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Abstract

We present CiRi-Engine (CityRiddler Recommendation Engine), an interactive city-walking-tour recommender
system. This demonstration paper showcases a novel approach to generating personalized and balanced itineraries
for urban exploration. By combining user-specified constraints, such as start and end locations, tour duration,
interest categories, and challenge preferences, with an efficient dual-stage routing algorithm, CiRi-Engine
dynamically constructs diverse routes featuring curated Points of Interest (POIs). The engine leverages a novel
hybrid of A* and Beam Search for path planning, and incorporates preference-aware POI selection to ensure both
relevance and diversity. We demonstrate firsthand how the system balances route diversity, thematic coherence,
and user-specified constraints, demonstrating its effectiveness for handling multiple objectives and generating
engaging walking tours.
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1. Introduction

Using recommender systems for the creation of tourist itineraries is an active and long-studied problem
in the tourism domain [1]. These systems provide personalized suggestions for destinations, activities, or
Points of Interest (POIs), aiming to enhance the user’s travel experience, while alleviating overwhelming
choice among the many options that travelers face in new, unfamiliar environments. This is known as
the Tourist Trip Design Problem (TTDP), which aims to generate a travel itinerary comprised of POIs
in a way that takes into account the user’s preferences, as well as other contexts and constraints [2].

One relevant application is the generation of walking tours within an urban environment that visits
locations of interest to the user. In such urban environments, there are typically numerous POIs that
can satisfy one or more aspects of a user’s interests; therefore, we aim to maximize the coverage of their
diverse interests. Additionally, in order to retain user engagement and improve the user experience
along the tour, the route should consider balanced travel distances, avoiding large gaps between POls,
as well as avoiding many POIs clustered together. The motivation for this research is to investigate POI
selection and route finding algorithms that optimize for the following requirements:

+ The route should maintain balanced walking distances between POlIs.
+ The route should optimize for POI diversity.
+ The entire walking tour must fit within a specified time constraint.

The core problem addressed, known as the Tourist Trip Design Problem (TTDP), is formulated as
sequencing POIs that fit the user’s stated interests and time constraints. The CiRi-Engine approach is a
multi-objective optimization system that selects POIs to maximize category coverage according to user
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interests, align the total tour time (the sum of walking and POI stop times) with the user’s preferred
duration, and ensure balanced segment lengths between consecutive stops.

The system serves as the recommendation engine for CityRiddler, a mobile app that creates inter-
active, gamified walking tours'. Users begin by specifying their preferences, and the app generates a
personalized tour where each point of interest (POI) includes a riddle to solve. This design encourages
engagement with the surroundings while offering an educational and entertaining experience. The POI
dataset incorporates game-specific features, such as riddle difficulty, to further tailor the tour.

Unlike traditional recommender systems, CityRiddler does not rely on personal user history or
external data. Instead, it constructs routes solely from elicited preferences, eliminating the need for
privacy-invasive tracking. This constraint rules out conventional approaches like user-user or tour-tour
similarity metrics. The engine (CiRi-Engine) addresses this challenge by combining heuristic methods
with practical constraints (e.g., time, distance) to balance computational efficiency with route quality,
moving beyond popularity-based or shortest-path prioritization.

No current solution concurrently achieves real-time mobile performance, minimization of collected
user data, route segment balance, and explicit multi-objective optimization. To address current chal-
lenges and research gaps, we present an interactive tour recommender system that combines personal-
ized itinerary planning, constraint management, and responsive performance on mobile devices. Our
system, the CiRi-Engine, uses a fast, two-stage search method, merging A* and Beam Search, to create
diverse and balanced city walking tours.

2. Related Work

Recent work on personalized tourism recommendation intersect two lines of research: Point-of-Interest
(POI) recommender systems and the Tourist Trip Design Problem (TTDP). Research gaps remain around
real-time, privacy-preserving, multi-objective itinerary construction for mobile devices.

The TTDP extends the Orienteering Problem by adding additional constraints such as time windows,
budgets, category quotas, and other logical rules. Exact algorithms, such as Vu et al’s branch-and-check
approach[3], demonstrate optimality but suffer from exponential runtimes that are not suited for real-
time use on smartphones. Heuristic families such as adaptive large-neighbourhood search, memetic
strategies, and recent branch-and-check hybrids have improved scalability but still require minutes
to hours of server-side processing[4]. Parallel work on time-dependent or multi-day TTDP variants
deepen the constraint set but further inflates computation time.

Several studies formulate itinerary planning as a multi-objective optimization problem, balancing
metrics such as reward, cost, novelty, and diversity. Techniques range from super-MOEAs[5] and
weak-correlation evolutionary search to archival ant-colony systems[6]. Although these methods can
find high-quality trade-offs offline, they typically require hundreds of generations and substantial
GPU/CPU resources, limiting their viability for real-time deployment. Complementary research lever-
ages clustering plus genetic operators to stitch multi-day routes, but again produces runtimes unsuited
to instant mobile feedback.

Hybrid approaches combine search strategies to balance efficiency and quality. Herzog’s user-centered
approach to the TTDP demonstrates the effectiveness of combining classical shortest-path algorithms
with context-aware heuristics, using an extended Dijkstra’s algorithm that incorporates dynamic profit
adjustments based on user preferences, contextual factors, and route attractiveness attributes. His
work also integrates GRASP (Greedy Randomised Adaptive Search Procedure) with context-aware
recommendations, balancing greedy selection with randomization to enhance solution diversity[7][8].

In the tourism domain specifically, hybrid approaches often combine multiple recommendation tech-
niques with routing optimization. Tenemaza et al. propose combining k-means clustering with genetic
algorithms for multi-day itinerary optimization[9], while other researchers integrate collaborative
filtering with metaheuristic algorithms like tabu search for personalized route recommendations[10].
These hybrid methodologies address the inherent complexity of the TTDP by blending the strengths
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of different algorithmic paradigms: exact methods provide optimality guarantees for smaller subprob-
lems, heuristic approaches offer computational efficiency for larger instances, and machine learning
components enable personalization and context-awareness.

3. Solution Design Description

We use a hybrid of Beam Search and A” in the selection of POIs. The algorithm begins at the start
location and evaluates all possible next POIs using a hybrid scoring approach, keeping only the most
promising partial routes for further expansion. This process continues iteratively, with A* providing
the feasibility check at each step, until the algorithm finds the best complete tour that fits within the
user’s time and preference constraints.

Beam Search maintains a fixed number (beam width) of the most promising partial tour solutions at
each iteration, and prunes less favorable routes to keep the search space manageable. The A* algorithm
is used within the beam search’s candidate evaluation process.

3.1. Algorithm Description

POI data consists of geolocation, as well as attributes that the user can select for: thematic categories (e.g.,
history, art, cuisine, local culture), riddle difficulty (easy, medium, hard), prominence (main attraction,
standard, hidden gems). The set of POls is filtered to an initial candidate set of POIs based on the user’s
preferences, and a score attribute is attached to each POI. We compare the user’s requested categories to
the distribution of categories available from the candidate set, and apply inverse frequency weighting
(rarer category = higher weight). This ensures that if the user chooses a category that has very few
candidates, those POIs will be prioritized in order to maximize the coverage.

The closest POI is chosen as the starting point for the tour. Using the current location and end
location, the system’s fixed walking speed and minimum POI visit time, the algorithm estimates the
maximum number of POIs that will fit within the target duration. This is the maximum number of
iterations (POI selections) allowed.

At each iteration, when the beam search needs to determine which POIs to consider next, it calls a
candidate generation function that implements the classical A* cost evaluation:

g-cost: g(n) = accumulated duration (actual)
h-cost:  h(n) = heuristic to goal (estimated)
f-cost:  f(n) = g(n) + h(n)

The A* f-cost calculation is embedded directly into the multi-objective scoring function that combines
user preferences with spatial efficiency. These are expressed as preference gain and proximity bonus.

Preference gain quantifies how well a candidate Point of Interest (POI) matches the user’s selected
preferences (categories, difficulty, and prominence). The idea is to reward the inclusion of POIs that
help diversify or increase coverage of the user’s stated interests. It is normalized between 0 and 1,
where 1 indicates maximum alignment with all user preferences and 0 means the POI does not improve
preference coverage, and can be expressed as:

Preferences covered after addition
Pref =

(1)

Preferences user-selected

Proximity bonus is a scoring component that encourages the route to favor POIs that are spatially
close to the current location. This helps build routes that are more compact and efficient, avoiding
unnecessary detours. It is a normalized value between 0 and 1, and can be expressed as:

distance to candidate (m)
Prox =1- )
1000
This means the bonus decreases linearly with distance, reaching zero for candidate POIs that are

1,000 meters or farther from the current location.




Each candidate POI finally receives a composite score that weighs preference gain (40%) and proximity
bonus (20%), minus the A* f-cost (60%).

fn)
score: Score = 0.4 - Pref + 0.2 - Prox — 0.6 - —
100

Each candidate is attached to the existing partial tour, creating new tour possible tour variations.
The composite score is calculated for each partial-tour and ranked. The beam search has a width of 5,
so it prunes all but the top 5 possible partial-tours. This is now the current beam state.

The next iteration will repeat these steps for each of the existing 5 partial-tours in the current beam
state. New candidates are found in the proximity of each partial-tour’s last visited POI, and the process
repeats. Each iteration carries forward only the top 5 partial tours. For each new iteration the algorithm
checks if adding another POI would exceed the time budget, or if maximum number of POIs is reached.
If terminating, it finalizes the tour by adding a path to the end location.

After the algorithm completes and returns a feasible tour, two post-processing steps refine the final
itinerary. The algorithm applies a 2-opt local search routine that examines all possible edge swaps in
the tour. For each potential swap, it removes two non-adjacent edges and reconnects the path segments,
accepting improvements that reduce total walking distance and eliminate backtracking. During the
final output phase, the system calculates walking segment statistics including mean distance, standard
deviation, and variance to assess route quality.

3.2. Heuristics and Decision Process

An outline of the heuristic components and decision logic implemented in the system is provided below.

1. Prevention of Backtracking and Repeats

No Repeats: The route planner maintains a record of already selected POIs within the current solution
path. When evaluating candidate POIs for the next segment, any POI present in the current
route is excluded from subsequent selection passes. This prevents the same location from
appearing more than once in a single generated tour.

Backtracking Avoidance: Transition rules ensure that the search expands only to POIs not already
visited and that move away from the starting point. POI transition edges are constructed such
that cycles and loops are not permitted, adhering to a path-constraint principle common in
TTDP formulations.

2. Walking Segment Distance and Time Calculation

Route Partitioning: The total available time (input by user) is allocated as the sum of estimated
walking time and predefined POI stop times (based on riddle difficulty at each POI).

Balanced Segment Goal: The algorithm partitions the walking segments by dividing the total walking
time evenly among the anticipated number of stops. Each segment is then targeted to have a
similar travel time and distance, supporting a comfortable pacing and route coherence.

Distance/Time Computation: Segment distances are available from a pre-existing list on the server
containing the walking distances between every pair of POIs in the city. After candidate
POIs are chosen, the variance of the resulting segment distances is calculated. This value is
considered as a penalty in scoring. Tours with lower segment variance are preferred.

3. Category and Feature Coverage Heuristics

Preference Matching: Each POI is scored based on user preferences, such as desired categories (e.g.,
“Art”, History”, ”Cuisine”) and riddle difficulty. The initial pre-filter narrows the candidate
pool to POIs matching at least one user-stated interest.



Non-Repetition of Category: For each new candidate POI, the algorithm checks its category (e.g.,
“History”). If the previous POI in the route has the same category the candidate’s score is
decreased. This mechanism promotes diversity along the route, reducing consecutive repeated
types of POlIs.

Running Coverage Calculation: At every step, the algorithm maintains a record of all categories
included so far. When candidates are evaluated, those representing under-covered or not-yet-
seen categories are boosted in score.

Coverage as Objective: The algorithm uses a root mean square diversity error (RMSDE) metric to
measure and aim for maximum possible coverage.

4. Tie-Breaking and Segment Variance
Tie on POI Scores: When two candidates have similar top scores:
Preference is given to the POI whose type or category has not yet appeared in the route.

If this still results in a tie, the algorithm selects the POI that, when incorporated, minimizes the
variance in walking segment distances.

As a final tie-breaker, random selection provides nondeterministic diversity.

5. Real-Time Adjustment and Cascading Effects

Dynamic Re-Scoring: After each POI is added, the scores of remaining candidates are dynamically
updated, reflecting the current state of category coverage and segment evenness. This ensures
that the path is adaptive and responsive to prior selections.

Constraint Enforcement: At each state expansion, constraints are checked: total projected time must
not exceed user-defined limits, all POIs must be within the search area buffer, and categories
must diversify sufficiently within available options.

4. Implementation

The CiRi-Engine technical architecture is designed for responsive and privacy-preserving mobile
tour generation. All core systems are deployed on AWS cloud infrastructure. The algorithm itself is
implemented in Python and served via a FastAPI backend. User preferences are solicited directly from
the user’s mobile device, and upon receiving a request, the backend algorithm processes the input and
constructs a tour in near real time. The generated itinerary is returned to the user’s smartphone. The
only data transmitted or stored is GPS location and time, ensuring strong privacy standards.

4.1. System Overview

The raw data consists of POI locations in Vienna, as well as the riddle category, prominence, and
difficulty associated with them. A POI can have multiple riddles assigned to it, therefore also multiple
categories and so forth. The walking distances between each POI is calculated using GraphHopper
API? , and stored in a file for later lookup.

The user provides their preferred start location, categories, difficulty, prominence, and tour duration
on the mobile app front-end. The system has hard-coded values for walking speed, and the expected
time it takes to solve a riddle of each difficulty level. These times are considered the POI’s visit time,
and are added to the walking times to comprise the entire tour duration.

*https://www.graphhopper.com/
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Figure 1: The interactive demo site with a tour.

4.2. Proof of Concept

This system will be demonstrated live, and participants are invited to interact with the demo page. Users
will be able to input their own preferences and generate custom walking tours in real time, exploring
the system’s features and seeing first-hand how routes, statistics, and map visualizations adapt to their
selections. This interactive demonstration offers direct experience of CiRi-Engine’s capabilities and
encourages feedback on its performance and usability.

The system is designed primarily for use as a mobile application; however, to support demonstration
and testing, we have also developed a web-based platform, illustrated in Figure 1. This demo site
features an interactive interface where users can configure tour preferences and modify key system
settings. Generated routes and walking paths are displayed on an interactive map, accompanied by a
statistical summary of the tour. The demonstration platform is implemented as a Shiny> web application
and communicates with a FastAPI* backend via API endpoints.

A sample tour was generated with the following user preferences: start (48.208087, 16.358464) and
end (48.211359, 16.379153); target tour duration 90 minutes; categories 2, 3, and 4; difficulty levels 0 and
1; and prominence levels 1 and 2. The visit time and walking speed settings remain the same as the
existing system’s default, but could be modified for testing. The tabulated results of the tour are shown
in Table 1.

5. Conclusion

By combining Beam Search and A* search strategies, the CiRi-Engine dynamically tracks user preferences
and spatial efficiency during route planning. This enables it to craft tour itineraries that align closely
with user preferences, such as desired difficulty, categories, and time constraints. It also optimizes
for practical considerations that enhance the user experience like walking distance and overall tour

*https://shiny.posit.co/py/
*https://fastapi.tiangolo.com/
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Table 1
Enhanced Segment Details

Segment Start POl End POl Distance (m) Walking Time (min) End POI Visit Time (min) Total Segment Time (min)

1 Start 492 340 4.0 5 9.0
2 492 491 477 7.1 5 121
3 491 501 521 6.2 10 16.2
4 501 7 333 4.2 10 14.2
5 77 522 392 5.8 10 15.8
6 522 531 8 0.1 5 5.1
7 531 533 271 3.2 5 8.2
8 533 End 561 6.7 0 6.7

=== COMPREHENSIVE TOUR ANALYSIS ===
Tour POls: [492, 491, 501, 717, 522, 531, 533]
Number of route segments: 8

Total walking distance: 2.91 km

Total walking time: 37.3 minutes

Total visit time: 50.0 minutes

Total tour time: 87.3 minutes

Distance coefficient of variation: 48.2

compactness. The engine’s data-driven approach ensures each proposed tour is both thematically
relevant and logistically efficient.

At the time of this paper’s writing, the CiRi-Engine is being integrated to the City Riddler’s live
system for A/B testing to conduct a user study. The evaluation will focus on how well the generated
tours match user preferences, as well as how quickly and efficiently routes are computed compared
to the previous solution. Early feedback confirms that the CiRi-Engine generates tours significantly
faster than the current implementation. This optimization has the potential to enhance user satisfaction
and to support scalability as the app is rolled out in other major cities in the future. The ongoing user
study will provide further insights into the practical impact of these advancements and inform future
refinements to both the algorithm and the overall tour planning experience.

6. Future Work

The current CiRi-Engine prototype shows promising performance, but several avenues can strengthen
its robustness, scalability, and user appeal.

The current algorithm allows for a system to expand the features of a POI and incorporate them into
the scoring system. The data could be refined with such attributes as sustainability score, indoor-outdoor
flag, or crowding level. Opening times for parks or businesses could also be included. The route itself
could be selected based on its features, such as aesthetic or cultural qualities. Pedestrian or low-traffic
areas could be favored, and accessibility or ease of walking (avoiding steep gradients or stairs).

The routing algorithm could be enhanced to allow for generating the tour dynamically after each
POI visit, recalibrating remaining time and accommodating user feedback or user deviations from the
expected visit-time. Different strategies for supporting the case where the start and end locations are
the same should be compared and implemented.

In addition, it would be interesting to evaluate the system against state-of-the-art large language
model (LLM) techniques, assessing whether such models can handle the multi-objective optimization
and adapt to dynamic recalibration constraints.

Future work also includes implementing and evaluating against state of the art Branch-and-Bound
methods, which guarantee global optimality but face severe scalability challenges. The algorithm will
also be tested using a dataset from different cities to test scalability and performance with very dense
or sparse data.
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