing, and systems: Proceedings of the 8th International Conference on Communications, 
Signal Processing, and Systems. Springer Nature. 

[8] Hussein, A. A. (2024). Renewable energy: generation and application: ICREGA’24. Materials 
Research Forum LLC. 

[9] M. M. Shibly, T. A. Tisha, T. A. Tani, S. Ripon, “Convolutional neural network-based ensemble 
methods to recognize Bangla handwritten character,” PeerJ Comput. Sci., vol. 7, 2021. 

[10] Khang, A., Abdullayev, V., Jadhav, B., Gupta, S., & Morris, G. (2023). AI-Centric Modeling and 
Analytics: Concepts, Technologies, and Applications. CRC Press. 

[11] Truong,T.T. (2021) Recognition framework using transfer learning – IEEEAccess URL: 
https://www.researchgate.net/publication/357852732_A_Dish_Reco 
gnition_Framework_Using_Transfer_Learning. 

[12] Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., & Lozano, J. A. (2021). Machine learning and 
knowledge discovery in databases. Research track: European Conference, ECML PKDD 2021, 
Bilbao, Spain, September 13–17, 2021, Proceedings, Part I. Springer Nature. 

[13] T. Wei. (2022) Optimized separable convolution: Yet another efficient convolution operator – 
AI Open. URL: https://www.sciencedirect.com/science/ article/pii/S2666651022000158. 

[14] K_04 understanding of mobilenet – Wikidocs. URL: https://wikidocs.net/165429. 
[15] Introduction to TensorFlow and Keras – Deep learning with TensorFlow. URL: 

https://developmentseed.org/tensorflow-eo-training/docs/Lesson1b_Intro_Tensor 
Flow_Keras.html.  

[16] Anatoliy Doroshenko, Dmytro Zhora, Vladyslav Haidukevych, Yaroslav Haidukevych, and 
Olena Yatsenko. Predicting 24-Hour Nationwide Electrical Energy Consumption Based on 
Regression Techniques. CEUR-WS, 2024, vol. 3806, 17 p. https://ceur-ws.org/Vol-
3806/S_4_Doroshenko_Zhora_Haidukevych_Yatsenko.pdf. 

A. Online Resources  

The model training notebook is available at https://gitlab.com/MaksGovor/road-assistant/-
/blob/main/road-assistant-model/rsv2.ipynb. 

 


