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Abstract

This paper presents advanced computational techniques for predicting deformation and fracture
mechanisms at the microscale in aluminium-silicon composite materials. Emphasising software
engineering and computational modelling, finite element simulations have been carried out to analyse
how inclusion size (100, 50, and 20 pm) and deformation velocity (1, 2, and 4 mm/s) influence micro-scale
fracture phenomena. The aluminium matrix behaviour is described using a piecewise linear plasticity
model, while the brittle silicon inclusions are characterised via the Johnson-Holmquist damage model.
Simulation results indicate that larger inclusions fracture early and fragment significantly, causing
pronounced damage propagation into the matrix at lower strain levels (~7 %). Medium-sized inclusions
exhibit delayed fracture (~19-20 % strain) but still critically affect matrix integrity. The smallest inclusions
remain intact under high strains but induce matrix failure through stress concentration and rotational
effects. Slower deformation velocities significantly delay matrix failure initiation. Computational
outcomes are validated by experimental data, highlighting the critical role of inclusion geometry and the
advantages of spheroidisation in enhancing composite ductility. The simulation system incorporates
modular software engineering methodologies, facilitating effective integration and reuse of computational
assets, enhancing maintainability and adaptability. Future developments envisage incorporating
ontological frameworks and artificial intelligence techniques to improve semantic interoperability and
data-driven analysis capabilities.

Keywords
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1. Introduction

Computational modelling has become a crucial component in modern engineering and materials
science, significantly reducing the need for costly and time-consuming experimental investigations.
Among various numerical methods, finite element analysis (FEA) stands out due to its flexibility,
accuracy, and wide applicability in solving complex mechanical problems. Most of the existing
computational studies have primarily addressed macroscopic behaviours of structures and
materials; however, micro-scale simulations, essential for heterogeneous or composite materials,
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still pose considerable methodological and computational challenges [1-4]. At various times,
attempts have been made to model the deformation process of a ductile matrix with tough
inclusions. For example, the studies [1], [2] as well as other studies of those researchers (M. Shtern
and his colleagues) focus mostly on strain and mechanical stress distribution in the matrix not
considering brittle fracture possibilities of inclusions and the influence of their shape. Other
investigations, like in [3], and [4] consider mostly the pores in the material structure, which is also
important, but not inclusions.

In particular, metal matrix composites (MMCs), consisting of ductile matrices reinforced by
brittle inclusions, present complex microstructural interactions under mechanical loading.
Accurate prediction of deformation and fracture phenomena in these composites necessitates
advanced computational models and robust numerical algorithms. Prior research often simplified
the inclusion-matrix interaction, overlooking critical aspects such as inclusion fracture mechanics,
shape irregularities, and strain-rate dependence [5-9].

This study addresses these gaps by developing and implementing advanced numerical models
and computational algorithms for micro-scale finite element simulations of aluminium matrix
composites reinforced by silicon inclusions. Emphasis is placed on the software engineering
aspects of simulation, including algorithmic efficiency, stability of numerical integration schemes,
and computational validation procedures. Specifically, the Johnson-Holmquist damage model for
brittle materials and a piecewise linear plasticity model for ductile matrices have been integrated
within a comprehensive finite element framework [10-19].

The primary objectives of this research are twofold: firstly, to improve the predictive accuracy
of micro-scale deformation and fracture behaviours in MMCs, and secondly, to refine the
computational methodology, ensuring its suitability for high-performance computing
environments. The outcomes of this work will provide valuable insights for further algorithmic
improvements and practical applications in materials design, contributing significantly to the
intersection of computational mechanics and software engineering.

2. Materials and Methods

2.1. Finite Element Method Framework for Deformation and Fracture Modelling

The finite element method (FEM) serves as the core computational approach employed in this
study to simulate the deformation and failure mechanisms within metal matrix composites
(MMCs). FEM allows the spatial discretization of complex geometries and the solution of governing
equations under prescribed boundary and initial conditions. It has been extensively applied to
problems in structural mechanics, including impact dynamics, fracture propagation, and plastic
deformation. A general scheme of the modelling technique with application to the considered
problem of deformation and fracture simulation is presented in Figure 1.

In this work, 8-point hexahedral solid elements with reduced integration are used to discretize
both the ductile aluminium matrix and the brittle silicon inclusions. This choice ensures
computational efficiency while maintaining numerical accuracy in capturing stress gradients and
localized damage. Stability of the FEM simulation is enhanced using a second-order objective stress
update algorithm and an hourglass control mechanism based on the Flanagan-Belytschko
formulation.

To accurately capture the differing mechanical responses of the two phases within the
composite, material-specific constitutive models are embedded into the FEM formulation. The
aluminium matrix is modelled using a piecewise linear plasticity approach, which represents the
nonlinear stress-strain response by segmenting it into linear intervals. This method is
computationally efficient and sufficiently flexible to represent yield plateau, strain hardening, and
failure thresholds. For the brittle silicon inclusions, the Johnson-Holmquist (JH-2) damage model is
implemented. This model is particularly suitable for high-strength brittle materials and accounts
for both elastic and inelastic responses, as well as progressive damage evolution under compression



and tension. It utilizes a scalar damage variable that accumulates over time, resulting in
degradation of material stiffness and strength.
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Figure 1: A general scheme of the modelling approach with application to the problem of
deformation and fracture simulation.
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An essential aspect of the FEM setup is the precise definition and calibration of the material
parameters within these models. The accuracy and stability of the numerical simulation heavily
depend on these parameters, which include elastic moduli, plastic yield stress, fracture strain, and
damage evolution constants. These values are derived from experimental data and prior literature,
and their proper selection ensures the physical relevance of the simulation results [20].

The general structure of the computational system aimed for the considered simulation is
presented in Figure 2 as a C4 diagram.

The simulation system developed for finite element analysis of deformation and fracture
processes is architected as a modular and component-oriented application. Its structure is designed
to ensure clarity of responsibilities across participants, modular reusability, and adaptability for
multiscale physical modelling. The overall workflow begins with the Model Geometry Designer, a
domain expert responsible for creating 2D or 3D geometrical representations of the object or
system under investigation. These geometrical models are typically constructed using external
CAD or modelling platforms, which export geometry data in formats such as .igs, .stp, or .stl. This
exported geometry serves as an input to the simulation environment.
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Figure 2: C4 diagram of the simulation system architecture.

A computer modelling specialist, often a materials scientist for the considered subject area,
defines the physical conditions, boundary constraints, and simulation parameters. These settings
are specified via a Pre-processor component, which provides a graphical interface for assigning
initial and boundary conditions, associating constituent materials, and managing interaction
models among composite phases. The pre-processor produces a task descriptor (typically a
structured keyword-based text file) that encapsulates all simulation metadata.

At the heart of the simulation workflow is the Solver, implemented as a compiled application.
The solver performs numerical integration and deformation/fracture simulations using finite
element methods. It interacts directly with the Materials Models Base, a container that holds
calibrated constitutive models - such as the Johnson-Holmquist model for brittle phases and the
piecewise linear plasticity model for ductile components. The material definitions are provided in a
special internal format and loaded dynamically by the pre-processor and solver subsystems. The
solver also communicates with the Computational Models module, a container housing compiled
programmatic components that define numerical algorithms, storage schemes, and computation
logic. These models ensure the modular execution of solvers and enable scalability and high-
performance computation.

Upon task completion, simulation results are returned in the form of structured text output files,
which are consumed by the Postprocessor. The postprocessor is a visualisation-oriented software
tool that provides users with real-time access to stress-strain fields, damage distributions, crack
initiation zones, and other key physical indicators. It enables detailed analysis of the simulation
output and supports decision-making in materials evaluation and design.

In summary, the system is a robust, extensible platform tailored for high-fidelity simulation of
composite material behaviour, supporting the research needs of computational mechanics,
materials engineering, and fracture analysis.



2.2. Abstract Formalisation of the FEM-Based Composite Model

Let the composite material system be defined as a structured tuple:

S=(M,I,G,P,F,N,A) (1)
where: M is the matrix domain (e.g., aluminium, ductile); I is the inclusion domain (e.g.,
silicon, brittle); G is the geometry of the composite, a spatial configuration G C R*; P ={PM,PI}

is he set of material parameters for M and I ; F is the space of applied forces and boundary
conditions; N is the finite element discretisation (mesh); A is the set of numerical algorithms

(e.g., integration scheme, damage evolution law).
Let the governing PDE system be compactly represented as a nonlinear operator:

L:U%U*,suchthat]_‘(u)=f (2)

where: U is a sutable function space, e.g. U C H'(Q) (Sobolev space for displacements); U *
is its dual; u(x, t) is the known displacement field; /€U * is the external force distribution.

The weak form (variational form) becomes:

fQ o(u) : Voudx =fo-6udx Voéuceu 3)

where the stress field o depends on the constitutive laws of M and I .

The materials models could be formally presented as constitutive functionals. Let ©,, =C,,(€) -

for matrix, with piecewise linear plasticity:

M-

C,:ea o,, viaPLP(e)={J(E, ¢) @)
0, =C,(g, D) - for inclusions, via Johnson-Holmquist model:

CI:(E,D)a o,, withD=D(&p) (5)

Each C, is a nonlinear mapping depending on strain &, strain rate &, pressure p, and damage D.

Let us define the full FEM simulation as a mapping:

d:S —=R (6)

where: @ includes: meshing, element-wise assembly, integration, and solution; R is the space
of output fields:

R ={u(x,n),0(x,0),(x,t), D(x,1),...} (7)
®(S )=Solve[L, w)+L, (u)=f] (8)
with L, and L, denoting operators induced by their respective constitutive models on

domains Q, ,Q, C Q.

Let the computational mesh be defined as:

N =({g}{x}), Ece 9)

Each finite element E; is assigned local material parameters and evaluated using quadrature.
Time evolution is performed using a discrete time integrator (explicit or implicit):



U =u"+ AR+ (10)

The presented formalization enables modular implementation (e.g., FEM solver with
interchangeable models), facilitates rigorous comparison of constitutive models via functionals,
allows for mathematical optimisation, sensitivity analysis, and adjoint methods, lays foundation for
uncertainty quantification and multi-scale coupling.

2.3. Calculation Control Parameters for the Finite Elements Method

The general used here simulation technique is the finite elements method. The 8-point hexahedron
solid element type was used both for the inclusion and matrix geometry mesh, which possesses a
specific geometry and comprises eight integration points [10].

Second-order objective stress update [11] has been applied. This ensures that stress remains
physically meaningful despite arbitrary rotations. Finite element simulations of metal forming,
impact, or other nonlinear problems require robust stress updates for stable convergence. Second-
order methods reduce numerical artefacts, enhancing solution stability. The scale factor for sliding
interface penalties for contacts has been set to 0.1, which may ensure that the sliding interface
behaves in a more physically realistic manner. It might help balance accuracy with numerical
stability, ensuring that the simulation converges efficiently.

The hourglass energy was computed and included in the energy balance. Hourglass modes are
element distortions that have zero strain energy. Thus, no stresses are created within the element
[12], [13]. Numerical techniques are implemented to add artificial stiffness or damping specifically
to these modes. The goal is to minimize the hourglass energy, ensuring that the element response
remains physically realistic. The hourglass viscosity type was implemented through the Flanagan-
Belytschko with exact volume integration.

“Stonewall”, Rayleigh and sliding energy dissipations were computed and also included in the
energy balance. Rayleigh energy dissipation refers to the energy loss in a dynamic system due to
Rayleigh damping, a common damping model used in finite element and structural dynamics
analyses. In this model, the damping forces are represented as a combination of mass- and
stiffness-proportional contributions. Initial reference geometry energy was computed and included
in the energy balance as part of the internal energy.

The Newmark time integration constants have the values B = 0.5 and y = 0.25. The Newmark
time integration method is a widely used numerical scheme for solving dynamic problems in
structural mechanics [14]. These constants control the update formulas for displacement and
velocity at each time step and play a significant role in the stabilify and accuracy of the integration
scheme. The choice of their mentioned values was preferred because it provides second-order
accuracy and unconditional stability for linear problems [15].

The minimal time step was set to be 1.0x10° s and initial time step 1.0x10” s.

2.4. Materials Models

For the aluminium matrix simulation a piecewise linear plasticity model [16], [17] was used. This is
a type of constitutive model used in computational mechanics to approximate a material’s
nonlinear plastic behaviour with a series of linear segments. The overall stress-strain curve (or
yield surface evolution) is broken down into several linear segments. Each segment has its own
linear relationship (slope) between stress and strain. By assuming linear behaviour within each
segment, the integration of the constitutive equations becomes more straightforward. The
piecewise linear approach provides a good balance between accuracy and computational efficiency,
making it popular for simulations where fully nonlinear plasticity models would be too complex or
computationally expensive. The model can be tailored to closely match experimental stress-strain
data by adjusting the number and slopes of the linear segments. This allows for an accurate
representation of complex behaviours like yield plateaus, hardening, and softening. The following
parameters’ values for the piecewise linear plasticity model to describe the aluminium matrix have
been used in the simulation:



Density: p = 2712.6 kg/m3;
Young's modulus: E = 68.948 GPa;
Poisson's ratio: v = 0.33;

Yield stress: oy = 15.21 MPa;
Plastic strain to failure: e = 0.7496

The stress strain curve used for the modelling as a table of values from the yield stress to the
failure strain and stress is shown in Figure 3.

To describe the material behaviour of the silicon inclusion, which unlike the matrix is brittle,
the Johnson-Holmquist damage model [18], [19] has been utilized. These materials typically
possess high compressive but low tensile strength and progressively accumulate damage..." under
load due to the growth of micro-fractures. This model requires several material constants to
completely describe the response of a particular material. Initially, the material response is
considered to be elastic. The current material deformation allows for calculating the pressure.

Deformation:
u=t- (1)
Lo
Compression:
P=K, -u+K, 1’ +K, 1’ +AP_ (12)
Tension:
P=K u (13)
120 ——
100
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60 /
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Figure 3: Stress-strain curve for the aluminium matrix used for the piecewise linear plasticity
model in the simulation.

In equation (12) P corresponds to the bulking pressure of the material and is determined by the
amount of accumulated damage.

The model introduces a scalar damage parameter D that ranges from 0 (undamaged, intact
material) to 1 (fully damaged material). As D increases, the effective strength of the material
degrades, reflecting the accumulation of micro-cracks and other damage mechanisms. The effective
stress of the material is expressed as an interpolation between the intact (undamaged) material
strength and the fully damaged (residual) strength (14):

o =(1-D)-o +D-0o, (14)

where: J: is the intact strength; a; is the residual (fully damaged) strength.

This formulation ensures that as damage accumulates, the material response transitions
smoothly from the higher, intact strength to a lower, damaged state.



The intact material strength is defined as:
o, = A-(P*+T*)"-(1+C-In & (15)
The fractured material strength is given by the equation (6):
o, =B (P (1+C-n& (16)

The equation (4) is used with the radial return method to determine the current increment in
plastic strain. The current increment in damage can be determined as follows:

Ae
AD =—Z~ (17)
s
The plastic strain to fracture under a constant pressure is defined by the equation (18):
g, =D, (P*+T%)" (18)

The bulking pressure is zero for undamaged material, and the bulking pressure at the next time
increment is given by the equation (19):

AP, =K,  u+ (K, u+AP) +2- f-K,-AU (19)

n

where the parameter f§ describes the amount of energy converted to potential or hydrostatic
energy through bulking AU.
The values of the Johnson-Holmquist model parameters used to describe the silicon inclusion
material are as follows:
Normalized intact strength constant: A = 0.93;
Normalized fractured strength constant: B = 0.088;
Strain rate sensitivity coefficient: C = 0.003;
Exponent for pressure in the fractured strength equation: M = 0.35;
Exponent for pressure in the intact strength equation: N = 0.77;
Maximum normalized fracture strength: Sppax = 0.5;
Transition parameter between intact and fractured strength: = 1;
Damage constant related to plastic strain: D; = 0.053;
Damage constant related to pressure dependence: D, = 0.85;
Hugoniot Elastic Limit, representing the maximum elastic stress the material can withstand
before yielding: Hgy, = 5.95 GPa;
Pressure at the Hugoniot Elastic Limit: Pygr, = 2.92 GPa;
Bulk modulus coefficients used in the equation of state to describe the material's pressure-
volume relationship:

K1 =45.4 GPa
K; =-138.0 GPa
K3 =290 GPa

Other matrix material’s properties values are the next:
Density: p = 2330 kg/mg;

Shear modulus: E = 62 GPa;

Tensile strength: T = 165 MPa;

The search methodology involved adding new features, which were products of values from
correlated feature pairs, to the existing feature set. The classifier was retrained each time a new
feature was added. If a classification algorithm achieved higher accuracy with the new feature, that
feature was considered for inclusion in the model. This process was repeated, considering other



pairs of features, and the one that resulted in the greatest accuracy improvement was added to the
model. The search continued until one of the following conditions was met: no further accuracy
improvement, desired accuracy was reached, the feature set reached a predefined size limit, or no
new features were available (which could occur in cases with very few extra features).

In the final stage, different classification methods were applied to the selected feature set to
optimize the results. This process led to the development of a complex classifier capable of
distinguishing between different class groups, significantly improving the ability to identify
multiple classes within the dataset.

2.5. Contact Conditions

The surface-to-surface contact model has been used to describe the impacts between the inclusion
and matrix, the parts of the inclusion after its fracture and the pasts of the matrix in the case of
their contact at later deformation stages. The friction coefficients for the considered contact pairs
are presented in Table 1.

Table 1
Friction coefficients values used in the model
Contact pair Static Dynamic
coefficient coefficient
of friction (Fy) of friction (Fp)
Inclusion / matrix 0.5
Inclusion / inclusion 0.35 0-1
Matrix / matrix 0.35

In the inclusion / matrix contact pair inclusion has been treated as a “master” and the matrix as
a “slave” segment.

2.6. Initial and Boundary Conditions

The presented here study focuses on the cold deformation simulation (being carried out at room
temperature) not considering hot deformation processing that assumes considerably different
materials’ properties.

A single inclusion has been considered during each of the computation experiments. So no
intersection between the inclusions has been taken into account (except the split parts of the
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Figure 4: Scheme of the initial geometry of the model (cross section).

The inclusions had the shape of flat parallelepipeds. The deformation was performed
perpendicular to the inclusion plane. Such conditions are primarily aimed at simulating silicon
crystals in the cast Al-Si alloys. The thickness of the considered inclusions was 10 pm and the
lengths (equal to width) were 100, 50, and 20 pm. The deformation velocity was a constant value
given as a prescribed motion of the top and the bottom nodes of the matrix block. For the study of
the inclusion size influence it was set at 2 mm/s (1 mm/s from top and 1 mm/s from bottom -



towards one another). For the inclusion of 100 pm also the influence of deformation velocity has
been studied using the values 1, 2 and 4 mm/s. The matrix block inside which the inclusion model
was implemented had dimensions: height 100 um, length (equal to width) 200 pm. Figure 4 presents
a schematic example of the initial model geometry.

3. Results and discussion

Figure 5 illustrates the numerical simulation results of compression deformation for representative
sections containing silicon inclusions of varying sizes embedded within an aluminium matrix. The
simulations clearly demonstrate how inclusion size and deformation level influence structural
integrity, stress distribution, and fracture behaviour within the composite.
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Figure 5: Simulation results for the behaviour of a silicon 10 pm thickness inclusion in aluminium
matrix when compression deformation depending on the inclusion length.

The simulation results reveal distinct differences in fracture mechanisms associated with the
inclusion sizes studied. A 100 pm inclusion fractures early in the deformation process, initially
splitting into two primary fragments around its midpoint. With further deformation, particularly
beyond approximately 18% settling, these primary fragments further disintegrate into smaller,
clustered fragments. Eventually, fragmentation continues predominantly near the primary fracture
zone, and the separated fragments undergo rotational and translational motion within the matrix.
This behaviour may account for experimentally observed arrangements of fragmented silicon
inclusions, including linear aggregations and "bag"-like clusters described previously [5, 7].

In contrast, the 50 pm inclusion exhibits significantly lower susceptibility to early fracture. The
first cracks in this intermediate-sized inclusion occur much later, at approximately 19-20%
deformation compared to the 7% deformation threshold observed for the 100 pm inclusion. Fracture
fragments for the 50 pm inclusion predominantly range between 25-30 pm, aligning closely with
the computationally identified critical size for relatively stable inclusions under the investigated
deformation conditions. Notably, fragmentation at this scale still critically impacts matrix integrity,
as observed tearing is consistently initiated by rotational and translational stresses imposed by
these smaller fragments.



The smallest inclusion considered (20 pm) demonstrates the highest fracture resistance in
simulations. Brittle fracture is not initiated within this inclusion; however, significant deformation-
induced rotations and movements occur at high deformation levels (above 26-27% setting),
eventually causing severe stress concentrations and tearing in the aluminium matrix. This
behaviour suggests that inclusions smaller than the critical size identified (approximately 25-30
pm) can still significantly degrade matrix performance through mechanical interactions despite not
fracturing themselves.

The numerical outcomes align well with experimental observations documented in previous
studies [5], particularly concerning the critical deformation level (~25-27%) that precedes visible
crack formation at ~29-30%. Simulation results thus effectively validate the experimental
observations regarding inclusion morphology effects on composite fracture behaviours. Moreover,
the study further supports the critical role of inclusion spheroidisation, achievable through
specialised deformation-heat treatments or utilisation of rapidly cooled master alloy powders [5, 6,
21]. Rounded or spheroidal inclusions significantly reduce stress concentrations and mitigate
fracture initiation in the aluminium matrix compared to sharp-edged inclusions. These findings
underscore the predictive power and practical utility of finite element simulations in guiding
microstructural optimisation and improving mechanical performance of metal matrix composites.

From the Figure 6 we can see that deformation velocity modulates the onset of matrix failure,
with slower rates enhancing ductility by delaying crack initiation.

Additionally, the computational framework presented here benefits from advanced software
engineering methodologies, such as the systematic class diagram design approach described by
Chebanyuk [22], which enhances software modularity and maintainability. Furthermore, adopting
mentioned there methods for analysing software requirements and artifact reuse through artificial
intelligence technologies [23, 24] can significantly increase the robustness and adaptability of
simulation software, allowing for more efficient updates and expansions of computational models.

Future developments of the simulation environment could also incorporate advanced text-to-
model transformations [25] and multilingual question-driven approaches [26], facilitating broader
accessibility, more efficient user interactions, and enhanced semantic interoperability in
computational materials science.
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Figure 6: Simulation results for the behaviour of a 10 x 100 pm silicon inclusion in aluminum
matrix when compression deformation depending on the deformation velocity.



4. Conclusions

The numerical simulations performed in this study highlight the effectiveness and robustness of
advanced computational models and finite element methods for predicting deformation and
fracture behaviours of aluminium-silicon composite materials. Results confirm that inclusion size
and deformation velocity significantly impact fracture mechanisms, demonstrating the sensitivity
of numerical models to microstructural parameters. Larger silicon inclusions exhibit early brittle
fracture and contribute to the propagation of cracks into the aluminium matrix, whereas smaller
inclusions predominantly lead to matrix deformation through stress concentrations and geometric
interactions.

A critical threshold inclusion size (~25-30 pm) was computationally determined, below which
brittle fracture in silicon inclusions becomes negligible, yet structural integrity remains
compromised due to increased stress localisation. Computational results align closely with
experimental observations in Al-Si composites, validating the simulations' accuracy and
highlighting the detrimental influence of inclusion geometry, particularly sharp-edged inclusions.
Furthermore, the beneficial effects of morphological optimisation, such as spheroidisation, are
confirmed by simulations, suggesting practical avenues for enhancing composite material
performance.

From a software engineering perspective, this study underscores the importance of precise
numerical algorithm implementation and efficient computational methodologies for accurate
micro-scale simulations. The explicit integration algorithms and damage evolution models, such as
the Johnson-Holmquist model and the piecewise linear plasticity model, demonstrated
computational stability and predictive accuracy, establishing the potential of these tools for guiding
material design and processing decisions.

The outcomes of this research emphasise the role of computational modelling as a powerful
predictive tool for exploring microstructural deformation and fracture phenomena in metal matrix
composites. Future work will extend these computational approaches by developing an ontological
framework [27, 28, 29] that systematically captures and structures the simulation data. Such an
ontology aims to facilitate deeper integration between computational mechanics and materials
science, enhancing semantic interoperability [27, 28, 29], promoting data reusability, and
supporting advanced computational analyses to uncover novel insights into microstructural
influences on mechanical performance.
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