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Abstract 
This paper introduces a comprehensive component-based architecture for big data systems, designed to 
overcome the constraints of traditional monolithic structures. By segmenting big data systems into four 
distinct layers (ingest, process, expose, and storage) this architecture fosters modularity, 
interchangeability, and technological flexibility. The approach seamlessly integrates established 
architectural patterns such as Lambda, Kappa, and Medallion architectures, while accommodating both 
Extract-Transform-Load (ETL) and Extract-Load-Transform (ELT) paradigms. For instance, the Lambda 
Architecture is exemplified by its dual-path processing, which is effectively utilized in systems requiring 
both batch and real-time data processing, such as in financial analytics platforms. The Kappa 
Architecture, on the other hand, is highlighted through its streamlined single-path processing, ideal for 
applications like real-time monitoring systems using tools like Apache Kafka and Apache Flink. 
 
Key benefits of this architecture include reduced vendor lock-in, independent scaling of components, 
incremental evolution capabilities, and decreased technical debt. The architecture empowers 
organizations to select optimal technologies for specific functions, such as using Apache Spark for 
processing and S3 compatible systems for storage, while maintaining a cohesive framework that can 
adapt to evolving requirements and emerging technologies. Practical examples include the use of the 
Medallion Architecture in data lakehouses, where data is refined through progressive layers, enhancing 
data quality and accessibility. 
 
This paper delves into the principles, patterns, and implementation considerations of this component-
based approach, offering a detailed blueprint for designing resilient and adaptable big data systems. By 
examining real-world applications and tools, such as the integration of ELT processes in cloud-based 
environments using Snowflake, this paper provides valuable insights into the practical deployment of 
component-based architectures in diverse organizational contexts. 
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1. Introduction 

Big data architectures have evolved significantly over the past decade, driven by the need to 
handle increasing volumes, velocities, and varieties of data. Traditional monolithic data 
architectures are increasingly being replaced by more flexible, modular approaches that can adapt 
to diverse requirements and technologies. This paper proposes a component–based architecture for 
big data systems that emphasizes modularity and interchangeability, allowing organizations to 
select optimal tools for each architectural layer while maintaining a consistent overall framework. 
The architecture integrates established patterns such as Lambda, Kappa, and Medallion 
architectures and accommodates both Extract-Transform-Load (ETL) and Extract-Load-Transform 
(ELT) paradigms. By decomposing big data systems into four primary layers—ingest, process, 
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expose, and storage—this approach enables incremental evolution, independent scaling, and 
technology flexibility while reducing vendor lock–in and technical debt. 

2. Overview of big data architecture principles 

2.1. Evolution of Big Data Architectures 

The evolution of big data architectures reflects the continuous adaptation to growing challenges of 
data complexity and scale. Early approaches focused on batch processing using technologies like 
Hadoop MapReduce, which could effectively process massive datasets but with significant latency. 
As real-time analytics became increasingly important, architectures evolved to combine batch and 
stream processing capabilities. 

This evolution gave rise to several architectural patterns. The Lambda Architecture provides a 
framework for handling both batch and stream processing through separate paths, while the Kappa 
Architecture simplifies this by treating all data as streams. The Medallion Architecture offers a 
structured approach to data refinement through progressive layers (Bronze, Silver, Gold). These 
patterns have been complemented by the evolution of data processing paradigms, with traditional 
ETL (Extract, Transform, Load) increasingly being complemented or replaced by ELT (Extract, 
Load, Transform), particularly in cloud environments. 

Having established the evolution of big data architectures and the various patterns that have 
emerged, we now turn to a detailed examination of the component–based architecture. This 
approach builds upon the lessons learned from previous architectures while addressing their 
limitations through modularity and standardization. 

2.2. Lambda Architecture 

The Lambda Architecture, first proposed by Nathan Marz, addresses the challenge of computing 
arbitrary functions on massive datasets while providing both comprehensive accuracy and low 
latency results[1]. This architecture consists of three primary layers: 

1. Batch Layer (Cold Path): Stores all incoming data in its raw form and performs batch 
processing to create comprehensive batch views. This layer prioritizes accuracy over speed, 
processing the full dataset to produce high–quality results[1][14]. 

2. Speed Layer (Hot Path): Analyzes data in real–time, providing low–latency results at the 
expense of some accuracy. This layer handles only the most recent data, compensating for 
the processing delay in the batch layer[1][5]. 

3. Serving Layer: Indexes the batch views for efficient querying and combines them with 
real–time views from the speed layer to provide complete results to users[1][14]. 

The Lambda Architecture effectively addresses the tension between accuracy and latency by 
providing both comprehensive batch processing and real–time analysis. However, it introduces 
complexity by requiring the implementation and maintenance of two separate processing paths 
with potentially duplicated logic[1]. This duplication increases development effort and raises the 
risk of inconsistencies between batch and stream processing results. 

2.3. Kappa Architecture 

The Kappa Architecture, proposed by Jay Kreps, simplifies the Lambda Architecture by eliminating 
the batch layer and processing all data through a single streaming path[1][5]. In this architecture, 
data flows through a unified log (such as Apache Kafka) and is processed by a stream processing 
system to create real–time views. 

According to Kalra, “The Kappa architecture system is like a Lambda architecture system with 
the batch processing system removed, which avoids duplicating logic”[5]. This simplification 



 

 

reduces complexity but requires a robust stream processing system capable of handling the entire 
data workload. 

The Kappa Architecture retains some characteristics of Lambda’s batch layer, particularly the 
immutability of event data. When recomputation is necessary (equivalent to what the batch layer 
does in Lambda), the entire data stream is replayed, typically using parallelism to complete the 
computation efficiently[1]. This approach provides a more streamlined architecture while 
maintaining the ability to process historical data when needed. 

 

Figure 1: Schematic overview of Lambda and Kappa architecture components. 

2.4. ETL vs. ELT Paradigms 

The methods of moving and transforming data have evolved significantly, with traditional Extract, 
Transform, Load (ETL) approaches increasingly being complemented or replaced by Extract, Load, 
Transform (ELT), particularly in cloud and big data environments. 

In ETL, data is extracted from source systems, transformed on a separate processing server, and 
then loaded into the destination system[7][10]. This approach works well for complex 
transformations and scenarios requiring data cleansing before storage. ETL is particularly suitable 
for environments with rigid destination schemas that don’t change frequently[16]. It also provides 
better control over data quality and privacy, as sensitive data can be filtered or masked before 
reaching the destination system. 

ELT, by contrast, extracts data from sources, loads it directly into the destination system, and 
then performs transformations within that system[7][10]. This approach leverages the processing 
power of modern data warehouses and lakes, enabling more flexible and scalable data processing. 



 

 

ELT is particularly advantageous for large datasets requiring speed and efficiency, as it allows for 
simultaneous loading and transformation of data[10]. 

As Rivery explains, “ELT processes data faster than ETL. ETL includes a preliminary 
transformation step before loading data into the target, which becomes difficult to scale and slows 
performance as data size grows. ELT, in contrast, loads data directly into the target system, 
transforming it in parallel”[10]. Additionally, ELT preserves raw data in the destination system, 
enabling more flexible analytics and reducing the need to re–extract data when new 
transformation requirements emerge. 

The choice between ETL and ELT depends on various factors including data volume, 
transformation complexity, schema flexibility, and security requirements. Many modern data 
architectures employ a hybrid approach, using different paradigms for different data workflows 
based on their specific characteristics and requirements[7]. 

2.5. Medallion Architecture 

The Medallion Architecture is a data design pattern used to logically organize data in a lakehouse, 
with the goal of incrementally and progressively improving the structure and quality of data as it 
flows through multiple layers[4][13]. This architecture, sometimes referred to as a “multi–hop” 
architecture, consists of three primary layers: 

1. Bronze Layer (Raw Data): The ingestion point for all raw data from external sources. 
Tables in this layer correspond to source system structures “as–is,” along with metadata 
columns. The focus is on quick ingestion and historical archiving, providing an audit trail 
and enabling reprocessing if needed[4][13]. 

2. Silver Layer (Cleansed and Conformed Data): Data from the Bronze layer is cleansed, 
validated, and conformed to common standards. This layer provides an “Enterprise view” 
of key business entities and concepts, with improved data quality and structure[4][13]. 

3. Gold Layer (Enriched Data): Contains highly refined, analysis–ready data optimized for 
specific business use cases. This layer powers analytics, machine learning, and production 
applications with high–quality, aggregated, and enriched data[4][8]. 

According to Databricks, the Medallion Architecture “guarantees atomicity, consistency, 
isolation, and durability as data passes through multiple layers of validations and transformations 
before being stored in a layout optimized for efficient analytics”[13]. This progressive refinement 
ensures that data quality improves at each stage, providing appropriate levels of quality for 
different use cases. 

The Medallion Architecture works particularly well with ELT workflows but can also be 
adapted for ETL in structured environments[7]. It provides a clear framework for data governance 
and quality management, making it increasingly popular in modern data platforms. 



 

 

 
Figure 2: Schematic overview of a Medallion architectire. 

3. Proposed Component–Based Architecture 

Building upon the architectural patterns discussed above, we now present a comprehensive 
component–based architecture that integrates the strengths of these patterns while addressing 
their limitations. This architecture provides a flexible framework that can adapt to diverse 
requirements and technologies. 

3.1. Architectural Principles and Overview 

The proposed component–based architecture aims to address the limitations of monolithic big data 
systems by decomposing the architecture into modular, replaceable components. This approach 
enables organizations to select the best tools for each part of their data platform while maintaining 
a consistent overall architecture. 

The architecture is guided by several key principles: 

1. Modularity: Each component has a well–defined responsibility and interface, allowing it 
to be developed, tested, and replaced independently. This enables teams to focus on specific 
components without needing to understand the entire system in detail. 

2. Interchangeability: Components are replaceable with alternative implementations that 
fulfill the same interface, enabling organizations to select the best tool for each function 
based on their specific requirements. This reduces vendor lock–in and allows the 
architecture to evolve over time. 

3. Standardization: Components communicate through standardized interfaces and data 
formats, reducing integration complexity and enabling component substitution. This 
standardization simplifies integration and reduces the risk of incompatibilities. 

4. Separation of Concerns: Each layer of the architecture focuses on a specific aspect of 
data processing, with clear boundaries between ingestion, processing, storage, and 
exposure. This separation simplifies component development and replacement. 

5. Scalability: Each component is independently scalable based on workload requirements, 
allowing resources to be allocated efficiently. This ensures that the architecture can handle 
varying workloads without over–provisioning resources. 

These principles enable an architecture that can evolve over time, incorporating new technologies 
and adapting to changing requirements without requiring a complete system redesign. The 
architecture provides a flexible framework that can implement various architectural patterns 
(Lambda, Kappa, Medallion) through appropriate component configuration. 



 

 

3.2. Core Components and Interfaces 

The proposed architecture consists of four primary layers, each responsible for a specific aspect of 
data processing. Figure 1 illustrates the high–level architecture and the relationships between 
layers. 

 
Figure 3: Component–Based Architecture Layers and Example Technologies 

The proposed layers would be responsible for different phases of a general system: 

1. Ingest Layer: Connects to diverse data sources, handles authentication, ensures reliable 
data transfer, and captures metadata. 

2. Process Layer: Transforms and enriches data, implements business logic, and orchestrates 
processing workflows. 

3. Storage Layer: Provides persistent, scalable storage with support for modern table formats 
(Iceberg, Delta Lake). 

4. Expose Layer: Makes processed data available through various interfaces (SQL, REST, 
GraphQL). 

Interface Requirements: – The ingest layer must write data to the storage layer in a 
standardized format – It must provide metadata about ingested data, including source, timestamp, 
and schema information – It should support both batch and streaming ingestion patterns 

The ingest layer plays a critical role in establishing the foundation for data quality and 
governance. By capturing comprehensive metadata and ensuring reliable data transfer, it enables 
downstream processing to operate on well–documented and complete datasets. 

3.2.1. Process Layer 

The process layer is responsible for transforming, enriching, and orchestrating data processing 
pipelines. This layer implements the business logic required to convert raw data into valuable 
insights. 

Responsibilities: – Orchestrating data processing workflows – Transforming and enriching 
data – Implementing data quality rules and validation – Managing dependencies between 
processing steps – Scheduling and monitoring processing jobs 

Example Technologies: – Apache Airflow: A platform for programmatically authoring, 
scheduling, and monitoring workflows – Dagster: An orchestration tool for data pipelines with a 
focus on testing and maintainability – dbt (data build tool): A transformation tool that enables 



 

 

analytics engineers to transform data using SQL – Apache Spark: A unified analytics engine for 
large–scale data processing 

Interface Requirements: – The process layer must be able to read from and write to the 
storage layer – It must provide monitoring and logging information about processing jobs – It 
should support both batch and streaming processing paradigms 

The process layer is where architectural patterns like Lambda, Kappa, and Medallion are 
primarily implemented. For example, a Lambda Architecture would involve separate batch and 
stream processing workflows, while a Medallion Architecture would involve progressive 
transformations from Bronze to Silver to Gold data. 

3.2.2. Storage Layer 

The storage layer is responsible for storing and managing data throughout its lifecycle. This layer 
provides a persistent, scalable, and reliable repository for data at various stages of processing. 

Responsibilities: – Storing raw, intermediate, and processed data – Managing data formats 
and schemas – Providing efficient access patterns for different workloads – Ensuring data 
durability and reliability – Managing data lifecycle and retention policies 

Example Technologies: – MinIO: An S3–compatible object storage server – Apache Hadoop 
HDFS: A distributed file system for big data – AWS S3: A scalable object storage service – Ceph: A 
distributed storage system with S3–compatible API 

Data Formats: – Apache Iceberg: A table format for large analytics datasets providing ACID 
transactions, schema evolution, and partition evolution – Delta Lake: An open–source storage 
layer that provides ACID transactions, scalable metadata handling, and unified batch and 
streaming – Apache Parquet: A columnar storage format optimized for analytics 

Interface Requirements: – The storage layer must provide an S3–compatible API for data 
access – It must support efficient reading and writing of various data formats – It should ensure 
data consistency and durability 

The storage layer is the foundation of the architecture, providing a reliable and consistent view 
of data to other components. By supporting modern table formats like Apache Iceberg and Delta 
Lake, it enables advanced capabilities like time travel, schema evolution, and ACID transactions. 

3.2.3. Expose Layer 

The expose layer is responsible for making processed data available to downstream consumers. 
This layer provides fast, efficient access to data insights through various interfaces tailored to 
different consumption patterns. 

Responsibilities: – Providing query interfaces for data access – Optimizing data for specific 
query patterns – Managing authentication and authorization for data access – Ensuring consistent 
and reliable data delivery – Supporting various data consumption patterns (ad–hoc queries, 
dashboards, APIs) 

Example Technologies: – Elasticsearch: A distributed search and analytics engine – Cube.dev: 
An API layer for data analytics – Trino (formerly Presto): A distributed SQL query engine – 
Apache Superset: A modern data exploration and visualization platform 

Interface Requirements: – The expose layer must provide standardized interfaces for data 
access (SQL, REST, GraphQL) – It must optimize query performance for different consumption 
patterns – It should ensure consistent data access semantics regardless of the underlying storage 

Another example of an expose layer might be Elasticseach database, which provides unique 
features like simultaneous timeseries and spatial analysis capabilities, while maintaining decent 
speed of classical aggregation queries and also lives a room for indices tuning by using specific 
techniques. Another benefit and good example of an Expose functionality might be Kibana, which 
is de-facto always comes with Elasticsearch and provides user a BI-like experience [18]. 



 

 

The expose layer is where the value of the data platform is realized, providing business users 
and applications with access to insights derived from the data. By supporting multiple access 
patterns and interfaces, it enables a wide range of use cases from ad–hoc analysis to embedded 
analytics. 

4. Technical Implementation Examples 

Having established the theoretical foundations of the component–based architecture, we now 
present concrete implementation examples that demonstrate how these concepts can be translated 
into working systems. These examples showcase the interaction between different components and 
their integration points, providing practical insights into the architecture’s implementation. 

4.1. Example 1: Real–time Data Pipeline 

This example demonstrates a real–time data pipeline implementation that spans multiple layers of 
the component–based architecture. The pipeline ingests streaming data through Kafka, processes it 
using Spark, and stores the results in an Iceberg table, showcasing the interaction between the 
ingest, process, and storage layers. 

The implementation highlights several key aspects of the component–based architecture: – 
Standardized interfaces between components (Kafka topics, S3 storage) – Independent scaling of 
processing components – Clear separation of concerns between layers – Integration of streaming 
and batch processing capabilities 

#	Apache	Kafka	Producer	Configuration	
producer_config	=	{	
				'bootstrap.servers':	'kafka:9092',	
				'client.id':	'data–ingest–producer',	
				'acks':	'all',	
				'retries':	3,	
				'compression.type':	'snappy'	
}	
	
#	Apache	Spark	Processing	Pipeline	
from	pyspark.sql	import	SparkSession	
from	pyspark.sql.functions	import	*	
	
#	Setup	Spark	with	Iceberg	
spark	=	SparkSession.builder	\	
				.appName("RealTimeProcessing")	\	
				.config("spark.sql.extensions",	
"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")	\	
				.getOrCreate()	
	
#	Stream	processing	pipeline	
df	=	spark.readStream	\	
				.format("kafka")	\	
				.option("kafka.bootstrap.servers",	"kafka:9092")	\	
				.option("subscribe",	"raw–data")	\	
				.load()	
	
#	Process	and	write	to	Iceberg	
processed_df	=	df.select(	
				from_json(col("value").cast("string"),	schema).alias("data")	
).select("data.*")	
	



 

 

processed_df.writeStream	\	
				.format("iceberg")	\	
				.outputMode("append")	\	
				.option("path",	"s3://data–lake/processed")	\	
				.option("checkpointLocation",	"/checkpoints")	\	
				.start()	

4.2. Example 2: Batch Processing Pipeline 

This example illustrates a batch processing workflow using Airflow and dbt, demonstrating how 
the process layer can orchestrate complex data transformations while maintaining clear separation 
of concerns. The implementation shows how batch processing can be integrated with the storage 
layer while providing monitoring and logging capabilities. 

Key aspects demonstrated in this example: – Workflow orchestration and scheduling – Data 
transformation and validation – Monitoring and logging integration – Dependency management 
between processing steps 

#	Airflow	DAG	Configuration	
from	airflow	import	DAG	
from	airflow.operators.python	import	PythonOperator	
from	datetime	import	datetime	
	
default_args	=	{	
				'owner':	'data–team',	
				'start_date':	datetime(2024,	1,	1),	
				'retries':	3	
}	
	
dag	=	DAG(	
				'batch_processing',	
				default_args=default_args,	
				schedule_interval='@daily'	
)	
	
def	process_batch():	
				#	dbt	configuration	
				dbt_config	=	{	
								'project_dir':	'/dbt/project',	
								'profiles_dir':	'/dbt/profiles',	
								'target':	'prod'	
				}	
					
				#	Run	dbt	transformations	
				subprocess.run(['dbt',	'run',	'––project–dir',	
dbt_config['project_dir']])	
	
process_task	=	PythonOperator(	
				task_id='process_batch',	
				python_callable=process_batch,	
				dag=dag	
)	



 

 

4.3. Example 3: Query Interface Implementation 

This example shows how the expose layer can be implemented using Trino to provide efficient 
query access to data stored in the storage layer. It demonstrates the creation of materialized views 
for optimized query performance and the configuration of the query engine to work with the 
underlying storage format. 

The implementation showcases: – Query optimization techniques – Materialized view creation 
and management – Integration with the storage layer – Performance tuning considerations 

––	Trino	Configuration	
CREATE	CATALOG	iceberg	WITH	(	
				type	=	'iceberg',	
				warehouse	=	's3://data–lake/warehouse'	
);	
	
––	Create	materialized	view	for	optimized	queries	
CREATE	MATERIALIZED	VIEW	iceberg.analytics.daily_metrics	AS	
SELECT		
				date_trunc('day',	event_time)	as	day,	
				count(*)	as	event_count,	
				sum(amount)	as	total_amount	
FROM	iceberg.raw.events	
GROUP	BY	1;	
	
––	Query	optimization	example	
EXPLAIN	ANALYZE	
SELECT	*	FROM	iceberg.analytics.daily_metrics	
WHERE	day	>=	current_date	–	interval	'7'	day;	

5. Comparative Analysis 

The component-based architecture offers significant advantages over traditional monolithic 
approaches while addressing some inherent challenges. When compared to traditional 
architectures, it provides greater flexibility by enabling independent evolution of each layer. 
Organizations can replace individual components as requirements change without disrupting the 
entire system, unlike tightly coupled traditional implementations where changing one component 
(such as a batch processing engine) might require significant rework across multiple layers. 

This architecture can implement various patterns (Lambda, Kappa, Medallion) through 
appropriate component configuration. For Lambda, it uses separate batch and stream processing 
pipelines in the process layer with results merged at the expose layer. Kappa implementation 
focuses on stream processing with storage formats supporting both streaming and batch 
operations. Medallion patterns emerge through progressive transformations in the process layer 
with different refinement stages in the storage layer. 

The emphasis on standardized interfaces (like S3 API) and data formats (Apache Iceberg, Delta 
Lake) reduces integration complexity and enables component substitution. This standardization 
simplifies testing as components can be validated against their interfaces rather than within the 
entire system context. 

Key advantages include technology flexibility (selecting optimal tools for specific functions), 
future-proofing (adapting to new technologies by replacing individual components), independent 
scalability of components, specialized expertise development, and progressive adoption 
possibilities. However, challenges exist: integration overhead between components, potential 
performance impacts from component communication, increased operational complexity in 



 

 

managing distributed components, consistency challenges across implementations, and the need 
for diverse technical skills. 

Performance considerations include managing inter-component communication latency 
(mitigated through co-location and efficient protocols), component-specific optimizations, data 
format efficiency impacts, and independent scaling strategies. Modern data formats provide 
performance advantages through statistics, indexing, and partition pruning, while independent 
component scaling enables efficient resource allocation directed at bottleneck components without 
over-provisioning the entire system. 

5.1. Implementation Example: NGODS 

Having established the theoretical foundations and comparative analysis of component–based 
architectures, we now turn to a practical implementation example. The New Generation Open 
Source Data Stack (NGODS) represents a concrete realization of the component–based architecture 
principles discussed earlier. This implementation demonstrates how the theoretical concepts can be 
translated into a working system that addresses real–world big data challenges. 

The New Generation Open Source Data Stack (NGODS) represents a practical implementation of 
the component–based architecture described in this paper. As described by Svoboda, NGODS is a 
proof–of–concept open–source data stack composed of Apache Iceberg, Apache Spark, and 
Trino[3]. This implementation demonstrates how a modular, component–based approach can 
create a data platform that is both fast and feature–rich. 

NGODS was initially motivated by the desire to experiment with Apache Iceberg features like 
git–like data snapshots, schema evolution, and partitioning. However, it evolved into a more 
comprehensive data stack that integrates multiple components to create a cohesive yet flexible data 
platform. 

 

Figure 4: Components proposed in NGODS – New Generation Open Data Stack 

5.2. NGODS Component Implementation 

NGODS implements the component–based architecture with the following technologies: 

Ingest Layer: While the initial NGODS implementation does not specify a dedicated ingestion 
tool, it can be integrated with tools like Airbyte for data ingestion. Airbyte provides a wide range 
of pre–built connectors for databases, APIs, files, and other data sources, making it a suitable 
choice for the ingest layer. 



 

 

Process Layer: NGODS uses Apache Spark as the primary processing engine. Spark provides a 
unified analytics engine for large–scale data processing, supporting both batch and streaming 
workflows. It offers high–level APIs in Java, Scala, Python, and R, making it accessible to a wide 
range of data engineers and scientists. 

Storage Layer: NGODS uses Apache Iceberg as its table format, providing features like git–like 
data snapshots for versioning and time travel, schema evolution for adapting to changing data 
structures, and flexible partitioning for optimizing query performance. These features enable a 
robust and flexible storage layer that can adapt to evolving data requirements while maintaining 
data integrity and consistency. 

Expose Layer: NGODS uses Trino (formerly PrestoSQL) as its query engine, providing a fast 
and scalable way to expose data to analysts and applications. Trino is a distributed SQL query 
engine designed for analyzing large datasets, offering high–performance queries across diverse 
data sources, ANSI SQL compatibility, federated queries across multiple data stores, and a REST 
API for programmatic access. 

Svoboda mentions plans to extend the stack with additional components including DBT for 
transformation management, Dagger for workflow orchestration, Flink for stream processing, and 
Postgres for relational data storage[3]. These additions would enhance the capabilities of the stack 
while maintaining its modular, component–based nature. 

5.3. Integration and Data Flow in NGODS 

In the NGODS implementation, components are integrated through standardized interfaces and 
data formats: 

5. Data is ingested from various sources and stored in Apache Iceberg tables. 
6. Apache Spark processes the data, performing transformations and enrichments. 
7. Trino provides a SQL interface for querying the processed data. 

This architecture enables a flexible, scalable data platform that can handle diverse workloads while 
maintaining component independence. Each component can be replaced or upgraded individually 
without disrupting the entire system. 

The use of Apache Iceberg as the table format provides several advantages, including: – Version 
control for data, enabling time travel and rollback – Schema evolution, allowing the data model to 
adapt over time – Transaction support, ensuring data consistency – Partition evolution, optimizing 
query performance as data grows 

These capabilities make NGODS a robust foundation for building data–intensive applications, 
from business intelligence to machine learning. 

5.4. Future Directions and Emerging Trends 

Building upon the implementation examples and comparative analysis, we now explore emerging 
trends and future directions in component–based big data architectures. These developments 
promise to further enhance the flexibility, performance, and maintainability of data platforms. 
Several emerging technologies hold promise for enhancing component–based data architectures: 

Serverless Data Processing: Technologies like AWS Lambda, Azure Functions, and Google 
Cloud Functions enable fine–grained, event–driven processing without managing infrastructure. 
This approach can reduce operational complexity and improve scalability. 

Unified Compute and Storage: Projects like Delta Lake and Apache Iceberg blur the line 
between storage and compute, providing table formats with rich processing semantics. This 
unification can simplify architecture while improving performance and data consistency. 



 

 

Streaming SQL Engines: Tools like Materialize and Decodable enable SQL queries over 
streaming data, simplifying real–time analytics. These engines make streaming data more 
accessible to a wider range of users. 

Data Contracts and Schemas: Schema registries and data contract frameworks formalize 
agreements between components, improving interoperability. These tools enable more robust 
integration between components. 

Data Quality Frameworks: Tools like Great Expectations and Deequ help ensure data quality 
throughout the processing pipeline. These frameworks enable automated testing and validation of 
data at each stage of processing. 

6. Conclusion 

This paper has proposed a component-based architecture for big data systems that emphasizes 
modularity, interchangeability, and standardization. The architecture consists of four primary 
layers—ingest, process, expose, and storage—each with well-defined responsibilities and interfaces. 

The architecture enables organizations to: - Select the best technologies for each layer based on 
specific requirements - Replace individual components as requirements change or technologies 
evolve - Implement various architectural patterns (Lambda, Kappa, Medallion) through appropriate 
component configuration - Scale components independently based on workload demands - Evolve 
their data platform incrementally without disruptive rewrites 

The paper has demonstrated the practical application of this architecture through the NGODS 
example implementation, which combines Apache Iceberg, Apache Spark, and Trino to create a 
flexible, high-performance data platform[3]. This example illustrates how the component-based 
approach can be applied in practice, providing a foundation for organizations looking to implement 
similar architectures. 

The component-based architecture presented in this paper represents an evolution in big data 
system design, moving from monolithic implementations toward modular, flexible architectures 
that can adapt to changing requirements and technologies. By emphasizing standardized interfaces, 
clear separation of concerns, and modular design, this architecture helps organizations navigate the 
complexity of modern data ecosystems while building systems that can grow and evolve with their 
needs. 

As the big data landscape continues to evolve, with new tools and techniques emerging 
regularly, the ability to incorporate new capabilities without disrupting existing systems becomes 
increasingly valuable. The component-based approach provides a framework for this evolution, 
enabling organizations to build data platforms that are both robust and adaptable. This flexibility, 
combined with the performance and scalability benefits of modern big data technologies, positions 
organizations to derive maximum value from their data assets both today and in the future. 
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