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Abstract

Discrete choice models are pivotal in describing, explaining, and predicting choices between two or more discrete
alternatives, such as which mode of transport to take. These models often leverage features of the alternatives
and contextual information about the decision-making process. In this work, we propose a novel process for
improving choice modeling through feature engineering and an advanced data augmentation strategy known
as mixup, which has not been previously applied in this domain. Our results show that the unconventional
combination of two different sessions using mixup boosts the performance of choice models. We first introduce
our process using a carefully designed Transformer model on a dataset focused on flight choices. Then to ensure
the robustness of our process, we apply the process unchanged with different sized transformer models, as well as
to previously proposed neural network architectures. We also verify the effectiveness of the process on another
well-known public dataset for hotel room bookings.
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1. Introduction

Discrete choice modeling is the process of replicating the decision-making process made by a person
when choosing among a set of distinct alternatives. These models are then used to better understand
the factors that lead to decisions, or to predict individual decisions.

One application of such models is in the travel and transport domain. For example, discrete choice
models were trained on survey data to predict and inform modes of transport, such as new rail lines
[1]. Choice models are integral parts of many revenue management systems, performing tasks such
as demand modeling and assortment optimization [2] and are widely used in travel choice modeling
and travel offer pricing [3]. In a retrospective review [4], it was shown that machine learning models,
including recommender systems and choice models, create clear business value and are implemented at
various stages of the online travel booking flow.

One of the oldest choice modeling approaches is the multinomial logit (MNL) model, originally
introduced by Luce [5]. It relies on the simplifying assumption of the independence of irrelevant
alternatives (IIA), which states that the relative probabilities between two alternatives are not affected
by the presence of additional alternatives. [6] later showed that the resulting model is a particular
case of Random Utility Models (RUM), where decision-makers choose alternatives that maximize the
obtained utility, which is considered to be a linear function of observable features of the alternatives
plus a stochastic noise term. Despite its popularity, the MNL suffers from notable limitations—including
its inability to model correlation between alternatives and its implication of proportional substitution
across alternatives (e.g. an improvement in the attributes of an alternative reduces the probabilities
for all the other alternatives by the same percentage)—which often make it unrealistic for complex,
real-world decision-making scenarios [7].

To address these shortcomings, the field has increasingly turned toward machine learning and,
more recently, deep learning approaches. These methods offer enhanced flexibility, scalability, and
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performance, as well as greater control over model design elements such as objective functions and user
representations [8]. Notable efforts include the use of deep neural networks to parameterize flexible
models such as Pairwise Choice Markov Chains (PCMC), which relax traditional assumptions like ITA
and stochastic transitivity [9, 10]. It should be noted that despite the significant added complexity of
these models, explainable Al tooling has also progressed significantly allowing for insights into these
models as shown in [11].

In parallel, in 2017 the attention-based architecture called Transformers [12] was introduced, and since
then they have transformed multiple domains, including natural language processing (text completion,
translation and code generation among others) [13], vision [14], and signal processing [15]. Their
ability to contextualize and compare elements/tokens with an attention mechanism, makes them
particularly appealing for discrete choice tasks, where alternatives must be evaluated relative to one
another—naturally overcoming the IIA limitation. However, best practices for applying Transformers
to choice modeling remain underexplored.

Crucially, model architecture is only one dimension of success. Techniques such as feature engineer-
ing, regularization, and data augmentation are essential for improving generalization and robustness.
In choice modeling, feature engineering through the design or transformation of input features—such
as characteristics of alternatives or contextual variables—can significantly improve the model’s ability
to capture choice behaviour [16]. Regularization methods like dropout [17] and weight decay [18]
are widely adopted to reduce overfitting. Data augmentation has been effectively used to generate
synthetic data for mitigating data scarcity and imbalances [19]. In this work, we introduce mixup
[20]—a data augmentation technique that linearly interpolates pairs of training samples—for the first
time in the context of choice modeling. Perhaps surprisingly we show that combining features from
unrelated choice sessions, improves model performance, particularly in ranking the true choice among
top alternatives.

In this paper, we explore Transformer-based and other deep learning models for discrete choice
modeling in the travel domain. Our study focuses on an internal Airline Itinerary Dataset (AID),
where the goal is to predict which itinerary was booked from a set of alternatives.!. We also evaluate
our methods on the public Expedia dataset, which contains hotel search sessions and bookings. The
prediction task in both datasets is challenging due to the large number of alternatives per assortment
(typically more than 30 on average), the high similarity between alternatives, and the prevalence of
singletons (i.e., alternatives that appear only once in the entire dataset).

We first optimize a Transformer architecture and design a training procedure. We then demonstrate
the transferability of our training procedure to other neural network models and to the Expedia dataset
for hotel booking prediction. Our key contributions are:

« We perform an architectural analysis of Transformers for choice modeling and find that, unlike
in natural language processing (NLP) tasks, single-head attention offers better performance.

« We confirm the importance of feature engineering, demonstrating that adding session-level
features improves predictive accuracy.

« Contrary to the common practice of treating different sessions individually, we show that they
can be combined. We introduce mixup to choice modeling and show that combining unrelated
choice sessions enhances performance, especially in terms of top-k ranking metric.

« We demonstrate that our training methodology generalizes across model classes and datasets,
requiring no additional tuning to yield strong results on the Expedia dataset.

'Code and dataset will appear at https://github.com/AmadeusI TGroup/ChoiceTransformer



2. Related Work

2.1. Choice models, Machine learning and Recommender Systems

Choice modeling seeks to understand and predict individual decisions among competing alternatives,
with applications in transportation [21, 22, 23], travel demand analysis [24, 11], and online marketplaces
[25]. A defining characteristic of many real-world choice problems is that each decision instance—i.e.,
choice session—involves a distinct, session-specific set of alternatives. For example, in airline choice
modeling, a session may correspond to a trip request from city A to city B on a given date, with
alternatives representing the available itineraries. Machine learning classification techniques can be
used to predict the booked itinerary, but the problem differs fundamentally from standard multiclass
classification tasks (e.g., image recognition), where the set of classes is fixed and globally defined across
all instances. In choice modeling, by contrast, each session has its own context and alternatives, and
these alternatives are valid only within that session (e.g., a specific flight itinerary is meaningful only
for a given origin, destination, and date). Thus, alternatives cannot be treated as global “classes” in the
standard machine learning sense, since they rarely, if ever, reappear across sessions [9, 7].

Choice modeling setting also differs from traditional recommender systems. In recommender sys-
tems, predictions are typically informed by user-specific histories—such as past purchases, ratings, or
clicks—which enable personalized recommendations [26, 27]. In many choice modeling settings, how-
ever, such user data are unavailable or even prohibited (e.g., privacy regulations may prevent tracking
passengers’ booking histories). As a result, predictions must rely exclusively on alternative/item at-
tributes and the aggregate behavior of users, rather than repeated interactions with the same individual.
This makes the problem similar to a “cold-start” setting in recommender systems [27], but with the
additional challenge that both users and items are often unique to each session.

While the classical Multinomial Logit (MNL) model has been widely adopted, its limitations—such as
the independence of irrelevant alternatives (IIA) assumption and limited capacity to model complex
interactions—have motivated researchers to explore more flexible machine learning approaches. In
this context, single-choice modeling can be framed as a classification task, where a model assigns
probabilities to the different available alternatives. Embedding methods [28] or random forests [29]
were applied to improve prediction accuracy and overcome some limitations of the MNL model. Decision
trees have also been used to automatically partition customers into hierarchical segments and capture
non-linear interactions between features of alternatives and characteristics of the decision maker [16].

More advanced models have been proposed to approximate the structure of random utility models
(RUM). RUMnets [30] were designed to approximate arbitrarily closely the class of RUM discrete choice
models. Similarly, AssortNet [31] proposes residual neural network architectures to predict choice
probabilities for use in assortment optimization problems. In [32], the authors propose a recurrent
neural network (RNN) architecture with an attention mechanism that learns to point, within a sequence
of alternatives, to the chosen one. PCMC-Net [9] combines representation learning with the Pairwise
Choice Markov Chains (PCMC) framework [10] to relax strong assumptions like IIA and obtain a linear
system whose solution is the choice distribution.

A commonly raised concern with deep learning-based choice models is their interpretability. While
such models often outperform traditional methods in terms of predictive accuracy, their “black-box”
nature can obscure the decision logic. However, experiments in [11] demonstrate how the probabilities
provided by such a choice model can be interpreted as market shares at equilibrium and be used
as demand quantities. Furthermore, the recent release of the open-source library Choice-Learn [33]
provides a modular and extensible framework for building and evaluating machine learning-based
choice models.

2.2. Transformers as discrete choice models

The Transformer architecture was originally introduced for machine translation [12] and has rapidly
evolved as the main neural network architecture of choice not only for natural language processing tasks



(encoding text, text and code generation, etc.), but also in computer vision [34] (image classification,
image generation, object detection, etc.), in audio processing [35], and numerous other tasks.

Its application to choice modeling is more recent, but growing. In [36], a Transformer-based archi-
tecture is proposed to address different types of choice modeling problems: single choice, sequential
choice and multi-choice. Transformer networks were considered especially suitable for this task as they
take into account not only the features of the customer and the items, but also the context, which could
be the assortment, as well as past choices of the customer.

The Transformer is employed in [37] both as a choice model and as a simulator to generate data
to reflect different consumer purchasing behaviours. The simulator generates data which allows to
contrast the differences between the baseline MNL and DeepFM models. An attention-based choice
model was proposed by [38] and shown to be a low-rank generalization of the Halo Multinomial Logit
(Halo-MNL) model. The proposed method was shown empirically to outperform other methods on a
hotel dataset and shopping cart dataset.

A comprehensive study of Transformer-based choice modeling is given in [39]. In particular,
Transformer-based architectures are compared against many other different models on both the IRI
dataset and Expedia Hotels dataset. Notably, their results showed that even compact Transformer mod-
els with as few as 2,448 parameters outperformed larger RUMnet models, and that larger Transformer
variants further improved performance. This findings indicate that the architecture itself is well suited
to choice modeling, and scales well, as observed in other domains.

Based on the literature above, we consider the Transformer to be the state of the art model, upon which
major part of our experiments is carried out. In the following sections, we detail feature processing and
data augmentation techniques which can further improve the performance of a Transformer model.

3. Datasets and input features

Before describing the datasets, we first clarify some key definitions used in choice modeling. A session
(or decision instance) refers to a situation where a user makes a choice. The set of available alternatives
in that session (e.g., all flight itineraries for a given origin, destination, and date) is called the assortment.
Each alternative is a specific option within the assortment (e.g., a particular flight itinerary) and is
characterized by its own alternative features (e.g. price, duration, or airline). The context, in contrast,
captures session-level attributes that apply to all alternatives within the assortment (e.g. the requested
origin, destination, travel date).

3.1. Airline Itinerary Dataset

A passenger name record (PNR) contains relevant data regarding travel bookings, such as flight informa-
tion of each segment of a journey and information about the individual. Additionally, it has information
about ancillary services and special service requests. In order to obtain a full choice set, data from PNRs
are matched with search log activity. Those logs shows all available options presented to the traveller
prior to booking.

We have created the Airline Itinerary Dataset (AID): a dataset consisting of flight booking sessions
on a set of European origins and destinations. Each choice session contains up to 50 different proposed
itineraries, one of which has been booked by the customer. There are 815559 distinct alternatives
among which 84% are singletons and 99% are observed at most seven times. In total, there are 33 951
choice sessions. For the experiments in section 4, we split the sessions into 27 160 for training and to
6791 for testing. The dataset has both numerical and categorical features, shown in Table 1. Finally
there is the target variable which is binary and indicates whether an alternative was chosen within its
session.

Within the set of features of a given session, there are certain elements which are common across
all alternatives. We refer to those as the context. Examples of context features are the origin and
destination of the trip, or whether the trip is domestic. The rest of the features are specific to each
alternative, which we refer to as the alternative features. These include the price of the flight or the



Table 1
Features of the airline itinerary choice dataset.

Type Feature Range/Cardinality

Cat Origin-Destination (OD) 98

" Search Office 12

% Departure weekday [0, 6]
%' Stay Saturday [0, 1]
Q Num. Continental Trip [0, 1]
Domestic Trip [0, 1]

Days to departure [0, 343]

Cat.  Airline (of first flight) 64

Price [77.15, 16781.50]

2., Stay duration (minutes) [121, 434000]
§ E Trip duration (minutes) [105, 4314]
i E Num. Number connections [2, 6]
<~ Number airlines [1, 4]
Outbound departure time (in s) [0, 84000]

Outbound arrival time (in s) [0, 84000]

number of connections. Note that within an assortment, alternatives may have common features such
as the same airline, but at least one alternative feature is always distinct from the other alternatives.

3.2. Expedia Travel Dataset

In this study we use the AID dataset to develop a training procedure and subsequently evaluate its
robustness on the Expedia hotel search dataset. The Expedia dataset was released as a part of a
competition [40]. It contains hotel search sessions conducted on the Expedia website. It comprises of
399 344 hotel search sessions with a total of 9917 530 alternatives, representing 136 886 distinct hotels.
A single hotel may appear multiple times in a session, offering different room types or prices. Each
session includes between 5 and 38 alternatives.

In this dataset the context features include the length of stay, whether the stay includes a Saturday
night, the number of adults and children, the number of rooms requested, the date and time of the
search, and the booking window (i.e., the time between the search and the stay). Additional context
variables are location related indexes representing the geographical location from which the search
is done, as well as the location of the accommodation. Alternative features include the current price,
historical average price and whether the alternative is a promoted offer. Other features include the
hotel’s star rating, average customer review scores, and scores reflecting how well-located the hotel is,
and whether it belongs to a major hotel chain.

Since our focus is on predicting which alternative was booked, we exclude sessions where no
booking occurred. In accordance to the preprocessing used in [39], we also discard features that are only
observable at or after the time of search. Specifically, we omit the click indicator and the final transaction
price. We retain only alternatives with strictly positive prices below 1000$ and booking windows shorter
than one year. For categorical variables, all categories with fewer than 1000 occurrences are grouped
together into a single class with a value equal -1 and the missing values are imputed with zeros. After
the preprocessing, the final dataset contains 276 211 sessions and 6 909 971 alternatives.

We note that despite following the preprocessing of [39], we obtain a dataset whose size is not
exactly the same as reported in the original study, meaning that our results are similar but not directly
comparable to [39]. Furthermore, [30] proposed a similar data preprocessing but with the inclusion of a
“clicked” related feature. Therefore, their results correspond to a different shopping phase, where there
is the knowledge of whether the user interacted with the alternatives. This knowledge is provided
as an input feature to the model, simplifying the prediction task and yielding higher top-1 and top-5



accuracies.

3.3. Initial Processing of data features

As shown in table 1, the dataset contains both numerical and categorical variables. Examples of cate-
gorical variables include the origin and destination airport names, or booking office which are strings.
Since neural networks require numerical input, for each categorical variable we use an embedding
layer to transform the variable into a numerical one. The embedding layer takes as input a categorical
feature with cardinality ¢; (e.g., ¢; = 98 for airport codes representing origin and destination), and
maps it to a dense vector of dimension d;. Following the rule of thumb proposed in [9], we initially
set d; := min([¢;/2],50), although later we show that d; can be greatly decreased. To avoid overfit-
ting, after the embedding stage, dropout is applied on the embedded categorical input. In contrast,
numerical variables—such as trip duration or price—are directly given as inputs to the network without
transformation.

After embedding the categorical variables, two structures are created: a numerical vector of size
deontext T€PrEsenting the context of the entire session and a matrix of size [n, dyyernarive] containing
the features for each of the n alternatives. Since the context contains relevant information across all
alternatives, we concatenate the context vector with the features of each alternative, resulting in an
input matrix of size [n, dgg,| With dyga = deontext + daiternative- Please note that the embeddings described
above are all learned jointly with the model’s parameters using standard backpropagation.

In the study, we primarily use a BERT-like Transformer architecture [41]. The model accepts an
input matrix of size [n, dy,oq4¢1], With n being the number of alternatives per session. Analogously, for
Transformers used as Large Language Model (LLM) n would be the number of input tokens and d,,g.;
the dimensionality of each input embedding. Each alternative is represented by a d,,4,;-dimensional
feature embedding. To map the data matrix of size [n, dju,] to the input size of [n, dyq.1] expected by
the Transformer, we use a linear layer followed by a Gelu activation function. The Gelu was added to
avoid having two consecutive linear transformations, as the Transformer’s multi-head attention module
begins with a linear transformation. Hence, this non-linear activation function avoids the composition
of two linear layers which is equivalent to a single linear layer.
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Figure 1: Proposed Transformer pipeline for choice modeling

4. Methodology

Focusing on the AID dataset, we first optimize the Transformer architecture and then design a training
procedure to enhance its performance. The overall pipeline is illustrated in Figure 1. The experimental
steps are as follows:

Step 1: We begin by optimizing the Transformer architecture, tuning a number of hyperparameters
that determine the size of the model. Based on the results of this step, we select an architecture



offering a good trade-off between number of parameters and performance. We name that model
ChoiceTransformer.

Step 2: With the ChoiceTransformer architecture fixed, we proceed into investigating the processing
of the input features. We show that the embedding dimensions for categorical inputs can be
significantly reduced without sacrificing accuracy. Additionally, we improve the performance
by introducing new features, defined as ratios comparing numerical feature values of each
alternative to the session’s best corresponding feature value.

Step 3: Finally, we test a data augmentation strategy using the best feature setup from Step 2 and the
ChoiceTransformer architecture. Specifically, we introduce mixup [20] which applies a convex
combination of the inputs of pairs of sessions. We show this method leads to further gains in
accuracy. To the best of our knowledge, this is the first application of mixup in the context of
choice modeling.

Steps 2 and 3 were optimized using the ChoiceTransformer as the model. However, our goal is to
provide a general recipe for feature processing and augmentation that is effective across architectures
and datasets. Therefore in Section 5 we test the proposed recipe using a larger Transformer variant
(ChoiceTransformer-L), a different class of neural network models (PCMC-net [9]), and a another dataset
(Expedia).

4.1. Step 1: Optimizing Transformer architecture

The Transformer architecture [12] was initially conceived for natural language processing, but since
then it has become extremely popular and tested in many applications of machine learning. The encoder
Transformer architecture can be seen as a function T : R™®udd — R™%mdel generating high-level
representations per alternative. Intrinsically, the Transformer architecture is permutation equivariant
meaning that if a random permutation o of the rows of the input is applied, the output will present
the same permutation, i.e. T(c(x)) = o(T(x)). In natural language, the order of the words/tokens
is important, so to break this property, positional embeddings are added. In contrast, the choice
modeling problem is mainly a permutation equivariant problem, meaning that changing the order of
the alternatives should generally not impact the user’s preference ranking of the alternatives. Therefore,
similarly to previous works [39, 36, 37] we avoid the use of positional embeddings which deteriorates
the performance in choice modeling tasks.

The architecture is a stack of N layers where each layer is comprised of a standard multi-head
attention part and a feed-forward network. The multi-head attention has h heads. As in [12] each head

model

has key, queries and values of dimensions dT per alternative (in the NLP domain it is per token) and
so the total number of parameters in the model is independent of the number of heads h. We use a
BERT-like architecture [41] where the feed-forward network has a standard form consisting of layer
normalization [42] followed by a linear layer expanding four-fold the dimensions (i-e dhiggen = 4dmodel )-
then a Gelu activation function and finally a second linear layer bringing the dimensions back to dy,yg.-
Finally, as shown in Figure 1, we apply a linear transformation per alternative Ly, : R™dmodel — [RP¥1
on the output of the Transformer model and a softmax function providing the probability with which
each alternative might be selected. Note that the linear layer Ly, preserves also the permutation
equivariance since it is applied identically to the features of each alternative.

In table 2 a grid search is performed over different architecture hyperparameters. We vary the number
of layers N € {1, 2,4}, the number of heads h € {1, 2,4} and embedding dimensions d,,q.; € {16, 32, 64}.
We split our dataset into 80% training and 20% test set and run each configuration with 6 different
seeds and report the mean test performance over those runs and the standard deviation (std). The
optimization algorithm is AdamW [43] with the default pytorch hyperparameters (i.e. learning rate
0.001, weight decay 0.01, and betas = (0.9, 0.999)) and batch size equal to 32. The reported number of
parameters does not include the parameters used in the processing of the input data, which in total are
for dpoqe1 = {16, 32, 64} equal to {8380, 9964, 13132} respectively.



Table 2 presents the top 12 configurations. Surprisingly, we note that, in general, the lower number
of heads the better, with an average accuracy over all configurations for h = 1 being 29.10%, with
h = 2 being 29.03% and with h = 4 being 28.91%. Also there is the trend of configurations with more
parameters yielding better results, but the difference may be marginal. The best configuration is
(4,1,64), and it has the most parameters. However, the configuration (2,1,32) has around 8 times less
parameters and only 0.04% lower accuracy. For this reason, we adopt it as our base model, naming
it ChoiceTransformer. The larger configuration is retained for testing the robustness of our proposed
method and referred to as ChoiceTransformer-L in Section 5.

Table 2
Impact of Transformer hyperparameter scaling with respect to the number of parameters and Accuracy

Layers N | Heads h | d,,o4e1 | Transformer Parameters | Mean Top-1 Accuracy | Std Top-1 Accuracy
4 1 64 199361 29.35% 0.53
2 1 64 99777 29.32% 0.23
2 1 32 25313 29.31% 0.28
4 2 32 50529 29.24% 0.26
1 1 32 12705 29.22% 0.34
4 4 64 199361 29.15% 0.31
4 2 64 199361 29.12% 0.21
2 2 64 99777 29.08% 0.17
2 2 32 25313 29.06% 0.36
2 2 16 6513 29.05% 0.50
1 1 16 3281 29.02% 0.44
4 2 16 12977 29.02% 0.29

4.2. Step 2: Feature engineering and training strategies

Here, we fix the architecture of the model to ChoiceTransformer with configuration (2,1,32) and proceed
to optimizing the processing of the input features. Using the implementation of [9] for transforming the
categorical variables to numerical vectors, we note that the final dimensions of the input for the AID
dataset are djq;, = 98 and in total d;4e; = 86 elements are devoted to represent the categorical variables.
We first reduce dggeg by changing the function used to define the embedding dimensions for each
categorical variable from d; : = min([¢;/2],50) to d; := min([¢;/10],4). This results in dy,, = 22 and
deateg = 10. Dropout with a probability pg.op = 0.5 was also used in [9] to avoid overfitting, however it
is reasonable, since d4e, is reduced, to also reduce the regularization applied on those embeddings. In
Table 3, decreasing the probability to py,op = 0.4 seems optimal and so we adopt it for the next results.
We emphasize that without any loss in performance, the reduction of dj,;, reduced the total number of
parameters of ChoiceTransformer (including the ones in the processing of the data) by 25% (i.e from
35277 to 26 713).

Table 3
Top-1 accuracy, mean and standard deviation across 6 runs, as a function of dropout rate.

Dropout rate | Mean Accuracy | Std. Accuracy
0.1 28.98 0.37
0.3 29.32 0.22
0.4 29.39 0.11
0.5 29.27 0.24

Choice models tasks based on machine learning models can benefit from some engineered features that
give a ratio or comparison between a numerical feature of each alternative and the rest of all alternatives
in the session [16]. In this work, we incorporate such comparative information by introducing the



following ratio for the applicable numerical features:

alternative’s feature value

best feature value across session’ ®
This transformation is applied to features that are directly comparable across alternatives, specifically:
price, trip duration, and stay duration. These new ratio features allow each alternative to be contextu-
alized relative to others in the same session. For instance, the price ratio quantifies how much more
expensive an option is compared to the cheapest one.
The inclusion of these three features improves top-1 accuracy from 29.39% (std = 0.11) to 29.57% (std
= 0.35).

4.3. Step 3: Data augmentation - mixup
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Figure 2: Mixup example visualisation for choice modeling

With the previous steps, the performance of the choice model has improved and it is not trivial
to improve it further. Here, we introduce mixup [20] which is a well established data augmentation
technique in image classification tasks. Mixup combines two different samples, to synthetically generate
a new sample. Specifically, it linearly interpolates a pair of samples and their corresponding labels.
Mathematically, given two samples (x;, y;) and (x;j, y;), where x represents the input to the model and y
the label in one-hot encoding format, the mixup does:

X = Ax,-+(1 —A)Xj

. (2)
y=24y+1 =Dy

with A € [0, 1] being a mixing coefficient sampled from a Beta distribution:
A ~ Beta(a, )

where a > 0 is a hyperparameter controlling the strength of interpolation. As « approaches 0 the effect
mixup has on the training procedure vanishes. With o = 1 the distribution coincides to a uniform one.
As o — oo it converges to a Dirac distribution located at 0.5. As shown in Figure 2, we apply mixup on
the input of the Transformer model.

There are multiple reasons why mixup can lead to overall performance improvements. In general,
mixup has been shown to act as a regularization technique [44] preventing overfitting. The model
has to distinguish two inputs that have been linearly combined, making it difficult for the model to
memorize those inputs. Thus, it reduces the memorization effect [20] which is a source of deterioration
of the generalization performance of neural networks.



In a choice modeling task, applying mixup may seem rather unconventional. Our intuition for testing
this technique is that mixup encourages the model to predict softer output distributions. Without
mixup the model is trained to always predict the single alternative that was the preferable in that
session. However, user preferences are inherently stochastic: two users with identical contexts may
make different choices due to personal constraints or preferences. For example, two users might both
want to travel the same day from the same departure airport to the same destination one, but end up
choosing different itineraries due to different personal time schedule constraints.

Using mixup the model learns to assign some probability to more than one alternative. Therefore it
is reasonable to believe that mixup will improve not just the top-1 accuracy, but especially the top-k
accuracy with k > 1. In Table 4, we show that our intuition is confirmed and mixup improves in general
the top-k accuracy. This is important for choice models since it identifies a subset of the many available
alternatives that might be appealing to a user. For the AID dataset, this means presenting to the user a
desirable set of itineraries for traveling to their destination at the top of their shopping list.

There are some important implementation details to note. There is the possibility that 2 sessions
have unequal number of alternatives which will result in x; € R"*“model and x; € R"7%nodel with n; = nj.
Assuming n; < nj, x; is padded with zeros to match the dimensions of x;. Up until now the ordering of
the alternatives in the data did not matter due to permutation equivariance. However, when mixup is
used, some precautions are needed. In the dataset, the alternatives are sorted according to their price,
with the cheapest alternative being the first in the list. This results in the label pointing to the first
alternative in most of sessions, as users tend to book the least expensive alternative. Therefore, when
picking random pairs to combine, it becomes very likely that y; = 3 = (1,0,0,...,0) and so y = y; = y;.
To avoid these scenarios and ensure mixup functions as desired, we permute randomly the alternatives
within each session. Finally, using a data augmentation technique makes the training harder and the
model needs more iterations to train, as such the number of epochs is increased from 30 to 100.

Table 4
Performance Metrics with Different Mixup Values
Mixup Top-1 acc. | Top-3 acc. | Top-5 acc.
No Mixup | 29.57 (0.35) 56.8 (0.28) 70.38 (0.22)
a=06 | 29.80(0.32) | 57.09 (0.29) | 70.87 (0.15)
a=08 | 29.67(0.36) | 57.4(0.57) | 70.96 (0.33)
a=10 | 30.03(0.27) | 57.1(0.51) | 70.75 (0.45)
a=12 | 29.89(0.31) | 57.03(0.44) | 70.92(0.23)

5. Effective strategy on various models and dataset

In Step 1, we optimized the Transformer architecture. In the subsequent steps, we fixed the architecture
to the ChoiceTransformer and focused on enhancing the overall training methodology of the choice
model. Therefore, a natural question arises: Do the improvements introduced in Steps 2 and 3-namely,
lowering the embedding dimensions, incorporating engineered features, and applying mixup—generalize
to other model architectures beyond the original ChoiceTransformer and accross to other datasets?

To investigate this, we apply the training strategy developed in Steps 2 and 3 to both a larger
Transformer model, ChoiceTransformer-L, and to a different class of neural network architecture,
PCMC-net [9], using the AID dataset. The PCMC-net has a hyperparameter “nodes per layer” which is
set to 128, resulting in a model with 54 128 parameters. For each model and training configuration, we
perform a 5-fold cross-validation. Each fold uses 70% of the data for training, 20% for testing, and the
remaining 10% for validation. The validation set is used to monitor performance per epoch. We select
for testing the model checkpoint with the highest top-5 accuracy on the validation set. The maximum
number of epochs is set to 100, with early stopping triggered if no improvement in validation accuracy
is observed for over 10 consecutive epochs.
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Figure 3: Top-1 and Top-5 accuracies for Transformer and PCMC-net models across AID and Expedia
datasets.

Figure 3 shows the effect of our proposed training methodology to the top-1 and top-5 accuracy for
both ChoiceTransformer-L and PCMC-net. The "Base” bar corresponds to training the model without
any of our enhancements. The "Feature Engineering” bar represents the impact of incorporating Step 2
only. The "Mixup” bar shows the effect of applying the mixup strategy alone (i.e. only applying Step 3).
Finally, the "Feature Engineering & Mixup” bar represents the full application of our proposed training
method, combining both steps.

To further evaluate the robustness of our method, we also apply it to a different dataset, Expedia hotels.
We keep the training procedure identical to the one used for AID, with the sole exception of increasing
the batch size from 32 to 256 to accommodate the larger dataset, which contains approximately 8 times
more sessions. For the Expedia dataset, the engineered ratio features (see Equation 1) are constructed
from the following features: price, number of stars, review score, and the two location-based scores.

We emphasize that throughout these experiments, we maintain the same hyperparameters found to
perform best in Sections 4.2 and 4.3: a dropout rate of 0.4, categorical embedding dimension defined
by min([¢;/10],4), and a mixup coefficient & of 0.8. As shown in Figure 3, our proposed training
methodology improves the performance of both models across both datasets, without requiring any
additional hyperparameter tuning. We remark that applying only mixup already improves top-5
accuracy in most cases, except for PCMC-net on the Expedia dataset. Most importantly, the full method
not only gives the best top-5 accuracy, but also consistently maintains or improves top-1 accuracy,
demonstrating its robustness and broad applicability.

McNemar’s test can be used to evaluate the statistical significance of the difference in performance
between two deep learning models when using larger datasets [45]. A two-sided McNemar’s test was
performed for each model and dataset evaluating the difference between the base configuration and the
optimised process with feature engineering and mixup. These results are shown in Table 5, with bold
lettering indicating significance at p < 0.01 threshold.

Table 5
p-values of McNemar’s test comparing base performance of models to optimised version (i.e. with feature
engineering and mixup) over two datasets

Airline dataset | Expedia dataset

PCMC-net Top-1 4.6 x 1072 1.1x 107!
PCMC-net Top-5 1.2x107! 4.2x1071
Transformer Top-1 1.2x107° 2.7x107°

Transformer Top-5 14x1073 2.7x107°




6. Discussion

Neural networks and indeed Transformers have shown state of the art performance for choice modeling
in recent studies. In this work, we experiment with different architectures, feature engineering, and
data augmentation techniques in order to further improve the performance of a standard Transformer.

From the results obtained in this study, we can make some interesting conclusions. Transformers
perform with high accuracy compared to other methods, as already established in the literature. We
observe that relatively small Transformers achieve good performance and may be preferable to larger
architectures, as classification accuracy gains may be marginal when scaling the model. In this study,
we find a model of size 25313 parameters to be competitive with a model 8 times larger. This reflects a
similar outcome from [39], where the smallest Transformer with only 2448 parameters outperformed
all other non-Transformer methods in the comparison on the Expedia hotels dataset. We also note
that we found single-headed attention to outperform multi-headed attention for the vast majority of
configurations of the Transformer implemented in our study.

Furthermore, we find that feature representation in the embedding stage can be compressed further
than established in previous works. By representing categorical features with a maximum of 4 dimen-
sions, versus 50 using the encoding of [9], we reduce the overall number of parameters from 35277 to
26713 for ChoiceTransformer while maintaining the classification accuracy.

Similarly to previous studies using machine learning models, we find that explicitly providing features
engineered over the assortment of alternatives provides benefits to the model. These types of features
can be beneficial for two reasons. In some cases, as is well known for the MNL model, the utility of each
alternative is computed independently of the features of other alternatives. In such cases, these features
provide valuable contrastive information to the model that would not be available to it otherwise.
More powerful non-linear models may be able to do such comparisons between alternatives, but the
mechanisms involved might be limited, such as pairwise comparisons, or simply require significant
computational cost in order to approximate complex decision rules. In this study, such aggregated
features allow the model to exploit the information provided by the features with simpler rules, and
thus the model does not need to allocate a larger number of parameters to replicate simple decision
processes. As the old adage goes “don’t learn what you already know”.

A novel contribution of this work is in the exploration of data augmentation techniques from different
domains. In particular, it is shown that mixup, which operates over multiple choice sessions, can be
used during training of the ChoiceTransformer in order to improve its testing accuracy. This result is
significant as we believe this is the first implementation of mixup in the field of choice modeling.

The overall performance of discrete choice models in these real life industrial contexts may appear
somewhat low, specifically achieving under 30% Top-1 accuracy. It is important to remember that the
model is comparing a large number of alternatives per assortment (typically over 30), that contain a
large number of singletons, there is high similarity between many alternatives, and limited context
with no-personalisation is provided to the model. Taking an example from the AID dataset, there may
be 2 alternatives that differ only by marketing carrier, or alternatives that differ only by a minor time
difference for one flight segment.

The improvement in performance from the base models to the augmented ones, with feature engi-
neering and mixup, is typically less than 1% for top-1 and top-5 accuracies. It is important to consider
the context of choice modeling where such small increases in performance are expected even from
major model improvements, e.g. similar gains were observed from RUMnet to Transformers [39]. Even
small gains can translate into significant business impact in real-world applications such as travel recom-
mendation systems that are called with 100,000 transactions per second. The top-1 and top-5 accuracies
represent our ability to show customers the most appealing offers at the top of the list, leading to higher
conversion.

Finally, while many of the experiments in this study relate to improving the performance of a
Transformer based choice model, we show that the proposed pipeline of data embedding, feature
engineering and mixup can benefit other neural networks including previous state of the art models
such as the PCMC-net, although we did not find the improvements to be as significant. Furthermore, we



show that the selection of hyperparameters of the feature processing stage, such as embedding dimension
size and mixup weight, produce better performance for both larger and smaller implementations of the
Transformer. This strategy was then applied to a different dataset with no changes in hyperparameters,
where it was confirmed that the proposed pipeline leads to better results across both accuracy metrics,
for both models.

7. Conclusion

In many applications of machine learning, there is a clear trend toward the dominance of attention-based
neural networks, particularly the Transformer architecture. While previous studies have demonstrated
that Transformers are indeed a powerful tool for choice modeling, the results of this study highlight
that improved feature representation and novel training procedures can further enhance performance.
Future research could explore alternative methods for feature processing and data augmentation.
Another promising direction is the development of more interpretable methods to better understand
the internal decision-making logic of Transformers and to revisit one of the original goals of discrete
choice modeling: gaining deeper insight into the factors that drive individual decisions.

8. Ethical Considerations

This study investigates the potential of using Transformers for choice modeling. For the experimental
section, we utilized known datasets which have been used previously in the domain by multiple groups

and are publicly accessible. The authors commit to releasing the code upon request should this article
be published.

9. Declaration on Generative Al

Generative Al tool (ChatGPT) was used for minor text editing: paraphrasing, rewording and sentence
polishing. The authors are fully responsible for the scientific content of the paper.
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