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Abstract 
Mathematical modeling is currently the main tool of studying objects, processes and phenomena of various 
natures. The resolution of applied problems often requires studying of mathematical models of different processes. 
In particular, mathematical modeling is essential for simulation of non-stationary processes when analyzing the 
strength of complex structures and heat transfer processes. Non-stationary problems of strength analysis of 
complex structures or their components arise when addressing issues such as extending the lifespan of structures, 
determining their reliability, and identifying the properties and behavior of complex structures subjected to 
combined loads (force, thermal). Nowadays, these problems are among the most resource-intensive problems in 
mathematical modeling. This is due to increasing demand on the quality of design solutions, the necessity of 
performing calculations for complex and unique structures, and the use of new structural materials etc. Improving 
the quality and efficiency of mathematical modeling is only possible through the use of fundamentally new and 
detailed models and by shifting from simulating individual elements to studying the object as a whole. The use of 
detailed computer models leads to a significant increase in the size of discrete models and the corresponding 
computational problems, which exceed the capabilities of modern personal computers and workstations. Therefore, 
in the mathematical modeling of non-stationary processes of various natures it is important to develop new 
methods and algorithms for parallel computing on high-performance heterogeneous computers, in particular those 
of hybrid architecture. To effectively utilize such high-performance systems, it is required to develop new-
generation computer algorithms and software. The development of algorithmic and software tools is a key 
direction in creating high-performance computational resources. This paper proposes a methodology for solving 
computational problems (Cauchy problems) of mathematical modeling of non-stationary processes on high-
performance computers with parallel organization of calculation, using the example of mathematical modeling in 
continuum mechanics. 
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1. Introduction 

Nowadays, mathematical modeling is one of the main tools for researching objects, processes, and 
phenomena of various natures. The need to study mathematical models of various processes often arises 
when solving applied problems. Thus, the application of such mathematical models is essential for the 
research, assessment and diagnostics of the stress-strain state of various structures such as buildings, 
welded and other constructions. Non-stationary problems of strength analysis of complex structures or 
their components arise when addressing issues such as extending the lifespan of structures, determining 
their reliability, and identifying the properties and behavior of complex structures subjected to combined 
loads (force, thermal). In addition, such models are used in the researching of thermal processes that occur 
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during welding of complex structures, various manufacturing processes, as well as in nanostructures to 
optimize the cooling of electronic systems, etc. 

Solving computational problems related to the modeling of non-stationary processes in strength 
analysis of complex structures and heat transfer processes requires significant computational resources. 
This is due to increase in demand for the quality of design solutions, the need to perform calculations for 
complex and unique structures, the use of new construction materials, etc. Ensuring the reliability of 
computer simulation results is another resource-intensive factor, which depends on the accuracy of the 
mathematical models used, as well as accuracy of the data provided, the size of the computational 
problems etc. Improvement in quality and efficiency of mathematical modeling is possible only through 
the use of new detailed models and shift from modeling separate stages of processes to modeling the entire 
process as a whole. The use of detailed computer models leads to a significant increase in the size of 
discrete (finite-dimensional) models and the corresponding computational problems. 

Considering these problems in such a setting leads to computational problems involving huge volumes 
of data, for example, matrices with orders exceeding 10⁷, and increasing the adequacy of computer 
modeling is usually accompanied by an exponential increase in research costs. 

Modern personal computers and workstations lack the resources necessary to implement these tasks. 
Nowadays, the increase in computing performance is achieved through parallelization of calculations, 
based on the use of heterogeneous computers with, in particular hybrid architecture.	 

In computers with hybrid architecture, both MIMD and SIMD models of parallel computation are used, 
and multi-core processors are complemented by co-processor accelerators. Nvidia and AMD, as leading 
companies in high-performance hardware, have proposed the use of graphics processing units (GPUs, 
graphics cards) as such accelerators. 

The use of heterogeneous computing systems is one of the promising directions in the development of 
high-performance computing. A number of such hybrid computers of varying performance levels have 
been created, ranging from personal hybrid supercomputers for local use to high-performance clusters. It 
is necessary to develop next-generation computer algorithms and software to effectively utilize such high-
performance systems. The development of algorithmic and software tools is a priority in building high-
performance computational resources. 

This article proposes a methodology for solving computational problems (Cauchy problems) of 
mathematical modeling of non-stationary processes on high-performance computers with parallel 
organization of computation, using the example of mathematical modeling in the continuum mechanics. 

2. Mathematical models of non-stationary processes 

Mathematically, the problem of calculating the stress-strain state (a dynamic problem in the theory of 
elasticity), using the principle of virtual displacements, can be formulated as a variational problem [1]: find 
a vector-function of displacements  that, for any vector-function  (any admissible 
displacement), satisfies the integral identity 

, , ; (1) 

where ,  is an infinite-dimensional functional space of possible displacements, and 

the symmetric bilinear functionals , , and  are proportional to the potential and 
kinetic energies, and damping, respectively. The linear functional  is proportional to the work done 

by the applied (external) forces under load. Here,  denotes the first derivative of the vector-function 
 and  the second derivative.  

The heat transfer process is modeled by the following initial-boundary value problem in the domain 
 with boundaries  and  

, , (2) 

, , , ,  
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where  is the boundary condition operator,  is the specific heat capacity,  is the thermal 
conductivity of the material,  is the volumetric power of the heat source.  

The main approach to solving such problems are numerical methods. To do this, the original problem in 
an infinite-dimensional space is replaced with its finite-dimensional (discrete) analogue. Most often, 
projection methods are used for this purpose, for example, the finite element method or finite difference 
method [2, 3]. As a result of discretization, a Cauchy problem for a system of ordinary differential 
equations (ODEs) is obtained.  

For a non-stationary strength analysis problem using the finite element method, a second-order system 
of ODEs is obtained: 

,  , . (3) 

For the heat transfer problem, using the finite element method or the finite difference method, we 
obtain the following matrix Cauchy problem for a first-order system of ODEs. 

, , . (4) 

Here,  is the desired n-dimensional solution vector of the system of ODEs (e.g., displacement values 
for (3) or temperature values for (4)),  is an n-dimensional right-hand side vector (e.g., loads or heat 
source power), and , , are n×n matrices with sparse structure, where n is the dimension of 
the systems of ODEs (3) or (4). 

Discrete problems (3), (4) exhibit a number of features, in particular: 
• high order of matrix dimensions in the discrete problems (up to tens of millions); 
• the matrices have a sparse structure (e.g., banded, envelope, skyline, etc.); 
• the elements of the matrices and vectors are computed with errors, caused by initial data 

inaccuracies, discretization errors, and computational errors when evaluating these elements on a 
computer. 

3. Solving Cauchy problems for systems of ODEs 

For the numerical solution of Cauchy problems for systems of ODEs, depending on their properties, a 
variety of time integration methods exist. Direct integration methods are used, particularly Runge–Kutta 
methods of various orders for first-order systems, and the Wilson-θ method of for second-order systems. 
Additionally, for second-order systems, some software tools (see, for example, [2]) utilize the Fourier 
method based on expanding the desired functions in terms of the structure’s natural vibration modes. 

Runge–Kutta methods are also used to solve second-order systems of ODEs by introducing auxiliary 
functions . This transforms the system into a first-order system of ODEs of twice the size: 

, 

. 
 

Let’s consider solving the Cauchy problem for a first-order system of ODEs using the Runge–Kutta 
method: 

  (5) 

where  is the desired vector-function solution. 
Among the Runge–Kutta methods, the fourth-order Runge–Kutta method is most commonly used, as it 

provides the required accuracy with relatively low computational complexity. This method is implemented 
over the time interval  using the formulas: 

  (6) 
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where 
, 

, 

, 

. 

(7) 

i = 0,1,2,… the upper index is the point number, lower index is the component of the vector. 
Thus, the majority of arithmetic operations are performed to compute the right-hand side of the vector 

function . 

The Wilson-θ method is used for the numerical solution of second-order systems of ODEs with initial 
conditions (3). To apply it, we rewrite the problem (3) as: 

 (8) 

with initial conditions 

, . (9) 

Here, U is the vector of the values of the function u at the nodes of the finite element mesh. 
In the Wilson-θ method, the time interval Т is divided into n equal subintervals . At each time 

interval , і = 0,1,..,n-1,  a linear change in acceleration is assumed (the second derivative 
is a linear function of time). 

It is assumed that at the initial moment of time , the vectors , ,  are known. Before 
starting integration over time, the integration step h is determined, required constants, the effective 
stiffness matrix  and its decomposition  are computed. 

Then the integration of the system (8)−(9) over time at point  is performed according to 

the scheme: 
- computation of the right-hand side of the system of linear algebraic equations  using 

  

- using the  decomposition of matrix , computation of  as a solution of the  
system ; 

- computation of the approximate solution , and its first and second derivatives using following 
formulas: 

; 

; 

. 

 

Thus, this method consists of several sub-tasks requiring a significant number of arithmetic operations: 
forming the matrix , its  decomposition, and repetitive solving of N systems of equations of the 
form . 

Another method used to solve the initial value problem (3) is the Fourier method. This method is based 
on decomposition by the eigenvectors of the algebraic eigenvalue problem (AEVP): 

 (10) 

An approximate solution to problem (3) is represented as a linear combination of several eigenvectors 
corresponding to the smallest eigenvalues of problem (10). That is, if  

  is a solution of AEVP (10), then assuming  in (3), we 
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obtain (under certain assumptions regarding the damping matrix С [2]) a system that decomposes into 
equations independent with respect  
to : 

, 

, 
 

where . 

A significant contribution to the solution of problem (3) is usually provided by only about 20–30 terms 
corresponding to the smallest eigenvalues. Thus, we obtain a system of  second-order ordinary 
differential equations that are mutually independent. The solution to this system can often be found 
analytically, or it can be easily integrated using, for example, the fourth-order Runge–Kutta method. Since 
such a problem exhibits inherent parallelism, it can be efficiently implemented on a parallel computer. 

The most computationally intensive part of this approach is solving the partial AEVP, which is best 
done using subspace iteration methods [4]. 

It is worth noting that both the Wilson θ-method and the Fourier method allow for multiple solutions 
of the Cauchy problem for second-order system of ODEs (3) with different right-hand sides (i.e., different 
loads) . 

4. Features of parallel algorithms for Cauchy problems for systems of ODEs 

For effective implementation of mathematical modeling, it is advisable to use high-performance 
computing tools — both hardware and corresponding software. Modern high-performance computing 
systems with parallel processing architectures — ranging from personal computers with a single multi-core 
processor and multiple graphic accelerators to supercomputers with a massive number of processing units 
of various architectures — utilize different models of parallel computation, dynamic computing 
environment, network technologies, etc. [5]. 

As the capabilities of modern computers continue to grow, approaches to designing parallel algorithms 
are also evolving. These algorithms must take into account both the properties of the problem and the 
architectural features of the computing resources, including memory structure of the processing units, 
interconnections between them, synchronization of computations and data exchanges, and other relevant 
factors. 

Depending on the method used to solve Cauchy problems for systems of ODEs, as mentioned above, 
the computational load varies across different types of operations. In most algorithms, these are linear 
algebra operations: matrix-vector and matrix-matrix operations, matrix decompositions, etc. 

For example, in the 4th-order Runge–Kutta method, the most computationally intensive operation in 
terms of resource consumption and runtime is the multiplication of a sparse matrix by a vector. In the 
Wilson-θ method, it is the  decomposition of a symmetric positive-definite matrix and the repeated 
solution of the corresponding system of linear algebraic equations. In the Fourier method — solving the 
AEVP. 

As previously mentioned, the matrices involved in real-world computational problems often have very 
large orders and sparse structures, such as banded or envelope etc [6]. These factors influence the selection 
of methods, algorithms, and tools for solving the Cauchy problems for systems of ODEs. Therefore, in 
order to choose the optimal parallel solution algorithm and reduce the required computational resources 
(runtime, memory etc.), it is necessary to identify the data structure (both of the original matrix and, if 
necessary, of the decomposition matrices). To enhance efficiency, the matrix structure needs to be 
optimized if required. To recognize sparse data structures, this article recommends the use of neural 
networks and machine learning. Structural regularization algorithms [6] allow transformation of arbitrary 
matrix structures into one of the regular sparse forms (block-banded, block-skyline, block-diagonal with 
framing, etc.). The solution algorithm is determined based on the resulting data structure. 
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As mentioned above, solving Cauchy problems for systems of ODEs involves processing of extremely 
large data volumes. It is possible to efficiently execute large volumes of homogeneous operations by using 
block versions of methods and algorithms. Such approach consolidates a significant number of operations 
into matrix-matrix or matrix-vector operations with dense blocks, which are obtained from structural 
regularization of the data. To implement these operations, it is recommended to use software tools 
provided by hardware developers, which are optimized for performing block matrix operations on the 
corresponding processing units [7, 8]. 

Important stages of development a parallel algorithm for hybrid systems include selection of an 
efficient data representation method and consideration of the specific features of architecture of hybrid 
computers. The increasing number of processors in parallel computers and the creation of new hybrid 
heterogeneous architectures significantly increase communication overhead and reduce process efficiency. 
Therefore, taking into account the computer architecture is a necessary condition in designing a parallel 
algorithm. 

The data is distributed among processing units based on the choice of the parallel solution algorithm. 
When designing algorithms for sparse matrix problems, it is crucial to choose the appropriate storage and 
representation methods for non-zero elements. These methods are determined by the sparse matrix's 
structure and the requirement of the solution algorithm. Data distribution and storage schemes are used to 
ensure compact data representation, fast access and processing of large datasets, and minimization of data 
exchange between processing units. 

The amount of calculations for each processing units in use should be approximately the same — this 
will ensure uniform computational load (balancing) of the processing units. Additionally, subtask 
distribution among processing units should aim to minimize the number of information dependencies 
(communication interactions) among subtasks. 

Thus, to efficiently solve Cauchy problems for systems of ODEs arising in the mathematical modeling 
of non-stationary processes, it is recommended to use intelligent software tools [4, 9]. 

To summarize, the design of parallel algorithms for solving Cauchy problems for systems of ODEs 
intended for implementation on computers of hybrid architecture, requires to follow the steps below: 

• recognize sparse data structures of the matrices of the given problem and, if necessary, perform 
their structural regularization; 

• identify the architecture that is most efficient for solving the given problem; 
• divide the problem into subtasks, identify information dependencies between them, and select the 

appropriate parallelization environment; 
• take into account the memory structure of the processing units to ensure high algorithm 

performance; 
• distribute data and computations across processing units to ensure balanced load on the computer's 

computing elements. 

5. Conclusions 

The paper proposes the basic principles for efficient mathematical modeling of non-stationary 
processes of various natures in a variable computational environment on modern high-performance hybrid 
computer systems. During development of algorithmic and software tools for solving computational 
problems (Cauchy problems for systems of ODEs) in the modeling of non-stationary processes it is 
necessary to: 

• consider the architecture and technical features of hardware and the specifics of the software tools 
developed by hardware manufacturers; 

• consider the mathematical properties of the problem being solved that ensure the reliability of 
computational results; 

• provide automatic selection of an efficient variable computational environment (a number and 
types of processor devices, their interconnections, synchronization of computations and data 
exchanges, memory types, etc.); 
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• utilize elements of artificial intelligence (in particular, artificial neural networks, machine learning, 
etc.); 

• utilize multi-precision arithmetic and variable-precision arithmetic; 
• utilize block versions of corresponding algorithms which involve the allocation of subtasks with 

large volumes of homogeneous arithmetic operations. 
It is recommended to use these principles to develop or modify algorithmic and software tools for 

resolution of a wide range of problems of computer modeling of processes, phenomena and objects from 
various subject areas on the latest high-performance computer systems with parallel organization of 
calculations. In the future, it is advisable to develop algorithms using the NVIDIA-library NCCL (NVIDIA 
Collective Communication Library) for collective communications, which easily integrates into modern 
parallel programs. This library is designed for high efficient organization of data exchange between 
graphic processing units, taking into account the topology of the computing system. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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